51
|
Krainer G, Welsh TJ, Joseph JA, Espinosa JR, Wittmann S, de Csilléry E, Sridhar A, Toprakcioglu Z, Gudiškytė G, Czekalska MA, Arter WE, Guillén-Boixet J, Franzmann TM, Qamar S, George-Hyslop PS, Hyman AA, Collepardo-Guevara R, Alberti S, Knowles TPJ. Reentrant liquid condensate phase of proteins is stabilized by hydrophobic and non-ionic interactions. Nat Commun 2021; 12:1085. [PMID: 33597515 DOI: 10.1101/2020.05.04.076299] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 01/08/2021] [Indexed: 05/26/2023] Open
Abstract
Liquid-liquid phase separation of proteins underpins the formation of membraneless compartments in living cells. Elucidating the molecular driving forces underlying protein phase transitions is therefore a key objective for understanding biological function and malfunction. Here we show that cellular proteins, which form condensates at low salt concentrations, including FUS, TDP-43, Brd4, Sox2, and Annexin A11, can reenter a phase-separated regime at high salt concentrations. By bringing together experiments and simulations, we demonstrate that this reentrant phase transition in the high-salt regime is driven by hydrophobic and non-ionic interactions, and is mechanistically distinct from the low-salt regime, where condensates are additionally stabilized by electrostatic forces. Our work thus sheds light on the cooperation of hydrophobic and non-ionic interactions as general driving forces in the condensation process, with important implications for aberrant function, druggability, and material properties of biomolecular condensates.
Collapse
Affiliation(s)
- Georg Krainer
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Timothy J Welsh
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Jerelle A Joseph
- Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge, UK
- Department of Genetics, University of Cambridge, Cambridge, UK
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, UK
| | - Jorge R Espinosa
- Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge, UK
- Department of Genetics, University of Cambridge, Cambridge, UK
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, UK
| | - Sina Wittmann
- Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), Dresden, Germany
- Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Tatzberg 47/49, Dresden, Germany
| | - Ella de Csilléry
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Akshay Sridhar
- Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge, UK
- Department of Genetics, University of Cambridge, Cambridge, UK
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, UK
| | - Zenon Toprakcioglu
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Giedre Gudiškytė
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Magdalena A Czekalska
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka, 44/52 01-224, Warsaw, Poland
| | - William E Arter
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Jordina Guillén-Boixet
- Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Tatzberg 47/49, Dresden, Germany
| | - Titus M Franzmann
- Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Tatzberg 47/49, Dresden, Germany
| | - Seema Qamar
- Cambridge Institute for Medical Research, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Peter St George-Hyslop
- Cambridge Institute for Medical Research, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.
- Division of Neurology, Department of Medicine, University of Toronto and University Health Network, Toronto, Ontario, Canada.
| | - Anthony A Hyman
- Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), Dresden, Germany.
| | - Rosana Collepardo-Guevara
- Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge, UK.
- Department of Genetics, University of Cambridge, Cambridge, UK.
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, UK.
| | - Simon Alberti
- Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Tatzberg 47/49, Dresden, Germany.
| | - Tuomas P J Knowles
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK.
- Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge, UK.
