51
|
Zhou H, Luo Q, Wu W, Li N, Yang C, Zou L. Radiomics-guided checkpoint inhibitor immunotherapy for precision medicine in cancer: A review for clinicians. Front Immunol 2023; 14:1088874. [PMID: 36936913 PMCID: PMC10014595 DOI: 10.3389/fimmu.2023.1088874] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 02/16/2023] [Indexed: 03/05/2023] Open
Abstract
Immunotherapy using immune checkpoint inhibitors (ICIs) is a breakthrough in oncology development and has been applied to multiple solid tumors. However, unlike traditional cancer treatment approaches, immune checkpoint inhibitors (ICIs) initiate indirect cytotoxicity by generating inflammation, which causes enlargement of the lesion in some cases. Therefore, rather than declaring progressive disease (PD) immediately, confirmation upon follow-up radiological evaluation after four-eight weeks is suggested according to immune-related Response Evaluation Criteria in Solid Tumors (ir-RECIST). Given the difficulty for clinicians to immediately distinguish pseudoprogression from true disease progression, we need novel tools to assist in this field. Radiomics, an innovative data analysis technique that quantifies tumor characteristics through high-throughput extraction of quantitative features from images, can enable the detection of additional information from early imaging. This review will summarize the recent advances in radiomics concerning immunotherapy. Notably, we will discuss the potential of applying radiomics to differentiate pseudoprogression from PD to avoid condition exacerbation during confirmatory periods. We also review the applications of radiomics in hyperprogression, immune-related biomarkers, efficacy, and immune-related adverse events (irAEs). We found that radiomics has shown promising results in precision cancer immunotherapy with early detection in noninvasive ways.
Collapse
Affiliation(s)
- Huijie Zhou
- Division of Medical Oncology, Cancer Center and State Key Laboratory of Biotherapy, Sichuan University West China Hospital, Chengdu, China
| | - Qian Luo
- Department of Hematology, the Second Affiliated Hospital Zhejiang University School of Medicine, Zhejiang, China
| | - Wanchun Wu
- Division of Medical Oncology, Cancer Center and State Key Laboratory of Biotherapy, Sichuan University West China Hospital, Chengdu, China
| | - Na Li
- Division of Medical Oncology, Cancer Center and State Key Laboratory of Biotherapy, Sichuan University West China Hospital, Chengdu, China
| | - Chunli Yang
- Division of Medical Oncology, Cancer Center and State Key Laboratory of Biotherapy, Sichuan University West China Hospital, Chengdu, China
| | - Liqun Zou
- Division of Medical Oncology, Cancer Center and State Key Laboratory of Biotherapy, Sichuan University West China Hospital, Chengdu, China
- *Correspondence: Liqun Zou,
| |
Collapse
|
52
|
Kanjanapan Y, Guduguntla G, Varikara AK, Szajer J, Yip D, Cockburn J, Fadia M. Hyperprogressive Disease (HPD) in Solid Tumours Receiving Immune Checkpoint Inhibitors in a Real-World Setting. Technol Cancer Res Treat 2023; 22:15330338231209129. [PMID: 37885403 PMCID: PMC10612441 DOI: 10.1177/15330338231209129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/15/2023] [Accepted: 10/04/2023] [Indexed: 10/28/2023] Open
Abstract
Introduction: Hyperprogressive disease (HPD) is a state of accelerated tumor growth from cancer immunotherapy, associated with poor outcome. The reported incidence is 6% to 29% among studies using varying definitions of HPD, with no predictive biomarkers. Tumor infiltrating lymphocytes (TILs) are prognostic and predictive for immunotherapy benefit in various tumor types, but have only been tested for correlation with HPD in one study. Objectives: The objective of the study was to determine the prevalence of HPD in solid tumor patients treated with immune checkpoint inhibitor therapy in a real-world setting, and to assess clinicopathological features as potential biomarkers for HPD. Methods: We conducted a retrospective analysis of solid tumor patients treated with immune checkpoint inhibitors at a single institution. Imaging pre-immunotherapy and postimmunotherapy were assessed for HPD, and correlated against clinicopathological factors, including TILs and programmed death-ligand 1 (PD-L1) status through archival tumor assessment. HPD was defined per Matos et al as response evaluation criteria in solid tumors (RECIST) progressive disease, minimum increase in measurable lesions of 10 mm, plus increase of ≥40% in sum of target lesions compared with baseline and/or increase of ≥20% in sum of target lesions compared with baseline plus new lesions in at least 2 different organs. Results: HPD occurred in 11 of 87 patients (13%), and associated with inferior overall survival (median 5.5 months vs 18.3 months, P = .002). However, on multivariate analysis, only liver metastases (hazard ratio [HR] 4.66, 95% confidence interval [CI] 2.27-9.56, P < .001) and PD-L1 status (HR 0.53, 95% CI 0.30-0.95, P = .03) were significantly associated with survival. Presence of liver metastases correlated with occurence of HPD (P = .01). Age, sex, and monotherapy versus combination immunotherapy were not predictive for HPD. PD-L1 status and TILs were not associated with HPD. Conclusions: We found 13% HPD among solid tumor patients treated with immunotherapy, consistent with the range reported in prior series. Assessment for HPD is feasible outside of a clinical trials setting, using modified criteria that require comparison of 2 imaging studies. Liver metastases were associated with risk of HPD, while TILs and PD-L1 status were not predictive for HPD.
Collapse
Affiliation(s)
- Yada Kanjanapan
- Department of Medical Oncology, The Canberra Hospital, Canberra, Australia
- ANU Medical School, Australian National University, Canberra, Australia
| | - Geetha Guduguntla
- Department of Medical Imaging, The Canberra Hospital, Canberra, Australia
| | | | - Jeremy Szajer
- Department of Medical Imaging, The Canberra Hospital, Canberra, Australia
| | - Desmond Yip
- Department of Medical Oncology, The Canberra Hospital, Canberra, Australia
- ANU Medical School, Australian National University, Canberra, Australia
| | - John Cockburn
- ANU Medical School, Australian National University, Canberra, Australia
- Department of Medical Imaging, The Canberra Hospital, Canberra, Australia
| | - Mitali Fadia
- ANU Medical School, Australian National University, Canberra, Australia
- Department of Pathology, The Canberra Hospital, Canberra, Australia
| |
Collapse
|
53
|
Welty NE, Gill SI. Cancer Immunotherapy Beyond Checkpoint Blockade: JACC: CardioOncology State-of-the-Art Review. JACC CardioOncol 2022; 4:563-578. [PMID: 36636439 PMCID: PMC9830230 DOI: 10.1016/j.jaccao.2022.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 12/24/2022] Open
Abstract
Avoidance of immune destruction is recognized as one of the hallmarks of cancer development. Although first predicted as a potential antitumor treatment modality more than 50 years ago, the widespread clinical use of cancer immunotherapies has only recently become a reality. Cancer immunotherapy works by reactivation of a stalled pre-existing immune response or by eliciting a de novo immune response, and its toolkit comprises antibodies, vaccines, cytokines, and cell-based therapies. The treatment paradigm in some malignancies has completely changed over the past 10 to 15 years. Massive efforts in preclinical development have led to a surge of clinical trials testing innovative therapeutic approaches as monotherapy and, increasingly, in combination. Here we provide an overview of approved and emerging antitumor immune therapies, focusing on the rich landscape of therapeutic approaches beyond those that block the canonical PD-1/PD-L1 and CTLA-4 axes and placing them in the context of the latest understanding of tumor immunology.
Collapse
Key Words
- BiTE, bispecific T cell engager
- CAR, chimeric antigen receptor
- CRS, cytokine-release syndrome
- FDA, U.S. Food and Drug Administration
- HLA, human leukocyte antigen
- ICI, immune checkpoint inhibitor
- IL, interleukin
- NK, natural killer
- NSCLC, non–small cell lung cancer
- TIL, tumor-infiltrating lymphocyte
- alloHCT, allogeneic hematopoietic stem cell transplantation
- cancer
- immune therapy
- immunotherapy
- innovation
- mAb, monoclonal antibody
- treatment
Collapse
Affiliation(s)
- Nathan E. Welty
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, Pennsylvania, USA,Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Saar I. Gill
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, Pennsylvania, USA,Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA,Address for correspondence: Dr Saar I. Gill, Smilow Center for Translational Research, Room 8-101, 3400 Civic Center Boulevard, Philadelphia, Pennsylvania 19104, USA.
| |
Collapse
|
54
|
Li Q, Han J, Yang Y, Chen Y. PD-1/PD-L1 checkpoint inhibitors in advanced hepatocellular carcinoma immunotherapy. Front Immunol 2022; 13:1070961. [PMID: 36601120 PMCID: PMC9806143 DOI: 10.3389/fimmu.2022.1070961] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
Hepatocellular carcinoma (HCC) has a high prevalence and mortality rate worldwide. Sorafenib monotherapy has been the standard of first-line treatment for advanced HCC for a long time, but there are still many shortcomings. In recent years, with the deepening of research on tumor immune microenvironment, researchers have begun to explore new approaches in immunotherapy, and the introduction of immune checkpoint inhibitors has brought fundamental changes to the treatment of HCC. Programmed cell death protein 1 (PD-1) is an immune checkpoint molecule that plays an important role in down-regulating immune system function and promoting tolerance. Programmed cell death ligand 1 (PDL-1) is involved in tumor immune evasion by binding to PD-1, resulting in failure of treatment. Currently, immunotherapy targeting the PD-1/PD-L1 axis has achieved unprecedented success in HCC, but it also faces great challenges, with its low remission rate still to be solved. For most patients with HCC, the PD-1/PD-L1 pathway is not the only rate limiting factor of antitumor immunity, and blocking only the PD-1/PD-L1 axis is not enough to stimulate an effective antitumor immune response; thus, combination therapy may be a better option. In this study, changes in the immune microenvironment of HCC patients were reviewed to clarify the feasibility of anti-PD-1/PD-L1 therapy, and a series of monotherapy and combination therapy clinical trials were summarized to verify the safety and efficacy of this newly developed treatment in patients with advanced HCC. Furthermore, we focused on hyperprogressive disease and drug resistance to gain a better understanding of PD-1/PD-L1 blockade as a promising treatment.
Collapse
Affiliation(s)
- Qian Li
- Department of Anesthesiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jingjing Han
- Department of Anesthesiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yonglin Yang
- Department of Infectious Diseases, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, China
| | - Yu Chen
- Department of Anesthesiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
55
|
Histopathologic Evolution of Melanocytes Associated With Rapid Clinical Progression of Melanoma: Clinicopathologic Presentation of Hyperprogressive Disease in a Patient Treated With Immunotherapy. Am J Dermatopathol 2022; 44:921-924. [DOI: 10.1097/dad.0000000000002315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
56
|
Dercle L, Ammari S, Roblin E, Bigorgne A, Champiat S, Taihi L, Plaian A, Hans S, Lakiss S, Tselikas L, Rouanne M, Deutsch E, Schwartz LH, Gönen M, Flynn J, Massard C, Soria JC, Robert C, Marabelle A. High serum LDH and liver metastases are the dominant predictors of primary cancer resistance to anti-PD(L)1 immunotherapy. Eur J Cancer 2022; 177:80-93. [PMID: 36332438 DOI: 10.1016/j.ejca.2022.08.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/27/2022] [Indexed: 01/06/2023]
Abstract
AIM Anti-PD-(L)1 immunotherapies improve survival in multiple cancers but remain ineffective for most patients. We applied machine-learning algorithms and multivariate analyses on baseline medical data to estimate their relative impact on overall survival (OS) upon anti-PD-(L)1 monotherapies. METHOD This prognostic/predictive study retrospectively analysed 33 baseline routine medical variables derived from computed tomography (CT) images, clinical and biological meta-data. 695 patients with a diagnosis of advanced cancer were treated in prospective clinical trials in a single tertiary cancer centre in 3 cohorts including systemic anti-PD-(L)1 (251, 235 patients) versus other systemic therapies (209 patients). A random forest model combined variables to identify the combination (signature) which best estimated OS in patients treated with immunotherapy. The performance for estimating OS [95%CI] was measured using Kaplan-Meier Analysis and Log-Rank test. RESULTS Elevated serum lactate dehydrogenase (LDHhi) and presence of liver metastases (LM+) were dominant and independent predictors of short OS in independent cohorts of melanoma and non-melanoma solid tumours. Overall, LDHhiLM+ patients treated with anti-PD-(L)1 monotherapy had a poorer outcome (median OS: 3.1[2.4-7.8] months]) compared to LDHlowLM-patients (median OS: 15.3[8.9-NA] months; P < 0.0001). The OS of LDHlowLM-patients treated with immunotherapy was 28.8[17.9-NA] months (vs 13.1[10.8-18.5], P = 0.02) in the overall population and 30.3[19.93-NA] months (vs 14.1[8.69-NA], P = 0.0013) in patients with melanoma. CONCLUSION LDHhiLM+ status identifies patients who shall not benefit from anti-PD-(L)1 monotherapy. It could be used in clinical trials to stratify patients and eventually address this specific medical need.