| |
Collapse
|
52
|
Camino JD, Gracia P, Cremades N. The role of water in the primary nucleation of protein amyloid aggregation. Biophys Chem 2021; 269:106520. [PMID: 33341693 DOI: 10.1016/j.bpc.2020.106520] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/26/2020] [Accepted: 11/30/2020] [Indexed: 12/18/2022]
Abstract
The understanding of the complex conformational landscape of amyloid aggregation and its modulation by relevant physicochemical and cellular factors is a prerequisite for elucidating some of the molecular basis of pathology in amyloid related diseases, and for developing and evaluating effective disease-specific therapeutics to reduce or eliminate the underlying sources of toxicity in these diseases. Interactions of proteins with solvating water have been long considered to be fundamental in mediating their function and folding; however, the relevance of water in the process of protein amyloid aggregation has been largely overlooked. Here, we provide a perspective on the role water plays in triggering primary amyloid nucleation of intrinsically disordered proteins (IDPs) based on recent experimental evidences. The initiation of amyloid aggregation likely results from the synergistic effect between both protein intermolecular interactions and the properties of the water hydration layer of the protein surface. While the self-assembly of both hydrophobic and hydrophilic IDPs would be thermodynamically favoured due to large water entropy contributions, large desolvation energy barriers are expected, particularly for the nucleation of hydrophilic IDPs. Under highly hydrating conditions, primary nucleation is slow, being facilitated by the presence of nucleation-active surfaces (heterogeneous nucleation). Under conditions of poor water activity, such as those found in the interior of protein droplets generated by liquid-liquid phase separation, however, the desolvation energy barrier is significantly reduced, and nucleation can occur very rapidly in the bulk of the solution (homogeneous nucleation), giving rise to structurally distinct amyloid polymorphs. Water, therefore, plays a key role in modulating the transition free energy of amyloid nucleation, thus governing the initiation of the process, and dictating the type of preferred primary nucleation and the type of amyloid polymorph generated, which could vary depending on the particular microenvironment that the protein molecules encounter in the cell.
Collapse
Affiliation(s)
- José D Camino
- Biocomputation and Complex Systems Physics Institute (BIFI)-Joint Unit BIFI-IQFR(CSIC), Universidad de Zaragoza, Zaragoza 50018, Spain
| | - Pablo Gracia
- Biocomputation and Complex Systems Physics Institute (BIFI)-Joint Unit BIFI-IQFR(CSIC), Universidad de Zaragoza, Zaragoza 50018, Spain
| | - Nunilo Cremades
- Biocomputation and Complex Systems Physics Institute (BIFI)-Joint Unit BIFI-IQFR(CSIC), Universidad de Zaragoza, Zaragoza 50018, Spain.
| |
Collapse
|
53
|
Patra CN. Size and charge correlations in spherical electric double layers: a case study with fully asymmetric mixed electrolytes within the solvent primitive model. RSC Adv 2020; 10:39017-39025. [PMID: 35518397 PMCID: PMC9057371 DOI: 10.1039/d0ra06145j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/05/2020] [Indexed: 11/21/2022] Open
Abstract
Size and charge correlations in spherical electric double layers are investigated through Monte Carlo simulations and density functional theory, through a solvent primitive model representation. A fully asymmetric mixed electrolyte is used for the small ions, whereas the solvent, apart from being a continuum dielectric, is also treated as an individual component. A partially perturbative density functional theory is adopted here, and for comparison, a standard canonical ensemble Monte Carlo simulation is used. The hard-sphere free energy is treated within a weighted density approach and the residual ionic contribution is estimated through perturbation around the uniform density. The results from both methods corroborate each other quantitatively over a wide range of physical parameters. The importance of structural correlations is envisaged through the size and charge asymmetry of the supporting electrolytes that includes the solvent as a component. Size and charge correlations in spherical electric double layers are investigated through Monte Carlo simulations and density functional theory, through a solvent primitive model representation.![]()
Collapse
Affiliation(s)
- Chandra N Patra
- Theoretical Chemistry Section, Chemistry Group, Bhabha Atomic Research Centre Mumbai 400 085 India
| |
Collapse
|
54
|
Liu Z, Zhou W, Qi C, Kong T. Interface Engineering in Multiphase Systems toward Synthetic Cells and Organelles: From Soft Matter Fundamentals to Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2002932. [PMID: 32954548 DOI: 10.1002/adma.202002932] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/19/2020] [Indexed: 06/11/2023]
Abstract
Synthetic cells have a major role in gaining insight into the complex biological processes of living cells; they also give rise to a range of emerging applications from gene delivery to enzymatic nanoreactors. Living cells rely on compartmentalization to orchestrate reaction networks for specialized and coordinated functions. Principally, the compartmentalization has been an essential engineering theme in constructing cell-mimicking systems. Here, efforts to engineer liquid-liquid interfaces of multiphase systems into membrane-bounded and membraneless compartments, which include lipid vesicles, polymer vesicles, colloidosomes, hybrids, and coacervate droplets, are summarized. Examples are provided of how these compartments are designed to imitate biological behaviors or machinery, including molecule trafficking, growth, fusion, energy conversion, intercellular communication, and adaptivity. Subsequently, the state-of-art applications of these cell-inspired synthetic compartments are discussed. Apart from being simplified and cell models for bridging the gap between nonliving matter and cellular life, synthetic compartments also are utilized as intracellular delivery vehicles for nuclei acids and nanoreactors for biochemical synthesis. Finally, key challenges and future directions for achieving the full potential of synthetic cells are highlighted.
Collapse
Affiliation(s)
- Zhou Liu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518000, China
| | - Wen Zhou
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518000, China
| | - Cheng Qi
- College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen, 518000, China
| | - Tiantian Kong
- Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen, Guangdong, 518000, China
| |
Collapse
|
55
|
Hazra MK, Levy Y. Charge pattern affects the structure and dynamics of polyampholyte condensates. Phys Chem Chem Phys 2020; 22:19368-19375. [PMID: 32822449 DOI: 10.1039/d0cp02764b] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Proteins with intrinsically disordered regions have a tendency to condensate via liquid-liquid phase separation both in vitro and in vivo. Such biomolecular coacervates play various significant roles in biologically important regulatory processes. The present work explores the structural and dynamic features of coacervates formed by model polyampholytes, being intrinsically disordered proteins, that differ in terms of their charged amino acid patterns. Differences in the distribution of charged amino acids along the polyampholyte sequence lead to distinctly different structural features in the dense phase and hence to different liquid properties. Increased charge clustering raises the critical temperature for phase separation and results in each polyampholyte experiencing a larger number of inter-chain contacts with neighboring proteins in the condensate. Consequently, polyampholytes with greater charge clustering adopt a much more extended conformation, having a radius of gyration up to twice that observed in the dilute bulk phase. Translational diffusion within the droplet is pronounced, being just 4-20 times slower than in the bulk, consistently with the high conformational entropy in the dense phase and high exchange rate of the network of intermolecular interactions in the condensate. Coupled to the faster diffusion, the condensate also adopts a more elongated shape and exhibits imperfect packing, which results in cavities. This study quantifies the fundamental microscopic properties of condensates including the effect of long-range electrostatic forces and particularly how they can be modulated by the charge pattern.
Collapse
Affiliation(s)
- Milan Kumar Hazra
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, 76100, Israel.
| | - Yaakov Levy
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, 76100, Israel.
| |
Collapse
|
56
|
Yuan C, Yang M, Ren X, Zou Q, Yan X. Porphyrin/Ionic‐Liquid Co‐assembly Polymorphism Controlled by Liquid–Liquid Phase Separation. Angew Chem Int Ed Engl 2020; 59:17456-17460. [DOI: 10.1002/anie.202007459] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Chengqian Yuan
- State Key Laboratory of Biochemical Engineering Institute of Process Engineering Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Mengyao Yang
- State Key Laboratory of Biochemical Engineering Institute of Process Engineering Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Chemical Engineering University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Xiaokang Ren
- State Key Laboratory of Biochemical Engineering Institute of Process Engineering Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Chemical Engineering University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Qianli Zou
- State Key Laboratory of Biochemical Engineering Institute of Process Engineering Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Xuehai Yan
- State Key Laboratory of Biochemical Engineering Institute of Process Engineering Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Chemical Engineering University of Chinese Academy of Sciences Beijing 100049 P. R. China
- Center for Mesoscience Institute of Process Engineering Chinese Academy of Sciences Beijing 100190 P. R. China
| |
Collapse
|
57
|
Yuan C, Yang M, Ren X, Zou Q, Yan X. Porphyrin/Ionic‐Liquid Co‐assembly Polymorphism Controlled by Liquid–Liquid Phase Separation. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007459] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Chengqian Yuan
- State Key Laboratory of Biochemical Engineering Institute of Process Engineering Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Mengyao Yang