Collapse
Affiliation(s)
- Laurent Dercle
- INSERM U1015 & CIC1428, Gustave Roussy, 94805 Villejuif, France.
| | - Samy Ammari
- Département de Radiologie, Gustave Roussy, 94805 Villejuif, France; BIOMAPS. UMR1281 INSERM. CEA. CNRS.Université Paris-Saclay, Villejuif, France
| | - Elvire Roblin
- Service de Biostatistique et D'Épidémiologie, Gustave Roussy, Université Paris-Saclay, Villejuif, France; Oncostat U1018, INSERM, Université Paris-Saclay, Équipe Labellisée Ligue Contre le Cancer, Villejuif, France
| | - Amelie Bigorgne
- INSERM U1015 & CIC1428, Gustave Roussy, 94805 Villejuif, France; INSERM U1163, Institut Imagine, Paris, France
| | | | - Lokmane Taihi
- Département de Radiologie, Gustave Roussy, 94805 Villejuif, France
| | - Athèna Plaian
- Département de Radiologie, Gustave Roussy, 94805 Villejuif, France
| | - Sophie Hans
- Département de Radiologie, Gustave Roussy, 94805 Villejuif, France
| | - Sara Lakiss
- Département de Radiologie, Gustave Roussy, 94805 Villejuif, France
| | | | - Mathieu Rouanne
- Hôpital Foch, UVSQ-Université Paris-Saclay, Suresnes, France; Departement D'Innovation Thérapeutique et des Essais Précoces (DITEP), Gustave Roussy, Universite Paris Saclay, Villejuif, France
| | - Eric Deutsch
- Departement de Radiothérapie, Gustave Roussy, Université Paris Saclay, 94805 Villejuif, France
| | - Lawrence H Schwartz
- Department of Radiology, NewYork-Presbyterian, Columbia University Irving Medical Center, NY, USA
| | - Mithat Gönen
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jessica Flynn
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Christophe Massard
- Departement D'Innovation Thérapeutique et des Essais Précoces (DITEP), Gustave Roussy, Universite Paris Saclay, Villejuif, France
| | - Jean-Charles Soria
- Departement D'Innovation Thérapeutique et des Essais Précoces (DITEP), Gustave Roussy, Universite Paris Saclay, Villejuif, France; INSERM U981, Gustave Roussy, Villejuif, France
| | - Caroline Robert
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Departement de Médecine Oncologique, Gustave Roussy, Université Paris Saclay, Villejuif, France
| | - Aurélien Marabelle
- INSERM U1015 & CIC1428, Gustave Roussy, 94805 Villejuif, France; Departement D'Innovation Thérapeutique et des Essais Précoces (DITEP), Gustave Roussy, Universite Paris Saclay, Villejuif, France.
| |
Collapse
|
57
|
The prospect of combination therapies with the third-generation EGFR-TKIs to overcome the resistance in NSCLC. Biomed Pharmacother 2022; 156:113959. [DOI: 10.1016/j.biopha.2022.113959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/27/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
|
58
|
Viscardi G, Tralongo AC, Massari F, Lambertini M, Mollica V, Rizzo A, Comito F, Di Liello R, Alfieri S, Imbimbo M, Della Corte CM, Morgillo F, Simeon V, Lo Russo G, Proto C, Prelaj A, De Toma A, Galli G, Signorelli D, Ciardiello F, Remon J, Chaput N, Besse B, de Braud F, Garassino MC, Torri V, Cinquini M, Ferrara R. Comparative assessment of early mortality risk upon immune checkpoint inhibitors alone or in combination with other agents across solid malignancies: a systematic review and meta-analysis. Eur J Cancer 2022; 177:175-185. [PMID: 36368251 DOI: 10.1016/j.ejca.2022.09.031] [Citation(s) in RCA: 98] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/24/2022] [Indexed: 01/06/2023]
Abstract
BACKGROUND The early crossing of survival curves in randomised clinical trials (RCTs) with immune checkpoint blockers suggests an excess of mortality in the first months of treatment. However, the exact estimation of the early death (ED) rate, the comparison between ED upon immune checkpoint inhibitors (ICI) alone or in combination with other agents and the impact of tumour type, and PD-L1 expression on ED are unknown. METHODS RCTs comparing ICI alone (ICI-only group) or in combination with other non-ICI therapies (ICI-OT group) (experimental arms) versus non-ICI treatments (control arm) were included. ED was defined as death within the first 3 months of treatment. The primary outcome was the comparison of ED between experimental and control arms, and the secondary outcome was the comparison of ED risk between ICI-only and ICI-OT. ED rates estimated by risk ratio (RR) were pooled by random effect model. RESULTS A total of 56 RCTs (40,215 participants, 14 cancer types) were included. ED occurred in 14.2% and 6.7% of patients in ICI-only and ICI-OT groups, respectively. ED risk significantly increased with ICI-only (RR: 1.29, 95% CI 1.05-1.57) versus non-ICI therapies, while it was lower with ICI-OT versus non-ICI treatments (RR: 0.81, 95% CI 0.73-0.90). ED risk was significantly higher upon ICI-only compared to ICI-OT (RR: 1.57, 95% CI 1.26-1.95). Gastric and urothelial carcinoma were at higher risk of ED. PD-L1 expression and ICI drug classes were not associated with ED. CONCLUSIONS ED upon first-line ICI is a clinically relevant phenomenon across solid malignancies, not predictable by PD-L1 expression but preventable through the addition of other treatments to ICI.
Collapse
Affiliation(s)
- Giuseppe Viscardi
- Medical Oncology, Department of Precision Medicine, Università Degli Studi Della Campania "Luigi Vanvitelli", Naples, Italy; Department of Pneumology and Oncology, AORN Ospedali Dei Colli, Naples, Italy. https://twitter.com/@giusvisc
| | - Antonino C Tralongo
- Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy; Medical Oncology Unit, Umberto I Hospital, Azienda Sanitaria Provinciale (ASP) Siracusa, Siracusa, Italy
| | - Francesco Massari
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy; Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Matteo Lambertini
- Department of Internal Medicine and Medical Specialties (DiMI), School of Medicine, University of Genova, Genova, Italy; Department of Medical Oncology, UO Clinica di Oncologia Medica, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Veronica Mollica
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy; Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Alessandro Rizzo
- SSD Oncologia Medica per La Presa in Carico Globale Del Paziente Oncologico "Don Tonino Bello", IRCCS Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | - Francesca Comito
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy; Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Raimondo Di Liello
- Clinical Trials Unit, Istituto Nazionale Tumori - IRCCS - Fondazione G. Pascale, Naples, Italy
| | - Salvatore Alfieri
- Head and Neck Medical Oncology 3 Department, Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy
| | - Martina Imbimbo
- Department of Oncology, Immuno-oncology Service, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Carminia M Della Corte
- Medical Oncology, Department of Precision Medicine, Università Degli Studi Della Campania "Luigi Vanvitelli", Naples, Italy
| | - Floriana Morgillo
- Medical Oncology, Department of Precision Medicine, Università Degli Studi Della Campania "Luigi Vanvitelli", Naples, Italy
| | - Vittorio Simeon
- Medical Statistics Unit, Department of Mental Health and Public Medicine, Università Degli Studi Della Campania "Luigi Vanvitelli", Naples, Italy
| | - Giuseppe Lo Russo
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy
| | - Claudia Proto
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy
| | - Arsela Prelaj
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy
| | - Alessandro De Toma
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy
| | - Giulia Galli
- Medical Oncology Unit, Policlinico San Matteo Fondazione IRCCS, Pavia, Italy
| | - Diego Signorelli
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Fortunato Ciardiello
- Medical Oncology, Department of Precision Medicine, Università Degli Studi Della Campania "Luigi Vanvitelli", Naples, Italy
| | - Jordi Remon
- Department of Medical Oncology, Centro Integral Oncológico Clara Campal (HM-CIOCC), Hospital Delfos, Barcelona, Spain
| | - Nathalie Chaput
- Laboratory of Immunomonitoring in Oncology, Gustave Roussy, Villejuif, France; Faculty of Pharmacy, University Paris-Saclay, Chatenay-Malabry, France
| | - Benjamin Besse
- Cancer Medicine Department, Gustave Roussy, Villejuif, France; Faculty of Medicine, University Paris-Saclay, Le Kremlin Bicêtre, France
| | - Filippo de Braud
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy
| | - Marina C Garassino
- Department of Medicine, University of Chicago; University of Chicago Comprehensive Cancer Center, Chicago, USA
| | - Valter Torri
- Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Michela Cinquini
- Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Roberto Ferrara
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy.
| |
Collapse
|
59
|
Britt AS, Huang C, Huang CH. Hyperprogressive disease in non-small cell lung cancer treated with immune checkpoint inhibitor therapy, fact or myth? Front Oncol 2022; 12:996554. [DOI: 10.3389/fonc.2022.996554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 10/17/2022] [Indexed: 11/30/2022] Open
Abstract
The therapeutic landscape for patients with non-small cell lung cancer (NSCLC) has dramatically evolved with the development and adoption of immune checkpoint inhibitors (ICI) as front-line therapy. These novel antibodies target the interactions in immunoregulatory pathways, between programmed death-1 (PD-1) and programmed death ligand-1 (PD-L1), or cytotoxic T-lymphocyte antigen 4 (CTLA-4) and B7, resulting in the activation of T cells and cytotoxic response to induce an immunologic response. ICIs have demonstrated significant survival benefits and sustained responses in the treatment of NSCLC leading to the long-term survival of up to 5 year. One unusual response to ICI is a phenomenon termed Hyperprogressive Disease (HYD), which occurs in a subset of patients for whom ICI therapy can induce rapid disease growth, which ultimately leads to poorer outcomes with an incidence rate ranging from 5 to 37% in NSCLC patients. Prior reviews demonstrated that HYD can be defined by rapid tumor progression, deterioration of patient’s symptoms or new onset of disease. The mechanism of HYD could be related to genomic and tumor microenvironment changes and altered immune response. It will be important to establish a common definition of HYD for future research and clinical care.
Collapse
|
60
|
Chen X. From immune equilibrium to immunodynamics. Front Microbiol 2022; 13:1018817. [PMID: 36504800 PMCID: PMC9732466 DOI: 10.3389/fmicb.2022.1018817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 10/24/2022] [Indexed: 11/26/2022] Open
Abstract
Objective The immunology field has long been short of a universally applicable theoretical model that can quantitatively describe the immune response, and the theory of immune equilibrium (balance) is usually limited to the interpretation of the philosophical significance of immune phenomena. Therefore, it is necessary to establish a new immunological theory, namely, immunodynamic theory, to reanalyze the immune response. Methods By quantifying the immune dynamic equilibrium as the ratio of positive and negative immune power, the immune dynamic equilibrium equation was established. Then, the area under the curve of the positive and negative immune power was assumed to be equal in the whole process of immune response (regardless of correct or not), and through thought experiments based on this key hypothesis, a series of new concepts and expressions were derived, to establish a series of immunodynamic equations. Results New concepts of immune force and immune braking force and their expression equations, namely, the theoretical equations of immunodynamics, were derived through thought experiments, and the theoretical curves of immunodynamics were obtained according to these equations. Via the equivalent transformation of the theoretical equations and practical calculation of functional data, and by the methods of curve comparison and fitting, some practical equations of immunodynamics were established, and these practical equations were used to solve theoretical and practical problems that are related to the immunotherapy of infectious diseases and cancers. Conclusion The traditional theory of immune equilibrium has been mathematized and transformed from a philosophical category into a new concrete scientific theory, namely the theory of immunodynamics, which solves the dilemma that the traditional theory cannot guide individualized medical practice for a long time. This new theory may develop into one of the core theories of immunology in the future.
Collapse
Affiliation(s)
- Xiaoping Chen
- State Key Laboratory of Respiratory Disease, Center for Infection and Immunity, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- CAS Lamvac (Guangzhou) Biomedical Technology Co., Ltd., Guangzhou, China
| |
Collapse
|
61
|
He LN, Fu S, Ma H, Chen C, Zhang X, Li H, Du W, Chen T, Jiang Y, Wang Y, Wang Y, Zhou Y, Lin Z, Yang Y, Huang Y, Zhao H, Fang W, Zhang H, Zhang L, Hong S. Early on-treatment tumor growth rate (EOT-TGR) determines treatment outcomes of advanced non-small-cell lung cancer patients treated with programmed cell death protein 1 axis inhibitor. ESMO Open 2022; 7:100630. [PMID: 36442353 PMCID: PMC9808481 DOI: 10.1016/j.esmoop.2022.100630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 10/02/2022] [Accepted: 10/09/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Tumor growth rate (TGR), denoted as percentage change in tumor size per month, is a well-established indicator of tumor growth kinetics. The predictive value of early on-treatment TGR (EOT-TGR) for immunotherapy remains unclear. We sought to establish and validate the association of EOT-TGR with treatment outcomes in patients with advanced non-small-cell lung cancer (aNSCLC) undergoing anti-PD-1/PD-L1 (programmed cell death protein 1/programmed death-ligand 1) therapy. PATIENTS AND METHODS This bicenter retrospective cohort study included a training cohort, a contemporaneously treated internal validation cohort, and an external validation cohort. Computed tomography images were retrieved to calculate EOT-TGR, denoted as tumor burden change per month during a period between baseline and the first imaging evaluation after immunotherapy. Kaplan-Meier methodology and Cox regression analysis were conducted for survival analyses. RESULTS In the pooled cohort (n = 172), 125 patients (72.7%) were males; median age at diagnosis was 58 (range 28-79) years. Based on the training cohort, we determined the optimal cut-off value for EOT-TGR as 10.4%/month. Higher EOT-TGR was significantly associated with inferior overall survival [OS; hazard ratio (HR) 2.93, 95% confidence interval (CI) 1.47-5.83; P = 0.002], worse progression-free survival (PFS; HR 2.44, 95% CI 1.46-4.08; P = 0.001), and lower objective response rate (3.3% versus 20.9%; P = 0.040) and durable clinical benefit rate (6.7% versus 41.9%; P = 0.001). Results were reproducible in the two validation cohorts for OS and PFS. Among 43 patients who had a best response of progressive disease in the training cohort, those with high EOT-TGR had worse OS (HR 2.64; P = 0.041) and were more likely to progress due to target lesions at the first tumor evaluation (85.2% versus 0.0%; P <0.001). CONCLUSIONS Higher EOT-TGR was associated with inferior OS and immunotherapeutic response in patients with aNSCLC undergoing anti-PD-1/PD-L1 therapy. This easy-to-calculate radiologic biomarker may help evaluate the abilities of immunotherapy to prolong survival and assist in tailoring patients' management. TRIAL REGISTRATION ClinicalTrials.govNCT04722406; https://clinicaltrials.gov/ct2/show/NCT04722406.