- State Key Laboratory of Biochemical Engineering Institute of Process Engineering Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Chemical Engineering University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Xiaokang Ren
- State Key Laboratory of Biochemical Engineering Institute of Process Engineering Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Chemical Engineering University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Qianli Zou
- State Key Laboratory of Biochemical Engineering Institute of Process Engineering Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Xuehai Yan
- State Key Laboratory of Biochemical Engineering Institute of Process Engineering Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Chemical Engineering University of Chinese Academy of Sciences Beijing 100049 P. R. China
- Center for Mesoscience Institute of Process Engineering Chinese Academy of Sciences Beijing 100190 P. R. China
| |
Collapse
|
58
|
Chavali S, Singh AK, Santhanam B, Babu MM. Amino acid homorepeats in proteins. Nat Rev Chem 2020; 4:420-434. [PMID: 37127972 DOI: 10.1038/s41570-020-0204-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2020] [Indexed: 12/16/2022]
Abstract
Amino acid homorepeats, or homorepeats, are polypeptide segments found in proteins that contain stretches of identical amino acid residues. Although abnormal homorepeat expansions are linked to pathologies such as neurodegenerative diseases, homorepeats are prevalent in eukaryotic proteomes, suggesting that they are important for normal physiology. In this Review, we discuss recent advances in our understanding of the biological functions of homorepeats, which range from facilitating subcellular protein localization to mediating interactions between proteins across diverse cellular pathways. We explore how the functional diversity of homorepeat-containing proteins could be linked to the ability of homorepeats to adopt different structural conformations, an ability influenced by repeat composition, repeat length and the nature of flanking sequences. We conclude by highlighting how an understanding of homorepeats will help us better characterize and develop therapeutics against the human diseases to which they contribute.
Collapse
Affiliation(s)
- Sreenivas Chavali
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, UK.
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, India.
| | - Anjali K Singh
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, India
| | - Balaji Santhanam
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, UK
- Department of Structural Biology and Center for Data Driven Discovery, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - M Madan Babu
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, UK.
- Department of Structural Biology and Center for Data Driven Discovery, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
59
|
Feng Z, Wang H, Wang F, Oh Y, Berciu C, Cui Q, Egelman EH, Xu B. Artificial Intracellular Filaments. CELL REPORTS. PHYSICAL SCIENCE 2020; 1:100085. [PMID: 32776017 PMCID: PMC7413147 DOI: 10.1016/j.xcrp.2020.100085] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Intracellular protein filaments are ubiquitous for cellular functions, but forming bona fide biomimetic intracellular filaments of small molecules in living cells remains elusive. Here, we report the in situ formation of self-limiting intracellular filaments of a small peptide via enzymatic morphological transition of a phosphorylated and trimethylated heterochiral tetrapeptide. Enzymatic dephosphorylation reduces repulsive intermolecular electrostatic interactions and converts the peptidic nanoparticles into filaments, which exhibit distinct types of cross-β structures with either C7 or C2 symmetries, with the hydrophilic C-terminal residues at the periphery of the helix. Macromolecular crowding promotes the peptide filaments to form bundles, which extend from the plasma membrane to nuclear membrane and hardly interact with endogenous components, including cytoskeletons. Stereochemistry and post-translational modification (PTM) of peptides are critical for generating the intracellular bundles. This work may offer a way to gain lost functions or to provide molecular insights for understanding normal and aberrant intracellular filaments.