Collapse
Affiliation(s)
- L.-N. He
- State Key Laboratory of Oncology in South China, Guangzhou, China,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China,Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - S. Fu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation of Sun Yat-Sen University; Department of Cellular & Molecular Diagnostics Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - H. Ma
- Department of Oncology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China,Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, China
| | - C. Chen
- State Key Laboratory of Oncology in South China, Guangzhou, China,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China,Departments of Radiation Oncology, Guangzhou, China
| | - X. Zhang
- State Key Laboratory of Oncology in South China, Guangzhou, China,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China,Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - H. Li
- State Key Laboratory of Oncology in South China, Guangzhou, China,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China,Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - W. Du
- State Key Laboratory of Oncology in South China, Guangzhou, China,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China,Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - T. Chen
- State Key Laboratory of Oncology in South China, Guangzhou, China,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China,Nuclear Medicine, Guangzhou, China
| | - Y. Jiang
- State Key Laboratory of Oncology in South China, Guangzhou, China,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China,Nuclear Medicine, Guangzhou, China
| | - Y. Wang
- State Key Laboratory of Oncology in South China, Guangzhou, China,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China,Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Y. Wang
- State Key Laboratory of Oncology in South China, Guangzhou, China,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China,Endoscopy, Guangzhou, China
| | - Y. Zhou
- State Key Laboratory of Oncology in South China, Guangzhou, China,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China,VIP Region, Guangzhou, China
| | - Z. Lin
- State Key Laboratory of Oncology in South China, Guangzhou, China,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China,Clinical Research, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Y. Yang
- State Key Laboratory of Oncology in South China, Guangzhou, China,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China,Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Y. Huang
- State Key Laboratory of Oncology in South China, Guangzhou, China,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China,Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - H. Zhao
- State Key Laboratory of Oncology in South China, Guangzhou, China,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China,Clinical Research, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - W. Fang
- State Key Laboratory of Oncology in South China, Guangzhou, China,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China,Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - H. Zhang
- Department of Oncology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China,Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, China,Prof. Haibo Zhang, Department of Oncology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, 111 Dade Road, Guangzhou, Guangdong 510120, People’s Republic of China. Tel: +86-20-81887233-34830
| | - L. Zhang
- State Key Laboratory of Oncology in South China, Guangzhou, China,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China,Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China,Prof. Li Zhang, MD, Department of Medical Oncology, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, Guangdong 510060, People’s Republic of China. Tel: +86-20-87343458
| | - S. Hong
- State Key Laboratory of Oncology in South China, Guangzhou, China,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China,Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China,Correspondence to: Prof. Shaodong Hong, Department of Medical Oncology, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, Guangdong 510060, People’s Republic of China. Tel: +86-20-87342480
| |
Collapse
|
62
|
Theivanthiran B, Yarla N, Haykal T, Nguyen YV, Cao L, Ferreira M, Holtzhausen A, Al-Rohil R, Salama AKS, Beasley GM, Plebanek MP, DeVito NC, Hanks BA. Tumor-intrinsic NLRP3-HSP70-TLR4 axis drives premetastatic niche development and hyperprogression during anti-PD-1 immunotherapy. Sci Transl Med 2022; 14:eabq7019. [PMID: 36417489 DOI: 10.1126/scitranslmed.abq7019] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The tumor-intrinsic NOD-, LRR- and pyrin domain-containing protein-3 (NLRP3) inflammasome-heat shock protein 70 (HSP70) signaling axis is triggered by CD8+ T cell cytotoxicity and contributes to the development of adaptive resistance to anti-programmed cell death protein 1 (PD-1) immunotherapy by recruiting granulocytic polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) into the tumor microenvironment. Here, we demonstrate that the tumor NLRP3-HSP70 axis also drives the accumulation of PMN-MDSCs into distant lung tissues in a manner that depends on lung epithelial cell Toll-like receptor 4 (TLR4) signaling, establishing a premetastatic niche that supports disease hyperprogression in response to anti-PD-1 immunotherapy. Lung epithelial HSP70-TLR4 signaling induces the downstream Wnt5a-dependent release of granulocyte colony-stimulating factor (G-CSF) and C-X-C motif chemokine ligand 5 (CXCL5), thus promoting myeloid granulopoiesis and recruitment of PMN-MDSCs into pulmonary tissues. Treatment with anti-PD-1 immunotherapy enhanced the activation of this pathway through immunologic pressure and drove disease progression in the setting of Nlrp3 amplification. Genetic and pharmacologic inhibition of NLRP3 and HSP70 blocked PMN-MDSC accumulation in the lung in response to anti-PD-1 therapy and suppressed metastatic progression in preclinical models of melanoma and breast cancer. Elevated baseline concentrations of plasma HSP70 and evidence of NLRP3 signaling activity in tumor tissue specimens correlated with the development of disease hyperprogression and inferior survival in patients with stage IV melanoma undergoing anti-PD-1 immunotherapy. Together, this work describes a pathogenic mechanism underlying the phenomenon of disease hyperprogression in melanoma and offers candidate targets and markers capable of improving the management of patients with melanoma.
Collapse
Affiliation(s)
- Balamayooran Theivanthiran
- Department of Medicine, Division of Medical Oncology, Duke Cancer Institute, Duke University, Durham, NC 27710, USA
| | - Nagendra Yarla
- Department of Medicine, Division of Medical Oncology, Duke Cancer Institute, Duke University, Durham, NC 27710, USA
| | - Tarek Haykal
- Department of Medicine, Division of Medical Oncology, Duke Cancer Institute, Duke University, Durham, NC 27710, USA
| | - Y-Van Nguyen
- Department of Medicine, Division of Medical Oncology, Duke Cancer Institute, Duke University, Durham, NC 27710, USA
| | - Linda Cao
- Department of Medicine, Division of Medical Oncology, Duke Cancer Institute, Duke University, Durham, NC 27710, USA
| | - Michelle Ferreira
- Department of Medicine, Division of Medical Oncology, Duke Cancer Institute, Duke University, Durham, NC 27710, USA
| | - Alisha Holtzhausen
- Lineberger Comprehensive Cancer Center, University of North Caroline at Chapel Hill, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Rami Al-Rohil
- Department of Pathology, Duke Cancer Institute, Duke University Durham, Durham, NC 27710, USA
| | - April K S Salama
- Department of Medicine, Division of Medical Oncology, Duke Cancer Institute, Duke University, Durham, NC 27710, USA
| | - Georgia M Beasley
- Department of Surgery, Duke Cancer Institute, Duke University, Durham, NC 27710, USA
| | - Michael P Plebanek
- Department of Medicine, Division of Medical Oncology, Duke Cancer Institute, Duke University, Durham, NC 27710, USA
| | - Nicholas C DeVito
- Department of Medicine, Division of Medical Oncology, Duke Cancer Institute, Duke University, Durham, NC 27710, USA
| | - Brent A Hanks
- Department of Medicine, Division of Medical Oncology, Duke Cancer Institute, Duke University, Durham, NC 27710, USA.,Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27708, USA
| |
Collapse
|
63
|
Systemic CD4 Immunity and PD-L1/PD-1 Blockade Immunotherapy. Int J Mol Sci 2022; 23:ijms232113241. [PMID: 36362027 PMCID: PMC9655397 DOI: 10.3390/ijms232113241] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/25/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
PD-L1/PD-1 blockade immunotherapy has changed the therapeutic approaches for the treatment of many cancers. Nevertheless, the mechanisms underlying its efficacy or treatment failure are still unclear. Proficient systemic immunity seems to be a prerequisite for efficacy, as recently shown in patients and in mouse models. It is widely accepted that expansion of anti-tumor CD8 T cell populations is principally responsible for anti-tumor responses. In contrast, the role of CD4 T cells has been less studied. Here we review and discuss the evidence supporting the contribution of CD4 T cells to anti-tumor immunity, especially recent advances linking CD4 T cell subsets to efficacious PD-L1/PD-1 blockade immunotherapy. We also discuss the role of CD4 T cell memory subsets present in peripheral blood before the start of immunotherapies, and their utility as predictors of response.
Collapse
|
64
|
Tran NH, Muñoz S, Thompson S, Hallemeier CL, Bruix J. Hepatocellular carcinoma downstaging for liver transplantation in the era of systemic combined therapy with anti-VEGF/TKI and immunotherapy. Hepatology 2022; 76:1203-1218. [PMID: 35765265 DOI: 10.1002/hep.32613] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 12/08/2022]
Abstract
Hepatocellular carcinoma remains a global health challenge affecting close to 1 million cases yearly. Liver transplantation provides the best long-term outcomes for those meeting strict criteria. Efforts have been made to expand these criteria, whereas others have attempted downstaging approaches. Although locoregional approaches to downstaging are appealing and have demonstrated efficacy, limitations and challenges exists including poor imaging modality to assess response and appropriate endpoints along the process. Recent advances in systemic treatments including immune checkpoint inhibitors alone or in combination with tyrosine kinase inhibitors have prompted the discussion regarding their role for downstaging disease prior to transplantation. Here, we provide a review of prior locoregional approaches for downstaging, new systemic agents and their role for downstaging, and finally, key and critical considerations of the assessment, endpoints, and optimal designs in clinical trials to address this key question.
Collapse
Affiliation(s)
- Nguyen H Tran
- Division of Medical Oncology, Department of Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Sergio Muñoz
- BCLC Group, Liver Unit, Hospital Clinic Barcelona, IDIBAPS, CIBEREHD, University of Barcelona, Barcelona, Spain
| | - Scott Thompson
- Division of Vascular and Interventional Radiology, Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Christopher L Hallemeier
- Division of Radiation Oncology, Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Jordi Bruix
- BCLC Group, Liver Unit, Hospital Clinic Barcelona, IDIBAPS, CIBEREHD, University of Barcelona, Barcelona, Spain
| |
Collapse
|
65
|
Yin J, Song Y, Tang J, Zhang B. What is the optimal duration of immune checkpoint inhibitors in malignant tumors? Front Immunol 2022; 13:983581. [PMID: 36225926 PMCID: PMC9548621 DOI: 10.3389/fimmu.2022.983581] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/12/2022] [Indexed: 11/27/2022] Open
Abstract
Immunotherapy, represented by immune checkpoint inhibitors (ICIs), has made a revolutionary difference in the treatment of malignant tumors, and considerably extended patients' overall survival (OS). In the world medical profession, however, there still reaches no clear consensus on the optimal duration of ICIs therapy. As reported, immunotherapy response patterns, immune-related adverse events (irAEs) and tumor stages are all related to the diversity of ICIs duration in previous researches. Besides, there lacks clear clinical guidance on the intermittent or continuous use of ICIs. This review aims to discuss the optimal duration of ICIs, hoping to help guide clinical work based on the literature.
Collapse
Affiliation(s)
| | | | | | - Bicheng Zhang
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
66
|
Therapeutic targets and biomarkers of tumor immunotherapy: response versus non-response. Signal Transduct Target Ther 2022; 7:331. [PMID: 36123348 PMCID: PMC9485144 DOI: 10.1038/s41392-022-01136-2] [Citation(s) in RCA: 154] [Impact Index Per Article: 77.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/25/2022] [Accepted: 07/25/2022] [Indexed: 02/05/2023] Open
Abstract
Cancers are highly complex diseases that are characterized by not only the overgrowth of malignant cells but also an altered immune response. The inhibition and reprogramming of the immune system play critical roles in tumor initiation and progression. Immunotherapy aims to reactivate antitumor immune cells and overcome the immune escape mechanisms of tumors. Represented by immune checkpoint blockade and adoptive cell transfer, tumor immunotherapy has seen tremendous success in the clinic, with the capability to induce long-term regression of some tumors that are refractory to all other treatments. Among them, immune checkpoint blocking therapy, represented by PD-1/PD-L1 inhibitors (nivolumab) and CTLA-4 inhibitors (ipilimumab), has shown encouraging therapeutic effects in the treatment of various malignant tumors, such as non-small cell lung cancer (NSCLC) and melanoma. In addition, with the advent of CAR-T, CAR-M and other novel immunotherapy methods, immunotherapy has entered a new era. At present, evidence indicates that the combination of multiple immunotherapy methods may be one way to improve the therapeutic effect. However, the overall clinical response rate of tumor immunotherapy still needs improvement, which warrants the development of novel therapeutic designs as well as the discovery of biomarkers that can guide the prescription of these agents. Learning from the past success and failure of both clinical and basic research is critical for the rational design of studies in the future. In this article, we describe the efforts to manipulate the immune system against cancer and discuss different targets and cell types that can be exploited to promote the antitumor immune response.