Collapse
Affiliation(s)
- Zhaoqianqi Feng
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02454, USA
- These authors contributed equally
| | - Huaimin Wang
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02454, USA
- These authors contributed equally
| | - Fengbin Wang
- Department of Biochemistry and Molecular Genetics, University of Virginia, Box 800733, Charlottesville, VA 22908-0733, USA
| | - Younghoon Oh
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, MA 02215, USA
- Rafik B. Hariri Institute for Computing and Computational Science & Engineering, Boston University, 111 Cummington Mall, Boston, MA 02215, USA
- Department of Chemistry and Research Institute for Basic Science, Sogang University, Seoul 04107, Republic of Korea
| | - Cristina Berciu
- Microscopy Core Facility, McLean Hospital, Belmont, MA 02478, USA
| | - Qiang Cui
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, MA 02215, USA
| | - Edward H. Egelman
- Department of Biochemistry and Molecular Genetics, University of Virginia, Box 800733, Charlottesville, VA 22908-0733, USA
| | - Bing Xu
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02454, USA
- Lead Contact
| |
Collapse
|
60
|
Titus AR, Ferreira LA, Belgovskiy AI, Kooijman EE, Mann EK, Mann JA, Meyer WV, Smart AE, Uversky VN, Zaslavsky BY. Interfacial tension and mechanism of liquid-liquid phase separation in aqueous media. Phys Chem Chem Phys 2020; 22:4574-4580. [PMID: 32048659 DOI: 10.1039/c9cp05810a] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The organization of multiple subcellular compartments is controlled by liquid-liquid phase separation. Phase separation of this type occurs with the emergence of interfacial tension. Aqueous two-phase systems formed by two non-ionic polymers can be used to separate and analyze biological macromolecules, cells and viruses. Phase separation in these systems may serve as the simple model of phase separation in cells also occurring in aqueous media. To better understand liquid-liquid phase separation mechanisms, interfacial tension was measured in aqueous two-phase systems formed by dextran and polyethylene glycol and by polyethylene glycol and sodium sulfate in the presence of different additives. Interfacial tension values depend on differences between the solvent properties of the coexisting phases, estimated experimentally by parameters representing dipole-dipole, ion-dipole, ion-ion, and hydrogen bonding interactions. Based on both current and literature data, we propose a mechanism for phase separation in aqueous two-phase systems. This mechanism is based on the fundamental role of intermolecular forces. Although it remains to be confirmed, it is possible that these may underlie all liquid-liquid phase separation processes in biology.
Collapse
Affiliation(s)
- Amber R Titus
- Department of Biological Sciences, Kent State University, OH, Kent, USA
| | | | | | - Edgar E Kooijman
- Department of Biological Sciences, Kent State University, OH, Kent, USA
| | | | - J Adin Mann
- Department of Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, OH, USA
| | | | | | - Vladimir N Uversky
- Department of Molecular Medicine and Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA and Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino, Moscow region, Russia
| | | |
Collapse
|
61
|
Munari F, D'Onofrio M, Assfalg M. Solution NMR insights into dynamic supramolecular assemblies of disordered amyloidogenic proteins. Arch Biochem Biophys 2020; 683:108304. [PMID: 32097611 DOI: 10.1016/j.abb.2020.108304] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/12/2020] [Accepted: 02/14/2020] [Indexed: 12/29/2022]
Abstract
The extraordinary flexibility and structural heterogeneity of intrinsically disordered proteins (IDP) make them functionally versatile molecules. We have now begun to better understand their fundamental role in biology, however many aspects of their behaviour remain difficult to grasp experimentally. This is especially true for the intermolecular interactions which lead to the formation of transient or highly dynamic supramolecular self-assemblies, such as oligomers, aggregation intermediates and biomolecular condensates. Both the emerging functions and pathogenicity of these structures have stimulated great efforts to develop methodologies capable of providing useful insights. Significant progress in solution NMR spectroscopy has made this technique one of the most powerful to describe structural and dynamic features of IDPs within such assemblies at atomic resolution. Here, we review the most recent works that have illuminated key aspects of IDP assemblies and contributed significant advancements towards our understanding of the complex conformational landscape of prototypical disease-associated proteins. We also include a primer on some of the fundamental and innovative NMR methods being used in the discussed studies.