Collapse
|
67
|
Gadot M, Arad I, Atenafu EG, Levartovsky M, Portnoy O, Davidson T, Schor-Bardach R, Berger R, Leibowitz R. Response to Anti-PD1/L1 Antibodies in Advanced Urothelial Cancer in the 'Real-Life' Setting. Pharmaceuticals (Basel) 2022; 15:1154. [PMID: 36145376 PMCID: PMC9504505 DOI: 10.3390/ph15091154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/31/2022] [Accepted: 09/09/2022] [Indexed: 12/04/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) are now the standard of care for metastatic urothelial carcinoma (mUC) patients. Our aim was to describe the activity of ICIs in mUC and find the clinical parameters associated with response. This is a retrospective, single-center chart review of mUC patients receiving ICIs. The overall survival (OS) was plotted using the Kaplan-Meier method and was compared using a log-rank test. Associations between the variables and responses were analyzed by univariate and multivariable analyses, using either logistic regression or a Chi-square/Fisher's exact test. Ninety-four patients received ICIs, 85% of which were in the second line or beyond; the median age was 71.8 years, and 82% were men. Six (6.4%), 11 (11.7%), 7 (7.4%) and 70 (74.5%) patients achieved a complete response (CR), partial response (PR), mixed response/stable disease (M/SD) or progressive disease (PD), respectively. The median overall survival was 3.2 months for the entire cohort and was significantly different according to the response pattern-not reached, 32.3, 6.4 and 2.0 months for CR, PR, M/SD and PD, respectively. The response was not significantly associated with the line of treatment. 'Site of metastasis' was associated with the response, and the absolute neutrophil count was borderline associated with the response. In summary, we found a substantial variance in the potential benefit from ICIs in mUC, emphasizing the need for predictive biomarkers and frequent monitoring of mUC patients receiving ICIs.
Collapse
Affiliation(s)
- Moran Gadot
- Sheba Medical Center, Oncology Institute, Tel-Hashomer 52621, Israel
| | - Ido Arad
- Sheba Medical Center, Oncology Institute, Tel-Hashomer 52621, Israel
| | - Eshetu G. Atenafu
- Department of Biostatistics, Princess Margaret Cancer Centre, Toronto, ON M5G 2M9, Canada
| | | | - Orith Portnoy
- Sheba Medical Center, Diagnostic Imaging Department, Tel-Hashomer 52621, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 699781, Israel
| | - Tima Davidson
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 699781, Israel
- Department of Nuclear Medicine, Sheba Medical Center, Tel-Hashomer 52621, Israel
| | | | - Raanan Berger
- Sheba Medical Center, Oncology Institute, Tel-Hashomer 52621, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 699781, Israel
| | - Raya Leibowitz
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 699781, Israel
- Shamir Medical Center, Oncology Institute, Zerifin 70300, Israel
| |
Collapse
|
68
|
Xuan TT, Li GY, Meng SB, Wang ZM, Qu LL. Immunotherapy combined with antiangiogenic agents in patients with advanced malignant pleural mesothelioma: A case report. World J Clin Cases 2022; 10:8284-8290. [PMID: 36159517 PMCID: PMC9403696 DOI: 10.12998/wjcc.v10.i23.8284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 04/12/2022] [Accepted: 06/26/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Malignant pleural mesothelioma has limited therapeutic options and a poor outcome. Antiangiogenic agents might increase the efficacy of immunotherapy as second-line treatment of advanced-stage malignancies.
CASE SUMMARY A patient with stage IIIB pleural mesothelioma received second-line treatment with a combination of pembrolizumab, bevacizumab and chemotherapy following standard chemotherapy under the guidance of second-generation sequencing. He achieved a partial response after four cycles of treatment with progression-free survival of 5 mo. Pembrolizumab was suspended due to grade 2 immunerelated pneumonia, which was resolved by oral glucocorticoids. However, disease progression was observed after immunotherapy rechallenge and anlotinib therapy. The patient had disease progression, multiorgan dysfuntion and died suddenly in October 2019.
CONCLUSION The combination of immune checkpoint inhibitor, anti-angiogenic agents and chemotherapy showed effective response for advanced pleural mesothelioma, but with adverse reactions.
Collapse
Affiliation(s)
- Tian-Tian Xuan
- Department of Medical Oncology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao 266035, Shandong Province, China
| | - Guang-Yi Li
- Department of Respiratory, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao 266035, Shandong Province, China
| | - Si-Bo Meng
- Department of Medical Oncology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao 266035, Shandong Province, China
| | - Zhan-Mei Wang
- Department of Medical Oncology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao 266035, Shandong Province, China
| | - Lin-Li Qu
- Department of Medical Oncology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao 266035, Shandong Province, China
| |
Collapse
|
69
|
Yin J, Fu J, Zhao Y, Xu J, Chen C, Zheng L, Wang B. Comprehensive Analysis of the Significance of Ferroptosis-Related Genes in the Prognosis and Immunotherapy of Oral Squamous Cell Carcinoma. Bioinform Biol Insights 2022; 16:11779322221115548. [PMID: 35966810 PMCID: PMC9373167 DOI: 10.1177/11779322221115548] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/26/2022] [Indexed: 12/09/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is a life-threatening disease, associated
with poor prognosis and the absence of specific biomarkers. Studies have shown
that the ferroptosis-related genes (FRGs) can be used as tumor prognostic
markers. However, FRGs’ prognostic value in OSCC needs further exploration. In
our study, gene expression profile and clinical data of OSCC patients were
collected from a public domain. We performed univariate and multivariate Cox
regression analyses to construct a multigene signature. The Kaplan-Meier and
receiver operating characteristic (ROC) methods were used to test the
effectiveness of the signature, followed by the expression analysis of human
leukocyte antigen (HLA) and immune checkpoints. The Cox regression analysis
identified 4 hubs from 103 FRGs expressed in OSCC that were associated with
overall survival (OS). A risk model based on the 4 FRGs was established to
classify patients into high-risk and low-risk groups. Compared with the low-risk
group, the survival time of the high-risk group was significantly reduced.
According to the multivariate Cox regression analysis, the risk score acted as
an independent predictor for OS. The accuracy of the 4 FRGs risk predictive
model was confirmed by ROC curve analysis. Moreover, the low-risk group had the
characteristics of higher expression of HLA and immune checkpoints, a lower
tumor purity, and a higher immune infiltration, indicating a more sensitive
response to immunotherapy. The novel FRGs-OSCC risk score system can be used to
predict the prognosis of OSCC patients and their response to immunotherapy.
Collapse
Affiliation(s)
- Junhao Yin
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,College of Stomatology, Shanghai Jiao Tong University, Shanghai, China.,National Center for Stomatology, Shanghai, China.,National Clinical Research Center for Oral Disease, Shanghai, China.,Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Jiayao Fu
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,College of Stomatology, Shanghai Jiao Tong University, Shanghai, China.,National Center for Stomatology, Shanghai, China.,National Clinical Research Center for Oral Disease, Shanghai, China.,Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Yijie Zhao
- Department of Oral and Maxillofacial Surgery, Shanghai Stomatological Hospital, Fudan University, Shanghai, China
| | - Jiabao Xu
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,College of Stomatology, Shanghai Jiao Tong University, Shanghai, China.,National Center for Stomatology, Shanghai, China.,National Clinical Research Center for Oral Disease, Shanghai, China.,Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Changyu Chen
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,College of Stomatology, Shanghai Jiao Tong University, Shanghai, China.,National Center for Stomatology, Shanghai, China.,National Clinical Research Center for Oral Disease, Shanghai, China.,Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Lingyan Zheng
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,College of Stomatology, Shanghai Jiao Tong University, Shanghai, China.,National Center for Stomatology, Shanghai, China.,National Clinical Research Center for Oral Disease, Shanghai, China.,Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Baoli Wang
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,College of Stomatology, Shanghai Jiao Tong University, Shanghai, China.,National Center for Stomatology, Shanghai, China.,National Clinical Research Center for Oral Disease, Shanghai, China.,Shanghai Key Laboratory of Stomatology, Shanghai, China
| |
Collapse
|
70
|
Occurrence of hyperprogressive disease following administration of immune checkpoint inhibitors in lung squamous cell carcinoma: A case report. Exp Ther Med 2022; 24:617. [PMID: 36160895 PMCID: PMC9468829 DOI: 10.3892/etm.2022.11554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 07/15/2022] [Indexed: 11/16/2022] Open
Abstract
Immunotherapy through blocking programmed cell death 1, programmed death-ligand 1 and cytotoxic T lymphocyte antigen 4 is developing rapidly and has gained increasing attention as a treatment for malignant tumors. However, some patients experience varying degrees of immune-related side effects after undergoing immunotherapy, with hyperprogressive disease (HPD) occurring in severe cases which increases the risk of mortality. The present study discussed the risk factors for HPD following immunotherapy in a case of lung squamous cell carcinoma, after treatment with a combination of anti-angiogenic drugs and biological cytotoxic drugs, the mass was found to have become smaller than before, along with follow-up treatment options, to provide a reference for clinical treatment decisions.
Collapse
|
71
|
Treatment of Metastatic Melanoma with a Combination of Immunotherapies and Molecularly Targeted Therapies. Cancers (Basel) 2022; 14:cancers14153779. [PMID: 35954441 PMCID: PMC9367420 DOI: 10.3390/cancers14153779] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/02/2022] [Accepted: 07/19/2022] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Immunotherapies and molecularly targeted therapies have drastically changed the therapeutic approach for unresectable advanced or metastatic melanoma. The majority of melanoma patients have benefitted from these therapies; however, some patients acquire resistance to them. Novel combinations of immunotherapies and molecularly targeted therapies may be more efficient in treating these patients. In this review, we discuss various combination therapies under pre-clinical and clinical development which can reduce toxicity, enhance efficacy, and prevent recurrences in patients with metastatic melanoma. Abstract Melanoma possesses invasive metastatic growth patterns and is one of the most aggressive types of skin cancer. In 2021, it is estimated that 7180 deaths were attributed to melanoma in the United States alone. Once melanoma metastasizes, traditional therapies are no longer effective. Instead, immunotherapies, such as ipilimumab, pembrolizumab, and nivolumab, are the treatment options for malignant melanoma. Several biomarkers involved in tumorigenesis have been identified as potential targets for molecularly targeted melanoma therapy, such as tyrosine kinase inhibitors (TKIs). Unfortunately, melanoma quickly acquires resistance to these molecularly targeted therapies. To bypass resistance, combination treatment with immunotherapies and single or multiple TKIs have been employed and have been shown to improve the prognosis of melanoma patients compared to monotherapy. This review discusses several combination therapies that target melanoma biomarkers, such as BRAF, MEK, RAS, c-KIT, VEGFR, c-MET and PI3K. Several of these regimens are already FDA-approved for treating metastatic melanoma, while others are still in clinical trials. Continued research into the causes of resistance and factors influencing the efficacy of these combination treatments, such as specific mutations in oncogenic proteins, may further improve the effectiveness of combination therapies, providing a better prognosis for melanoma patients.
Collapse
|
72
|
Zhao Z, Bian J, Zhang J, Zhang T, Lu X. Hyperprogressive disease in patients suffering from solid malignancies treated by immune checkpoint inhibitors: A systematic review and meta-analysis. Front Oncol 2022; 12:843707. [PMID: 35992878 PMCID: PMC9381837 DOI: 10.3389/fonc.2022.843707] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 06/06/2022] [Indexed: 11/18/2022] Open
Abstract
Introduction Hyperprogressive disease (HPD) is a paradoxically rapid disease progression during or shortly after antitumor treatment, especially immune checkpoint inhibitors (ICIs). Various diagnosis criteria of HPD cause heterogeneous incidence rates in different clinical research, and there is no consensus on potential risk factors associated with HPD occurrence. Hence, we aimed to summarize incidence of HPD in ICI treatment for solid tumors. Clinicopathological factors associated with HPD are also analyzed. Methods Clinical studies about HPD during/after ICI treatment of solid malignancies are included. Pubmed, Embase, and Cochrane library were searched for eligible studies published before October 7. The Newcastle–Ottawa scale was used to assess the quality of the included studies. Random effect and fixed effect models were, respectively, used for pooling incidence of HPD and analysis of risk factors for HPD. Heterogeneity, subgroup analysis, and publication bias were also analyzed. All meta-analysis was performed via R software (y -40v4.0.2). Results Forty-one studies with 6009 patients were included. The pooled incidence of HPD was 13.2% (95% CI, 11.2%–15.4%). Head and neck cancer (HNC) had the highest incidence of HPD (18.06%), and melanoma had the lowest (9.9%). Tumor types (P = .0248) and gender ratio (P = .0116) are sources of heterogeneity of pooled incidence of HPD. For five clinicopathological factors associated with HPD, only programmed cell death protein 1 ligand 1 (PD-L1) positivity was a preventive factor (odds ratio = 0.61, P <.05). High lactate dehydrogenase (LDH) level (OR = 1.51, P = .01), metastatic sites >2 (OR = 2.38, P <.0001), Eastern Cooperative Oncology Group Performance Score ≥2 (OR = 1.47, P = .02), and liver metastasis (OR = 3.06, P <.0001) indicate higher risk of HPD. Conclusions The pooled incidence of HPD was less than 15%, and HNC had the highest incidence of HPD. LDH and PD-L1 are remarkable biomarkers for prediction of HPD in future medical practice.
Collapse
Affiliation(s)
| | | | | | | | - Xin Lu
- *Correspondence: Xin Lu, ;
| |
Collapse
|
73
|
Jia J, Ga L, Liu Y, Yang Z, Wang Y, Guo X, Ma R, Liu R, Li T, Tang Z, Wang J. Serine Protease Inhibitor Kazal Type 1, A Potential Biomarker for the Early Detection, Targeting, and Prediction of Response to Immune Checkpoint Blockade Therapies in Hepatocellular Carcinoma. Front Immunol 2022; 13:923031. [PMID: 35924241 PMCID: PMC9341429 DOI: 10.3389/fimmu.2022.923031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/01/2022] [Indexed: 12/12/2022] Open
Abstract
Background We aimed to characterize serine protease inhibitor Kazal type 1 (SPINK1) as a gene signature for the early diagnosis, molecular targeting, and prediction of immune checkpoint blockade (ICB) treatment response of hepatocellular carcinoma (HCC). Methods The transcriptomics, proteomics, and phenotypic analyses were performed separately or in combination. Results We obtained the following findings on SPINK1. Firstly, in the transcriptomic training dataset, which included 279 stage I and II tumor samples (out of 1,884 stage I–IV HCC specimens) and 259 normal samples, significantly higher area under curve (AUC) values and increased integrated discrimination improvement (IDI) and net reclassification improvement (NRI) were demonstrated for HCC discrimination in SPINK1-associated models compared with those of alpha-fetoprotein (AFP). The calibration of both SPINK1-related curves fitted significantly better than that of AFP. In the two independent transcriptomic validation datasets, which included 201, 103 stage I-II tumor and 192, 169 paired non-tumor specimens, respectively, the obtained results were consistent with the above-described findings. In the proteomic training dataset, which included 98 stage I and II tumor and 165 normal tissue samples, the analyses also revealed better AUCs and increased IDI and NRI in the aforementioned SPINK1-associated settings. A moderate calibration was shown for both SPINK1-associated models relative to the poor results of AFP. Secondly, in the in vitro and/or in vivo murine models, the wet-lab experiments demonstrated that SPINK1 promoted the proliferation, clonal formation, migration, chemoresistance, anti-apoptosis, tumorigenesis, and metastasis of HCC cells, while the anti-SPINK1 antibody inhibited the growth of the cells, suggesting that SPINK1 has “tumor marker” and “targetable” characteristics in the management of HCC. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses revealed that SPINK1 was engaged in immunity-related pathways, including T-cell activation. Thirdly, in the transcriptomic analyses of the 368 HCC specimens from The Cancer Genome Atlas (TCGA) cohort, the high abundance of SPINK1 was positively correlated with the high levels of activated tumor-infiltrating CD4+ and CD8+ T lymphocytes and dendritic and natural killer cells, while there were also positive correlations between SPINK1 and immune checkpoints, including PD-1, LAG-3, TIM-3, TIGIT, HAVCR2, and CTLA-4. The ESTIMATE algorithm calculated positive correlations between SPINK1 and the immune and ESTIMATE scores, suggesting a close correlation between SPINK1 and the immunogenic microenvironment within HCC tissues, which may possibly help in predicting the response of patients to ICB therapy. Conclusions SPINK1 could be a potential biomarker for the early detection, targeted therapy, and prediction of ICB treatment response in the management of HCC.
Collapse
Affiliation(s)
- Jianlong Jia
- Department of Pathophysiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Latai Ga
- Department of Pathophysiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Yang Liu
- Department of Pathophysiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Zhiyi Yang
- Department of Pathophysiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Yue Wang
- Department of Pathophysiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Xuanze Guo
- Department of Pathophysiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Ruichen Ma
- Department of Pathophysiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Ruonan Liu
- Department of Pathophysiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Tianyou Li
- Department of Pathophysiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Zeyao Tang
- Department of Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
- *Correspondence: Zeyao Tang, ; Jun Wang,
| | - Jun Wang
- Department of Pathophysiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
- *Correspondence: Zeyao Tang, ; Jun Wang,
| |
Collapse
|
74
|
Kim CG, Hong M, Jeung HC, Lee G, Chung HC, Rha SY, Kim HS, Lee CK, Lee JH, Han Y, Kim JH, Lee SY, Kim H, Shin SJ, Baek SE, Jung M. Hyperprogressive disease during PD-1 blockade in patients with advanced gastric cancer. Eur J Cancer 2022; 172:387-399. [PMID: 35839733 DOI: 10.1016/j.ejca.2022.05.042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 05/17/2022] [Accepted: 05/28/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND Investigations for programmed cell death-1 (PD-1) blockade-induced hyperprogressive disease (HPD) have not been stringently conducted in patients with advanced gastric cancer (AGC). We explored the occurrence of HPD and its clinical implications in patients with AGC and treated with PD-1 inhibitors. METHODS We enrolled 169 patients with AGC and treated with either the PD-1 blockade (nivolumab or pembrolizumab; N = 112) or irinotecan monotherapy (N = 57) as a single agent. Tumour growth dynamics based on tumour growth kinetics and tumour growth rate (TGR) and time to treatment failure were analysed to define HPD. The incidence, clinical consequences and predictive markers of HPD were investigated. RESULTS The optimal criteria for HPD were 4-fold increases in both tumour growth kinetics and TGR ratios and a 40% increase in TGR based on the analysis for patients treated with irinotecan. In total, 10.7% (12/112) of patients experienced HPD after PD-1 inhibitor treatment. Patients with HPD had both shorter progression-free survival (hazard ratio: 2.318; 95% confidence interval: 1.205-4.460) and overall survival (hazard ratio: 2.542; 95% confidence interval: 1.314-4.918) than patients with progressive disease without HPD, losing opportunities for subsequent systemic treatments. Although other variables including PD-L1 expression were not associated with the occurrence of HPD, hypoalbuminemia (<3.25 mg/dL) at baseline was significantly associated with the occurrence of HPD (P < 0.001) and inferior survival outcomes. CONCLUSIONS HPD occurs in a proportion of patients with AGC and treated with PD-1 inhibitors. PD-1 inhibitor-induced HPD is associated with worse outcome, loss of eligibility for subsequent treatment and hypoalbuminemia, warranting further investigation.
Collapse
Affiliation(s)
- Chang Gon Kim
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Moonki Hong
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hei-Cheul Jeung
- Division of Medical Oncology, Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Garden Lee
- Division of Hemato-Oncology, Department of Internal Medicine, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin, Republic of Korea
| | - Hyun Cheol Chung
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sun Young Rha
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyo Song Kim
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Choong-Kun Lee
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ji Hyun Lee
- Division of Hemato-Oncology, Department of Internal Medicine, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin, Republic of Korea
| | - Yejeong Han
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jee Hung Kim
- Division of Medical Oncology, Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seo Young Lee
- Division of Medical Oncology, Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyunki Kim
- Department of Pathology, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Su-Jin Shin
- Department of Pathology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Song-Ee Baek
- Division of Abdominal Imaging, Department of Radiology, Yonsei University College of Medicine, Seoul, Republic of Korea.
| | - Minkyu Jung
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
75
|
Benguigui M, Vorontsova A, Timaner M, Levin S, Haj-Shomaly J, Deo A, Menachem R, Manobla B, Cooper TJ, Raviv Z, Shaked Y. Bv8 Blockade Sensitizes Anti-PD1 Therapy Resistant Tumors. Front Immunol 2022; 13:903591. [PMID: 35874722 PMCID: PMC9301046 DOI: 10.3389/fimmu.2022.903591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/15/2022] [Indexed: 11/13/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are known to promote tumor growth in part by their immunosuppressive activities and their angiogenesis support. It has been shown that Bv8 blockade inhibits the recruitment of MDSCs to tumors, thereby delaying tumor relapse associated with resistance to antiangiogenic therapy. However, the impact of Bv8 blockade on tumors resistant to the new immunotherapy drugs based on the blockade of immune checkpoints has not been investigated. Here, we demonstrate that granulocytic-MDSCs (G-MDSCs) are enriched in anti-PD1 resistant tumors. Importantly, resistance to anti-PD1 monotherapy is reversed upon switching to a combined regimen comprised of anti-Bv8 and anti-PD1 antibodies. This effect is associated with a decreased level of G-MDSCs and enrichment of active cytotoxic T cells in tumors. The blockade of anti-Bv8 has shown efficacy also in hyperprogressive phenotype of anti-PD1-treated tumors. In vitro, anti-Bv8 antibodies directly inhibit MDSC-mediated immunosuppression, as evidenced by enhanced tumor cell killing activity of cytotoxic T cells. Lastly, we show that anti-Bv8-treated MDSCs secrete proteins associated with effector immune cell function and T cell activity. Overall, we demonstrate that Bv8 blockade inhibits the immunosuppressive function of MDSCs, thereby enhancing anti-tumor activity of cytotoxic T cells and sensitizing anti-PD1 resistant tumors. Our findings suggest that combining Bv8 blockade with anti-PD1 therapy can be used as a strategy for overcoming therapy resistance.
Collapse
Affiliation(s)
- Madeleine Benguigui
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion – Israel Institute of Technology, Haifa, Israel
- Rappaport Technion Integrated Cancer Center Technion - Israel Institute of Technology, Haifa, Israel
| | - Avital Vorontsova
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion – Israel Institute of Technology, Haifa, Israel
- Rappaport Technion Integrated Cancer Center Technion - Israel Institute of Technology, Haifa, Israel
| | - Michael Timaner
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion – Israel Institute of Technology, Haifa, Israel
- Rappaport Technion Integrated Cancer Center Technion - Israel Institute of Technology, Haifa, Israel
| | - Sapir Levin
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion – Israel Institute of Technology, Haifa, Israel
- Rappaport Technion Integrated Cancer Center Technion - Israel Institute of Technology, Haifa, Israel
| | - Jozafina Haj-Shomaly
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion – Israel Institute of Technology, Haifa, Israel
- Rappaport Technion Integrated Cancer Center Technion - Israel Institute of Technology, Haifa, Israel
| | - Abhilash Deo
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion – Israel Institute of Technology, Haifa, Israel
- Rappaport Technion Integrated Cancer Center Technion - Israel Institute of Technology, Haifa, Israel
| | - Rotem Menachem
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion – Israel Institute of Technology, Haifa, Israel
- Faculty of Chemical engineering, Technion- Israel Institute of Technology, Haifa, Israel
| | - Bar Manobla
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion – Israel Institute of Technology, Haifa, Israel
- Rappaport Technion Integrated Cancer Center Technion - Israel Institute of Technology, Haifa, Israel
| | - Tim J. Cooper
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion – Israel Institute of Technology, Haifa, Israel
- Rappaport Technion Integrated Cancer Center Technion - Israel Institute of Technology, Haifa, Israel
- Department of Immunology, Rappaport Faculty of Medicine, Technion – Israel Institute of Technology, Haifa, Israel
| | - Ziv Raviv
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion – Israel Institute of Technology, Haifa, Israel
- Rappaport Technion Integrated Cancer Center Technion - Israel Institute of Technology, Haifa, Israel
| | - Yuval Shaked
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion – Israel Institute of Technology, Haifa, Israel
- Rappaport Technion Integrated Cancer Center Technion - Israel Institute of Technology, Haifa, Israel
- *Correspondence: Yuval Shaked,
| |
Collapse
|
76
|
Sharma R, Pillai A, Marron TU, Fessas P, Saeed A, Jun T, Dharmapuri S, Szafron D, Naqash AR, Gampa A, Wang Y, Khan U, Muzaffar M, Lee CJ, Lee PC, Bulumulle A, Paul S, Bettinger D, Hildebrand H, Yehia M, Pressiani T, Kaseb A, Huang YH, Ang C, Kudo M, Nishida N, Personeni N, Rimassa L, Pinato DJ. Patterns and outcomes of subsequent therapy after immune checkpoint inhibitor discontinuation in HCC. Hepatol Commun 2022; 6:1776-1785. [PMID: 35481940 PMCID: PMC9234627 DOI: 10.1002/hep4.1927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 12/10/2021] [Accepted: 12/12/2021] [Indexed: 11/18/2022] Open
Abstract
The availability of immune checkpoint inhibitors (ICIs) for the management of advanced hepatocellular cancer (HCC) has changed the treatment paradigm. There are emerging questions regarding the efficacy of subsequent anticancer therapies. The primary aim of this retrospective, multicenter study was to examine the types of anticancer treatment received after ICIs and to assess the impact on post-ICI survival. We established an international consortium of 11 tertiary-care referral centers located in the USA (n = 249), Europe (n = 74), and Asia (n = 97), and described patterns of care following ICI therapy. The impact of subsequent therapy on overall survival (OS) was estimated using the Kaplan-Meier method and presented with a 95% confidence interval (CI). A total of 420 patients were treated with ICIs for advanced HCC after one line of systemic therapy (n = 371, 88.8%): 31 (8.8%) had died, 152 (36.2%) received best supportive care (BSC) following ICIs, and 163 patients (38.8%) received subsequent anticancer therapy. Tyrosine kinase inhibitors (TKIs, n = 132, 80.9%), in particular sorafenib (n = 49, 30.0%), were the most common post-ICI therapy followed by external beam radiotherapy (n = 28, 17.2%), further immunotherapy (n = 21, 12.9%), locoregional therapy (n = 23, 14.1%), chemotherapy (n = 9, 5.5%), and surgery (n = 6, 3.6%). Receipt of post-ICI therapy was associated with longer median OS compared with those who had received BSC (12.1 vs. 3.3 months; hazard ratio [HR]: 0.4 (95% CI: 2.7-5.0). No difference in OS was noted in those patients who received TKI before ICIs compared with those who received ICIs followed by TKI. Conclusion: Post-ICI therapy is associated with OS in excess of 12 months, suggesting a role for therapeutic sequencing. OS from TKI therapy was similar to that reported in registration studies, suggesting preserved efficacy following ICIs.