Collapse
Affiliation(s)
- Francesca Munari
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy
| | - Mariapina D'Onofrio
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy
| | - Michael Assfalg
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy.
| |
Collapse
|
62
|
Watanabe C, Kobori Y, Yamamoto J, Kinjo M, Yanagisawa M. Quantitative Analysis of Membrane Surface and Small Confinement Effects on Molecular Diffusion. J Phys Chem B 2020; 124:1090-1098. [PMID: 31939302 DOI: 10.1021/acs.jpcb.9b10558] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Molecular behaviors in small liquid droplets (picoliter scale), such as phase transitions and chemical reactions, are essential for the industrial application of small droplets and their use as artificial cells. However, the droplets often differ from those in bulk solutions (milliliter scale). Since the droplet size is much larger than the molecular size, the so-called size effect that draws these differences has attracted attention as a target to be solved. Although the small volume and the membrane surface surrounding the droplet are thought to be the origin of the size effect, there were little attempts to separate and quantify them. To solve the problem, we develop a series of systems for the evaluation. Using these systems, we have evaluated the size effect of concentrated polymer solutions on molecular diffusion by dividing it into small volume and membrane surface contributions. Our results demonstrate that the size effect on the molecular diffusion originates from the long-range interaction with the surface enhanced with decreasing volume. The quantitative size effect revealed by the systems provides novel insights in the biophysical understanding of molecular behaviors in cells and to the regulation and design of micrometer-sized materials.
Collapse
Affiliation(s)
- Chiho Watanabe
- Komaba Institute for Science , The University of Tokyo , Komaba 3-8-1 , Meguro , Tokyo 153-8902 , Japan
| | - Yuta Kobori
- Komaba Institute for Science , The University of Tokyo , Komaba 3-8-1 , Meguro , Tokyo 153-8902 , Japan.,Department of Applied Physics , Tokyo University of Agriculture and Technology , Naka-cho 2-24-16 , Koganei , Tokyo 184-8588 , Japan
| | - Johtaro Yamamoto
- Biomedical Research Institute , National Institute of Advanced Industrial Science and Technology (AIST) , Central 6, Higashi 1-1-1 , Tsukuba , Ibaraki 305-8568 , Japan
| | - Masataka Kinjo
- Faculty of Advanced Life Science , Hokkaido University , Kita-21 Nishi-11 Kita-ku , Sapporo , Hokkaido 001-0021 , Japan
| | - Miho Yanagisawa
- Komaba Institute for Science , The University of Tokyo , Komaba 3-8-1 , Meguro , Tokyo 153-8902 , Japan.,Department of Basic Science , The University of Tokyo , Komaba 3-8-1 , Meguro , Tokyo 153-8902 , Japan
| |
Collapse
|
63
|
Mudogo CN, Falke S, Brognaro H, Duszenko M, Betzel C. Protein phase separation and determinants of in cell crystallization. Traffic 2019; 21:220-230. [DOI: 10.1111/tra.12711] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 10/21/2019] [Accepted: 10/27/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Celestin N. Mudogo
- Laboratory for Structural Biology of Infection and InflammationInstitute of Biochemistry and Molecular Biology, University of Hamburg Hamburg Germany
- Department of Basic Sciences, School of MedicineUniversity of Kinshasa Kinshasa Democratic Republic of Congo
| | - Sven Falke
- Laboratory for Structural Biology of Infection and InflammationInstitute of Biochemistry and Molecular Biology, University of Hamburg Hamburg Germany
| | - Hévila Brognaro
- Laboratory for Structural Biology of Infection and InflammationInstitute of Biochemistry and Molecular Biology, University of Hamburg Hamburg Germany
- Centre for Free‐Electron‐Laser Science Hamburg Germany
| | - Michael Duszenko
- Institute of Neurophysiology, University of Tübingen Tübingen Germany
| | - Christian Betzel
- Laboratory for Structural Biology of Infection and InflammationInstitute of Biochemistry and Molecular Biology, University of Hamburg Hamburg Germany
| |
Collapse
|
64
|
Kashin AS, Ananikov VP. Monitoring chemical reactions in liquid media using electron microscopy. Nat Rev Chem 2019. [DOI: 10.1038/s41570-019-0133-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|