Collapse
Affiliation(s)
- Rohini Sharma
- Department of Surgery & CancerImperial College LondonHammersmith HospitalLondonUK
| | - Anjana Pillai
- Section of Gastroenterology, Hepatology and NutritionThe University of Chicago MedicineChicagoIllinoisUSA
| | - Thomas Urban Marron
- Department of MedicineDivision of Hematology/OncologyTisch Cancer InstituteMount Sinai HospitalNew YorkNew YorkUSA
| | - Petros Fessas
- Department of Surgery & CancerImperial College LondonHammersmith HospitalLondonUK
| | - Anwaar Saeed
- Division of Medical OncologyGI Oncology ProgramKansas University Cancer CentreKansas CityKansasUSA
| | - Tomi Jun
- Department of MedicineDivision of Hematology/OncologyTisch Cancer InstituteMount Sinai HospitalNew YorkNew YorkUSA
| | - Sirish Dharmapuri
- Department of MedicineDivision of Hematology/OncologyTisch Cancer InstituteMount Sinai HospitalNew YorkNew YorkUSA
| | - David Szafron
- Department of MedicineBaylor College of MedicineHoustonTexasUSA
| | - Abdul Rafeh Naqash
- Division of Cancer Treatment and DiagnosisNational Cancer InstituteBethesdaMarylandUSA
| | - Anuhya Gampa
- Section of Gastroenterology, Hepatology and NutritionThe University of Chicago MedicineChicagoIllinoisUSA
| | - Yinghong Wang
- Department of GastroenterologyHepatology & NutritionThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Uqba Khan
- Department of medicineLincoln Medical CenterWeill Cornell/New York Presbyterian HospitalNew YorkNew YorkUSA
| | - Mahvish Muzaffar
- Division of Hematology/ OncologyEast Carolina UniversityGreenvilleNorth CarolinaUSA
| | - Chieh-Ju Lee
- Division of Gastroenterology and HepatologyDepartment of MedicineTaipei Veterans General HospitalTaipeiTaiwan
| | - Pei-Chang Lee
- Division of Gastroenterology and HepatologyDepartment of MedicineTaipei Veterans General HospitalTaipeiTaiwan
| | - Anushi Bulumulle
- Division of Hematology/ OncologyEast Carolina UniversityGreenvilleNorth CarolinaUSA
| | - Sonal Paul
- New York Presbyterian Brooklyn Methodist HospitalNew YorkNew YorkUSA
| | - Dominic Bettinger
- Department of Medicine IIFaculty of MedicineMedical Center University of FreiburgUniversity of FreiburgFreiburgGermany.,Berta-Ottenstein ProgrammeFaculty of MedicineMedical Center University of FreiburgUniversity of FreiburgFreiburgGermany
| | - Hannah Hildebrand
- Division of Medical OncologyGI Oncology ProgramKansas University Cancer CentreKansas CityKansasUSA
| | - Mohammed Yehia
- Department of Gastrointestinal Medical OncologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Tiziana Pressiani
- Medical Oncology and Hematology UnitHumanitas Cancer CenterHumanitas Clinical and Research Center - IRCCSRozzano, MilanItaly
| | - Ahmed Kaseb
- Department of Gastrointestinal Medical OncologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Yi-Hsiang Huang
- Division of Gastroenterology and HepatologyDepartment of MedicineTaipei Veterans General HospitalTaipeiTaiwan
| | - Celina Ang
- Department of MedicineDivision of Hematology/OncologyTisch Cancer InstituteMount Sinai HospitalNew YorkNew YorkUSA
| | - Masatoshi Kudo
- Department of Gastroenterology and HepatologyKindai University Faculty of MedicineOsaka-sayama, OsakaJapan
| | - Naoshi Nishida
- Department of Gastroenterology and HepatologyKindai University Faculty of MedicineOsaka-sayama, OsakaJapan
| | - Nicola Personeni
- Medical Oncology and Hematology UnitHumanitas Cancer CenterHumanitas Clinical and Research Center - IRCCSRozzano, MilanItaly.,Department of Biomedical SciencesHumanitas UniversityPieve Emanuele, MilanItaly
| | - Lorenza Rimassa
- Medical Oncology and Hematology UnitHumanitas Cancer CenterHumanitas Clinical and Research Center - IRCCSRozzano, MilanItaly.,Department of Biomedical SciencesHumanitas UniversityPieve Emanuele, MilanItaly
| | - David James Pinato
- Department of Surgery & CancerImperial College LondonHammersmith HospitalLondonUK
| |
Collapse
|
77
|
Papak I, Chruściel E, Dziubek K, Kurkowiak M, Urban-Wójciuk Z, Marjański T, Rzyman W, Marek-Trzonkowska N. What Inhibits Natural Killers’ Performance in Tumour. Int J Mol Sci 2022; 23:ijms23137030. [PMID: 35806034 PMCID: PMC9266640 DOI: 10.3390/ijms23137030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/16/2022] [Accepted: 06/22/2022] [Indexed: 12/21/2022] Open
Abstract
Natural killer cells are innate lymphocytes with the ability to lyse tumour cells depending on the balance of their activating and inhibiting receptors. Growing numbers of clinical trials show promising results of NK cell-based immunotherapies. Unlike T cells, NK cells can lyse tumour cells independent of antigen presentation, based simply on their activation and inhibition receptors. Various strategies to improve NK cell-based therapies are being developed, all with one goal: to shift the balance to activation. In this review, we discuss the current understanding of ways NK cells can lyse tumour cells and all the inhibitory signals stopping their cytotoxic potential.
Collapse
Affiliation(s)
- Ines Papak
- International Centre for Cancer Vaccine Science, University of Gdansk, Ul. Kładki 24, 80-822 Gdansk, Poland; (I.P.); (E.C.); (K.D.); (M.K.); (Z.U.-W.)
| | - Elżbieta Chruściel
- International Centre for Cancer Vaccine Science, University of Gdansk, Ul. Kładki 24, 80-822 Gdansk, Poland; (I.P.); (E.C.); (K.D.); (M.K.); (Z.U.-W.)
| | - Katarzyna Dziubek
- International Centre for Cancer Vaccine Science, University of Gdansk, Ul. Kładki 24, 80-822 Gdansk, Poland; (I.P.); (E.C.); (K.D.); (M.K.); (Z.U.-W.)
| | - Małgorzata Kurkowiak
- International Centre for Cancer Vaccine Science, University of Gdansk, Ul. Kładki 24, 80-822 Gdansk, Poland; (I.P.); (E.C.); (K.D.); (M.K.); (Z.U.-W.)
| | - Zuzanna Urban-Wójciuk
- International Centre for Cancer Vaccine Science, University of Gdansk, Ul. Kładki 24, 80-822 Gdansk, Poland; (I.P.); (E.C.); (K.D.); (M.K.); (Z.U.-W.)
| | - Tomasz Marjański
- Department of Thoracic Surgery, Medical University of Gdansk, 80-210 Gdansk, Poland; (T.M.); (W.R.)
| | - Witold Rzyman
- Department of Thoracic Surgery, Medical University of Gdansk, 80-210 Gdansk, Poland; (T.M.); (W.R.)
| | - Natalia Marek-Trzonkowska
- International Centre for Cancer Vaccine Science, University of Gdansk, Ul. Kładki 24, 80-822 Gdansk, Poland; (I.P.); (E.C.); (K.D.); (M.K.); (Z.U.-W.)
- Laboratory of Immunoregulation and Cellular Therapies, Department of Family Medicine, Medical University of Gdansk, 80-210 Gdansk, Poland
- Correspondence:
| |
Collapse
|
78
|
Zou S, Wang X, Chen H, Lin J, Wen C, Zhan Q, Chen H, Lu X, Deng X, Shen B. Postoperative hyperprogression disease of pancreatic ductal adenocarcinoma after curative resection: a retrospective cohort study. BMC Cancer 2022; 22:649. [PMID: 35698045 PMCID: PMC9190100 DOI: 10.1186/s12885-022-09719-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/30/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Prognosis for patients recurred rapidly after resection of pancreatic ductal adenocarcinoma (PDAC) was extremely poor. We proposed the concept of postoperative hyper-progression disease (PO-HPD) to define recurrence within 2 months after surgery, explored the role of surgery for postoperative HPD patients and determined the predictive preoperative risk factors and genomic features of PO-HPD. METHODS 976 patients undergoing curative resection of PDAC were enrolled. Survival data of 1733 stage IV patients from the US Surveillance, Epidemiology and End Results database was also collected. Patients relapsed were grouped into 3 groups regarding of the recurrence time (within 2 months were PO-HPD, within 2 to 12 months were early recurrence (ER) and within > 12 months were late recurrence (LR)). Risk factors for PO-HPD were explored with logistic regression models. Genomic features of 113 patients were investigated using next-generation sequencing-based gene panel testing. RESULTS 718 of 976 cases relapsed, 101were PO-HPD, 418 were ER and 199 were LR. Total survival of PO-HPD was 12.5 months, shorter than that of ER (16.7 months) and LR (35.1 months), and verged on that of stage IV patients (10.6 months). Preoperative risk factors for PO-HPD included red blood cell count < 3.94*10^12/L, CA19-9 ≥ 288.6 U/mL, CA125 ≥ 22.3 U/mL and tumor size≥3.45 cm. Mutations of CEBPA, ATR and JAK1 were only identified in PO-HPD and they owned lower level of CN gain compared to others. CONCLUSIONS Prognosis of PO-HPD was extremely poor and the role of surgery for PO-HPD should be prudently assessed.
Collapse
Affiliation(s)
- Siyi Zou
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine, No.197, Rui Jin Er Road, Shanghai, 200025, China
| | - Xinjing Wang
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine, No.197, Rui Jin Er Road, Shanghai, 200025, China
- Research Institute of Pancreatic Disease, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Haoda Chen
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine, No.197, Rui Jin Er Road, Shanghai, 200025, China
| | - Jiewei Lin
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine, No.197, Rui Jin Er Road, Shanghai, 200025, China
| | - Chenlei Wen
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine, No.197, Rui Jin Er Road, Shanghai, 200025, China
- Research Institute of Pancreatic Disease, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Qian Zhan
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine, No.197, Rui Jin Er Road, Shanghai, 200025, China
- Research Institute of Pancreatic Disease, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Hao Chen
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine, No.197, Rui Jin Er Road, Shanghai, 200025, China
- Research Institute of Pancreatic Disease, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Xiongxiong Lu
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine, No.197, Rui Jin Er Road, Shanghai, 200025, China.
- Research Institute of Pancreatic Disease, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China.
| | - Xiaxing Deng
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine, No.197, Rui Jin Er Road, Shanghai, 200025, China.
- Research Institute of Pancreatic Disease, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China.
| | - Baiyong Shen
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine, No.197, Rui Jin Er Road, Shanghai, 200025, China.
- Research Institute of Pancreatic Disease, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China.
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, 200025, China.
| |
Collapse
|
79
|
Ramon-Patino JL, Schmid S, Lau S, Seymour L, Gaudreau PO, Li JJN, Bradbury PA, Calvo E. iRECIST and atypical patterns of response to immuno-oncology drugs. J Immunother Cancer 2022; 10:jitc-2022-004849. [PMID: 35715004 PMCID: PMC9207898 DOI: 10.1136/jitc-2022-004849] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2022] [Indexed: 11/05/2022] Open
Abstract
With the advent of immunotherapy as one of the keystones of the treatment of our patients with cancer, a number of atypical patterns of response to these agents has been identified. These include pseudoprogression, where the tumor initially shows objective growth before decreasing in size, and hyperprogression, hypothesized to be a drug-induced acceleration of the tumor burden. Despite it being >10 years since the first immune-oncology drug was approved, neither the biology behind these paradoxical responses has been well understood, nor their incidence, identification criteria, predictive biomarkers, or clinical impact have been fully described. Immune-based Response Evaluation Criteria in Solid Tumors (iRECIST) guidelines have been published as a revision to the RECIST V.1.1 criteria for use in trials of immunotherapeutics, and the iRECIST subcommittee (of the RECIST Working Group) is working on elucidating these aspects, with data sharing a current major challenge to move forward with this unmet need in immuno-oncology.
Collapse
Affiliation(s)
| | - Sabine Schmid
- Department of Medical Oncology and Hematology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Sally Lau
- Department of Medical Oncology, Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, New York, USA
| | | | | | - Janice Juan Ning Li
- Princess Margaret Cancer Centre, University of Toronto, Toronto, Ontario, Canada
| | | | - Emiliano Calvo
- START, CIOCC (Centro Integral Oncológico Clara Campal), Madrid, Spain
| |
Collapse
|
80
|
Zhao LP, Hu JH, Hu D, Wang HJ, Huang CG, Luo RH, Zhou ZH, Huang XY, Xie T, Lou JS. Hyperprogression, a challenge of PD-1/PD-L1 inhibitors treatments: potential mechanisms and coping strategies. Biomed Pharmacother 2022; 150:112949. [PMID: 35447545 DOI: 10.1016/j.biopha.2022.112949] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/01/2022] [Accepted: 04/08/2022] [Indexed: 11/29/2022] Open
Abstract
Immunotherapy is now a mainstay in cancer treatments. Programmed cell death 1 (PD-1)/programmed cell death ligand 1 (PD-L1) immune checkpoint inhibitor (ICI) therapies have opened up a new venue of advanced cancer immunotherapy. However, hyperprogressive disease (HPD) induced by PD-1/PD-L1 inhibitors caused a significant decrease in the overall survival (OS) of the patients, which compromise the efficacy of PD-1/PD-L1 inhibitors. Therefore, HPD has become an urgent issue to be addressed in the clinical uses of PD-1/PD-L1 inhibitors. The mechanisms of HPD remain unclear, and possible predictive factors of HPD are not well understood. In this review, we summarized the potential mechanisms of HPD and coping strategies that can effectively reduce the occurrence and development of HPD.
Collapse
Affiliation(s)
- Li-Ping Zhao
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Jun-Hu Hu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Die Hu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Hao-Jie Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Chang-Gang Huang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Ru-Hua Luo
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Zhao-Huang Zhou
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Xin-Yun Huang
- Department of Physiology and Biophysics, Weill Cornell Medical College of Cornell University, New York, NY 10065, USA.
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| | - Jian-Shu Lou
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| |
Collapse
|
81
|
Wei Z, Zhang Y. Immune Cells in Hyperprogressive Disease under Immune Checkpoint-Based Immunotherapy. Cells 2022; 11:cells11111758. [PMID: 35681453 PMCID: PMC9179330 DOI: 10.3390/cells11111758] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/18/2022] [Accepted: 05/23/2022] [Indexed: 01/27/2023] Open
Abstract
Immunotherapy, an antitumor therapy designed to activate antitumor immune responses to eliminate tumor cells, has been deeply studied and widely applied in recent years. Immune checkpoint inhibitors (ICIs) are capable of preventing the immune responses from being turned off before tumor cells are eliminated. ICIs have been demonstrated to be one of the most effective and promising tumor treatments and significantly improve the survival of patients with multiple tumor types. However, low effective rates and frequent atypical responses observed in clinical practice limit their clinical applications. Hyperprogressive disease (HPD) is an unexpected phenomenon observed in immune checkpoint-based immunotherapy and is a challenge facing clinicians and patients alike. Patients who experience HPD not only cannot benefit from immunotherapy, but also experience rapid tumor progression. However, the mechanisms of HPD remain unclear and controversial. This review summarized current findings from cell experiments, animal studies, retrospective studies, and case reports, focusing on the relationships between various immune cells and HPD and providing important insights for understanding the pathogenesis of HPD.
Collapse
Affiliation(s)
- Zhanqi Wei
- School of Medicine, Tsinghua University, Haidian District, Beijing 100084, China;
- Hepatopancreatbiliary Center, Tsinghua University Affiliated Beijing Tsinghua Changgung Hospital, Changping District, Beijing 102218, China
| | - Yuewei Zhang
- Hepatopancreatbiliary Center, Tsinghua University Affiliated Beijing Tsinghua Changgung Hospital, Changping District, Beijing 102218, China
- Correspondence:
| |
Collapse
|
82
|
Wang T, Denman D, Bacot SM, Feldman GM. Challenges and the Evolving Landscape of Assessing Blood-Based PD-L1 Expression as a Biomarker for Anti-PD-(L)1 Immunotherapy. Biomedicines 2022; 10:1181. [PMID: 35625917 PMCID: PMC9138337 DOI: 10.3390/biomedicines10051181] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 02/05/2023] Open
Abstract
While promising, PD-L1 expression on tumor tissues as assessed by immunohistochemistry has been shown to be an imperfect biomarker that only applies to a limited number of cancers, whereas many patients with PD-L1-negative tumors still respond to anti-PD-(L)1 immunotherapy. Recent studies using patient blood samples to assess immunotherapeutic responsiveness suggests a promising approach to the identification of novel and/or improved biomarkers for anti-PD-(L)1 immunotherapy. In this review, we discuss the advances in our evolving understanding of the regulation and function of PD-L1 expression, which is the foundation for developing blood-based PD-L1 as a biomarker for anti-PD-(L)1 immunotherapy. We further discuss current knowledge and clinical study results for biomarker identification using PD-L1 expression on tumor and immune cells, exosomes, and soluble forms of PD-L1 in the peripheral blood. Finally, we discuss key challenges for the successful development of the potential use of blood-based PD-L1 as a biomarker for anti-PD-(L)1 immunotherapy.
Collapse
Affiliation(s)
- Tao Wang
- Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA; (D.D.); (S.M.B.); (G.M.F.)
| | | | | | | |
Collapse
|
83
|
Mollica V, Massari F, Rizzo A, Ferrara R, Menta AK, Adashek JJ. Genomics and Immunomics in the Treatment of Urothelial Carcinoma. Curr Oncol 2022; 29:3499-3518. [PMID: 35621673 PMCID: PMC9139747 DOI: 10.3390/curroncol29050283] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/08/2022] [Accepted: 05/10/2022] [Indexed: 12/21/2022] Open
Abstract
Urothelial carcinoma is a complex cancer with genomic immunomic drivers that have prognostic and predictive treatment implications. Identifying potential targetable alterations via next-generation sequencing and RNA sequencing may allow for elucidation of such targets and exploitation with targeted therapeutics. The role of immunotherapy in treating urothelial carcinoma has shown benefit, but it is unclear in which patients immunotherapeutics have the highest yield. Continuing efforts into better identifying which patients may benefit most from targeted therapies, immunotherapies, and combination therapies may ultimately lead to improved outcomes for patients with this disease.
Collapse
Affiliation(s)
- Veronica Mollica
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria Di Bologna, 40138 Bologna, Italy; (V.M.); (F.M.)
| | - Francesco Massari
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria Di Bologna, 40138 Bologna, Italy; (V.M.); (F.M.)
| | - Alessandro Rizzo
- Struttura Semplice Dipartimentale di Oncologia Medica per la Presa in Carico Globale del Paziente Oncologico ‘Don Tonino Bello’, I.R.C.C.S. Istituto Tumori ‘Giovanni Paolo II’, Viale Orazio Flacco 65, 70124 Bari, Italy;
| | - Roberto Ferrara
- Medical Oncology Department, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCSS) Istituto Nazionale dei Tumori, 20133 Milan, Italy;
- Molecular Immunology Unit, Department of Research, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCSS) Istituto Nazionale dei Tumori, 20133 Milan, Italy
| | - Arjun K. Menta
- Johns Hopkins University School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA;
| | - Jacob J. Adashek
- Department of Internal Medicine, University of South Florida, Tampa, FL 33620, USA
| |
Collapse
|
84
|
Guan Y, Feng D, Yin B, Li K, Wang J. Immune-related dissociated response as a specific atypical response pattern in solid tumors with immune checkpoint blockade. Ther Adv Med Oncol 2022; 14:17588359221096877. [PMID: 35547094 PMCID: PMC9083034 DOI: 10.1177/17588359221096877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 04/07/2022] [Indexed: 12/21/2022] Open
Abstract
Immune checkpoint blockade using immune checkpoint inhibitors, including cytotoxic T-lymphocyte-associated antigen–4 and programmed cell death protein-1/programmed cell death ligand–1 inhibitors, has revolutionized systematic treatment for advanced solid tumors, with unprecedented survival benefit and tolerable toxicity. Nivolumab, pembrolizumab, cemiplimab, avelumab, durvalumab, atezolizumab, and ipilimumab are currently approved standard treatment options for various human cancer types. The response rate to immune checkpoint inhibitors, however, is unsatisfactory, and unexpectedly, atypical radiological responses, including delayed responses, pseudoprogression, hyperprogression, and dissociated responses (DRs), are observed in a small subgroup of patients. The benefit of immunotherapy for advanced patients who exhibit atypical responses is underestimated according to the conventional response evaluation criteria in solid tumors (RECIST). In particular, DR is considered a mixed radiological or heterogeneous response pattern when responding and nonresponding lesions or new lesions coexist simultaneously. The rate of DR reported in different studies encompass a wide range of 3.3–47.8% based on diverse definition of DR. Although DR is also associated with treatment efficacy and a favorable prognosis, it is different from pseudoprogression, which has concordant progressive lesions and can be regularly captured by immune RECIST. This review article aims to comprehensively determine the frequency, definition, radiological evaluation, probable molecular mechanisms, prognosis, and clinical management of immune-related DR and help clinicians and radiologists objectively and correctly interpret this specific atypical response and better understand and manage cancer patients with immunotherapy and guarantee their best clinical benefit.
Collapse
Affiliation(s)
- Yaping Guan
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China Shandong Lung Cancer Institute, Jinan, China
- Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Jinan, China
| | - Dongfeng Feng
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China Shandong Lung Cancer Institute, Jinan, China
- Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Jinan, China
| | - Beibei Yin
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China Shandong Lung Cancer Institute, Jinan, China
- Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Jinan, China
| | - Kun Li
- Department of PET/CT, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Jun Wang
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, No. 16766, Jingshi Road, Jinan 250014, China
- Shandong Lung Cancer Institute, Jinan, China
- Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Jinan, China
| |
Collapse
|
85
|
Tumor-Associated Regulatory T Cells in Non-Small-Cell Lung Cancer: Current Advances and Future Perspectives. J Immunol Res 2022; 2022:4355386. [PMID: 35497874 PMCID: PMC9054468 DOI: 10.1155/2022/4355386] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 03/27/2022] [Accepted: 03/30/2022] [Indexed: 12/13/2022] Open
Abstract
Non-small-cell lung cancer (NSCLC) is one of the most threatening malignant tumors to human health, with the overall 5-year survival rate being less than 30%. Regulatory T cells (Tregs), a functional subset of T cells, maintain immunologic immunological self-tolerance and homeostasis. Accumulating evidence has uncovered their implicated roles in various cancers in recent years. In NSCLC, they are associated with staging, therapeutic efficacy, and prognosis by infiltrating in tissues and thereby attenuating immunologic anticancer effects in patients. Tumor-associated Tregs display distinct immune signatures in NSCLC compared to thymus-derived Tregs, playing an important role in remodeling the tumor microenvironment (TME). Targeting Tregs has become a novel direction for NSCLC patients, such as disrupting their immune-suppressive functions, blocking their trafficking into tumors, and inhibiting their development and/or activation. This review is aimed at elucidating the molecular mechanisms of tumor-associated Tregs in NSCLC and providing therapeutic targets relevant to Tregs.
Collapse
|
86
|
Costa-Madeira JC, Trindade GB, Almeida PHP, Silva JS, Carregaro V. T Lymphocyte Exhaustion During Human and Experimental Visceral Leishmaniasis. Front Immunol 2022; 13:835711. [PMID: 35585983 PMCID: PMC9108272 DOI: 10.3389/fimmu.2022.835711] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 04/07/2022] [Indexed: 11/18/2022] Open
Abstract
A key point of immunity against protozoan Leishmania parasites is the development of an optimal T cell response, which includes a low apoptotic rate, high proliferative activity and polyfunctionality. During acute infection, antigen-specific T cells recognize the pathogen resulting in pathogen control but not elimination, promoting the development and the maintenance of a population of circulating effector cells that mount rapid response quickly after re-exposure to the parasite. However, in the case of visceral disease, the functionality of specific T cells is lost during chronic infection, resulting in inferior effector functions, poor response to specific restimulation, and suboptimal homeostatic proliferation, a term referred to as T cell exhaustion. Multiple factors, including parasite load, infection duration and host immunity, affect T lymphocyte exhaustion. These factors contribute to antigen persistence by promoting inhibitory receptor expression and sustained production of soluble mediators, influencing suppressive cell function and the release of endogenous molecules into chronically inflamed tissue. Together, these signals encourage several changes, reprogramming cells into a quiescent state, which reflects disease progression to more severe forms, and development of acquired resistance to conventional drugs to treat the disease. These points are discussed in this review.
Collapse
Affiliation(s)
- Juliana C. Costa-Madeira
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University from São Paulo, Ribeirão Preto, Brazil
| | - Gabrielly B. Trindade
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University from São Paulo, Ribeirão Preto, Brazil
| | - Paulo H. P. Almeida
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University from São Paulo, Ribeirão Preto, Brazil
| | - João S. Silva
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University from São Paulo, Ribeirão Preto, Brazil
- Fiocruz-Bi-Institutional Translational Medicine Project, Ribeirão Preto, Brazil
| | - Vanessa Carregaro
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University from São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
87
|
Guiard E, Baldini C, Pobel C, Assi T, Bernard-Tessier A, Martin-Romano P, Hollebecque A, Verlingue L, Geraud A, Michot JM, Armand JP, Soria JC, Massard C, Ammari S. Radiological patterns of tumour progression in patients treated with a combination of immune checkpoint blockers and antiangiogenic drugs. Eur J Cancer 2022; 167:42-53. [DOI: 10.1016/j.ejca.2022.02.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/19/2022] [Accepted: 02/22/2022] [Indexed: 11/03/2022]
|
88
|
Current Landscape of Immune Checkpoint Inhibitor Therapy for Hepatocellular Carcinoma. Cancers (Basel) 2022; 14:cancers14082018. [PMID: 35454923 PMCID: PMC9025403 DOI: 10.3390/cancers14082018] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/11/2022] [Accepted: 04/15/2022] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Hepatocellular carcinoma (HCC) is the most common primary hepatic malignancy, with increasing incidence over the past several decades. The majority of patients with HCC present with advanced unresectable disease, making treatment options with curative intent limited and survival outlooks dismal. Systemic therapy with sorafenib had been traditionally used, with marginal benefit. Immunotherapy, successfully used to treat other malignant tumors, has recently been shown to be safe and well tolerated and to have promising long-term outcomes in patients with advanced HCC. We herein review the outcomes of immune checkpoint inhibitors (ICI) from major clinical trials, summarize predictors of treatment response, and highlight adverse events related to ICI treatment. Abstract Hepatocellular carcinoma (HCC) is the most frequent primary liver tumor. As a result of advanced disease being often present at diagnosis, only a small percentage of patients are amenable to curative-intent treatment options such as surgical resection and liver transplantation. Systemic therapy consisting of tyrosine kinase inhibitors such as sorafenib had been used for over a decade with limited efficacy. More recently, treatment with immune checkpoint inhibitors has revolutionized the treatment landscape of various malignant tumors. With this shifting paradigm, recent data have demonstrated encouraging outcomes among patients with HCC. In particular, several trials have investigated the safety and efficacy of various immune checkpoint inhibitors (ICI) either as monotherapy or in the form of combined treatments. We sought to provide an overview of recent clinical trials among patients with advanced HCC as well as to highlight predictors of response and immune-related adverse events and to review the evidence on perioperative administration of ICI in patients with resectable HCC.
Collapse
|
89
|
Hegi-Johnson F, Rudd S, Hicks RJ, De Ruysscher D, Trapani JA, John T, Donnelly P, Blyth B, Hanna G, Everitt S, Roselt P, MacManus MP. Imaging immunity in patients with cancer using positron emission tomography. NPJ Precis Oncol 2022; 6:24. [PMID: 35393508 PMCID: PMC8989882 DOI: 10.1038/s41698-022-00263-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 02/24/2022] [Indexed: 12/26/2022] Open
Abstract
Immune checkpoint inhibitors and related molecules can achieve tumour regression, and even prolonged survival, for a subset of cancer patients with an otherwise dire prognosis. However, it remains unclear why some patients respond to immunotherapy and others do not. PET imaging has the potential to characterise the spatial and temporal heterogeneity of both immunotherapy target molecules and the tumor immune microenvironment, suggesting a tantalising vision of personally-adapted immunomodulatory treatment regimens. Personalised combinations of immunotherapy with local therapies and other systemic therapies, would be informed by immune imaging and subsequently modified in accordance with therapeutically induced immune environmental changes. An ideal PET imaging biomarker would facilitate the choice of initial therapy and would permit sequential imaging in time-frames that could provide actionable information to guide subsequent therapy. Such imaging should provide either prognostic or predictive measures of responsiveness relevant to key immunotherapy types but, most importantly, guide key decisions on initiation, continuation, change or cessation of treatment to reduce the cost and morbidity of treatment while enhancing survival outcomes. We survey the current literature, focusing on clinically relevant immune checkpoint immunotherapies, for which novel PET tracers are being developed, and discuss what steps are needed to make this vision a reality.
Collapse
Affiliation(s)
- Fiona Hegi-Johnson
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Stacey Rudd
- Department of Chemistry, University of Melbourne, Melbourne, VIC, Australia
| | - Rodney J Hicks
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
- Department of Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Dirk De Ruysscher
- Department of Radiation Oncology (Maastro), GROW School for Oncology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Joseph A Trapani
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Thomas John
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Paul Donnelly
- Department of Chemistry, University of Melbourne, Melbourne, VIC, Australia
| | - Benjamin Blyth
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Gerard Hanna
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Sarah Everitt
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Peter Roselt
- Department of Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Michael P MacManus
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
90
|
Kang YK, Reck M, Nghiem P, Feng Y, Plautz G, Kim HR, Owonikoko TK, Boku N, Chen LT, Lei M, Chang H, Lin WH, Roy A, Bello A, Sheng J. Assessment of hyperprogression versus the natural course of disease development with nivolumab with or without ipilimumab versus placebo in phase III, randomized, controlled trials. J Immunother Cancer 2022; 10:e004273. [PMID: 35383114 PMCID: PMC8983994 DOI: 10.1136/jitc-2021-004273] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Retrospective studies have suggested a potential risk of hyperprogressive disease (HPD) in patients receiving immune checkpoint inhibitors (ICIs). We compared the incidence of HPD during treatment with nivolumab±ipilimumab versus natural tumor progression with placebo in post hoc analyses of two randomized, double-blind clinical trials. METHODS ATTRACTION-2 randomized patients with advanced gastric or gastroesophageal junction cancer (GC/GEJC) and progression on ≥2 prior regimens to nivolumab 3 mg/kg Q2W or placebo. CheckMate 451 randomized patients with extensive-disease small cell lung cancer (ED SCLC) and ongoing complete/partial response or stable disease after first-line chemotherapy to nivolumab 240 mg Q2W, nivolumab 1 mg/kg+ipilimumab 3 mg/kg Q3W for four doses then nivolumab 240 mg Q2W, or placebo. Patients receiving ≥1 dose of study drug and with tumor scans at baseline and the first on-treatment evaluation were included in the HPD analyses. HPD definitions were ≥20%, ≥50%, and ≥100% increase in target lesion sum of the longest diameters (SLD) at the first on-treatment assessment. RESULTS In the ATTRACTION-2 HPD-evaluable population, 243 patients received nivolumab and 115 placebo. Fewer patients receiving nivolumab versus placebo had increases in SLD ≥20% (33.7% vs 46.1%) and ≥50% (6.2% vs 11.3%); similar proportions had increases in SLD ≥100% (1.6% vs 1.7%). In the CheckMate 451 HPD-evaluable population, 177 patients received nivolumab, 179 nivolumab+ipilimumab, and 175 placebo. Fewer patients receiving nivolumab or nivolumab+ipilimumab versus placebo had increases in SLD ≥20% (27.1%, 27.4% vs 45.7%), ≥50% (10.2%, 11.2% vs 22.3%), and ≥100% (2.8%, 2.8% vs 6.3%). CONCLUSIONS Nivolumab±ipilimumab was not associated with an increased rate of progression versus placebo in patients with GC, GEJC, or ED SCLC, suggesting that previous reports of HPD may reflect the natural disease course in some patients rather than ICI-mediated progression. TRIAL REGISTRATION NUMBER NCT02538666; NCT02267343.
Collapse
Affiliation(s)
- Yoon-Koo Kang
- Department of Oncology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Martin Reck
- Thoracic Oncology, LungenClinic, Airway Research Center North (ARCN), German Center of Lung Research (DZL), Grosshansdorf, Germany
| | - Paul Nghiem
- Department of Medicine, Division of Dermatology, University of Washington & Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Yan Feng
- Clinical Pharmacology & Pharmacometrics, Bristol Myers Squibb, Princeton, New Jersey, USA
| | - Gregory Plautz
- Medical Safety Assessment, Bristol Myers Squibb, Princeton, New Jersey, USA
| | - Hye Ryun Kim
- Division of Medical Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Taofeek K Owonikoko
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, Georgia, USA
| | - Narikazu Boku
- Department of Gastrointestinal Medical Oncology, National Cancer Center Hospital (NCCH), Tokyo, Japan
- Department of Medical Oncology and General Medicine, IMSUT Hospital, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Li-Tzong Chen
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
- Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- National Cheng Kung University Hospital, National Cheng Kung University, Tainan, Taiwan
| | - Ming Lei
- Precision Medicine, Bristol Myers Squibb, Princeton, New Jersey, USA
| | - Han Chang
- Translational Bioinformatics, Bristol Myers Squibb, Princeton, New Jersey, USA
| | - Wen Hong Lin
- Oncology Clinical Development, Bristol Myers Squibb, Princeton, New Jersey, USA
| | - Amit Roy
- Clinical Pharmacology & Pharmacometrics, Bristol Myers Squibb, Princeton, New Jersey, USA
| | - Akintunde Bello
- Clinical Pharmacology & Pharmacometrics, Bristol Myers Squibb, Princeton, New Jersey, USA
| | - Jennifer Sheng
- Clinical Pharmacology & Pharmacometrics, Bristol Myers Squibb, Princeton, New Jersey, USA
| |
Collapse
|
91
|
Manson G, Lemchukwu AC, Mokrane FZ, Lopci E, Aide N, Vercellino L, Houot R, Dercle L. Interpretation of 2-[ 18F]FDG PET/CT in Hodgkin lymphoma patients treated with immune checkpoint inhibitors. Eur Radiol 2022; 32:6536-6544. [PMID: 35344061 DOI: 10.1007/s00330-022-08669-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 02/14/2022] [Accepted: 02/17/2022] [Indexed: 11/30/2022]
Abstract
The development of immunotherapy has revolutionized cancer treatment, improving the outcome and survival of many patients. Immune checkpoint inhibitors (ICIs), the most common form of immunotherapy, use antibodies to restore T-cells' anti-tumor activity. Immune checkpoint inhibitors are gaining ground in the therapeutic strategy across various cancers. Although widely used in solid tumors, ICIs have shown remarkable efficacy in patients with Hodgkin lymphoma. 2-[18F]Fluoro-2-deoxy-D-glucose (FDG)-positron emission tomography (PET)/CT is the gold standard to stage and monitor responses in Hodgkin lymphoma. This article reviewed the use of 2-[18F]FDG-PET/CT in patients with Hodgkin lymphoma treated with ICI, focusing on image interpretation for response monitoring and detecting adverse events. Key Points • Immune checkpoint inhibitors have dramatically improved the outcome of patients with cancer. Their mechanisms of action induce inflammatory processes that might translate into a high 2-[18F]FDG uptake visible on 2-[18F]FDG-PET/CT, requiring an adaptation of the evaluation criteria. • PET readers should be aware of new patterns of response observed with immunotherapy in assessing treatment response in HL patients. • -[18F]FDG-PET/CT has an unparalleled ability of assessing tumor response, visualizing signs of immune activation as well as immune-related adverse events in a one-stop-shop examination.
Collapse
Affiliation(s)
- Guillaume Manson
- Department of Hematology, University Hospital of Rennes, INSERM U1236, 2 rue Henri le Guilloux, 35 000, Rennes, France.
| | | | | | - Egesta Lopci
- Nuclear Medicine, IRCCS Humanitas Research Hospital, via Manzoni 56, Rozzano, MI, Italy
| | - Nicolas Aide
- Nuclear Medicine Department, Caen University Hospital, Caen, France
| | - Laetitia Vercellino
- Department of Nuclear Medicine, Hôpital Saint-Louis, Assistance Publique Hôpitaux de Paris (APHP), Paris, France
| | - Roch Houot
- Department of Hematology, University Hospital of Rennes, INSERM U1236, 2 rue Henri le Guilloux, 35 000, Rennes, France
| | - Laurent Dercle
- Department of Radiology, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
92
|
Li M, Zhong X, Du F, Wu X, Li M, Chen Y, Zhao Y, Shen J, Yang Z, Xiao Z. Current Understanding and Future Perspectives on Hyperprogressive Disease Highlight the Tumor Microenvironment. J Clin Pharmacol 2022; 62:1059-1078. [PMID: 35303368 DOI: 10.1002/jcph.2048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/14/2022] [Indexed: 11/09/2022]
Abstract
Cancer immunotherapy with immune checkpoint inhibitors has revolutionized traditional cancer therapy. Although many patients have achieved long-term survival benefits from immune checkpoint inhibitors treatment, there are still some patients who develop rapid tumor progression after immunotherapy, known as hyperprogressive disease. Here we summarize current knowledge on hyperprogressive disease after immune checkpoint inhibitors treatment to promote more thorough understanding of the disease. This review focuses on multiple aspects of hyperprogressive disease, especially the tumor microenvironment, with the hope that more reliable biomarkers and therapeutics could be established for hyperprogressive disease in the future. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Meiqi Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China.,Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, 646000, P.R. China.,South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, 646000, P.R. China
| | - Xianmei Zhong
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China.,Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, 646000, P.R. China.,South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, 646000, P.R. China
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China.,Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, 646000, P.R. China.,South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, 646000, P.R. China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China.,Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, 646000, P.R. China.,South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, 646000, P.R. China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China.,Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, 646000, P.R. China.,South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, 646000, P.R. China
| | - Yu Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China.,Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, 646000, P.R. China.,South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, 646000, P.R. China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China.,Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, 646000, P.R. China.,South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, 646000, P.R. China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China.,Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, 646000, P.R. China.,South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, 646000, P.R. China
| | - Zhongming Yang
- Department of Oncology and Hematology, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China.,Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, 646000, P.R. China.,South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, 646000, P.R. China
| |
Collapse
|
93
|
Hu CH, Shi S, Dong W, Xiao L, Zang H, Wu F. Hyperprogressive Disease After Immunotherapy: A Case Report of Pulmonary Enteric Adenocarcinoma. Front Oncol 2022; 12:799549. [PMID: 35321429 PMCID: PMC8937032 DOI: 10.3389/fonc.2022.799549] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 01/24/2022] [Indexed: 02/03/2023] Open
Abstract
Primary pulmonary enteric adenocarcinoma (PEAC) is a rare invasive adenocarcinoma clinically similar to metastatic colorectal adenocarcinoma (MCRC). Although many studies have addressed the differential diagnosis of PEAC, few have described the treatment of PEAC, especially using immunotherapy. This report describes a 61-year-old man who presented initially with pain in the ribs. Pathological analysis of biopsy samples shows malignant tumors of the right pleura, and next-generation sequencing of 26 genes showed a KRAS gene mutation. Positron emission tomography-computed tomography (PET-CT) found no evidence of gastrointestinal malignancy. Due to multiple metastases, the patient could not undergo radical surgery. The patient was treated with a combination chemotherapy regimen of paclitaxel plus carboplatin, along with sindilizumab immunotherapy, but, after one cycle of treatment, the tumor showed a hyperprogressive state. The patient is still being monitored regularly. These findings indicate that chemotherapy combined with immunotherapy may be ineffective in the treatment of primary PEAC with positive driver genes.
Collapse
Affiliation(s)
- Chun-Hong Hu
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Shenghao Shi
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Wen Dong
- Department of Oncology, The Changde First People’s Hospital, Changde, China
| | - Lizhi Xiao
- Department of Radiology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Hongjing Zang
- Department of Pathology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Fang Wu
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Fang Wu,
| |
Collapse
|
94
|
Yin X, Wu T, Lan Y, Yang W. Current progress of immune checkpoint inhibitors in the treatment of advanced hepatocellular carcinoma. Biosci Rep 2022; 42:BSR20212304. [PMID: 35075482 PMCID: PMC8821949 DOI: 10.1042/bsr20212304] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/11/2022] [Accepted: 01/17/2022] [Indexed: 01/27/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver cancer worldwide. The onset of the disease is occult and develops rapidly. As a result, the disease is often detected when it is already in advanced stages, resulting in patients losing the best opportunity for liver transplantation and surgical treatment. Therefore, effective treatment of HCC is particularly important in clinical practice. During the past decades, there have been considerable advances in the treatment of HCC, and immunotherapy is increasingly recognized as a promising approach in clinical trials. In this review, an overview of immune checkpoint (ICP) inhibitors (ICIs) and their role in the treatment of liver cancers, particularly advanced HCC, is presented and the recent therapeutic progress with treatment with different ICIs alone or in combination with other methods/therapeutic agents is summarized. In addition, the identification of biomarkers to predict treatment response and the limitations of current ICIs are analyzed, and future directions for ICI treatment are discussed.
Collapse
Affiliation(s)
- Xiaoqiang Yin
- Department of Hepatobiliary Surgery, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, Anhui, China
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, 350 Shushanhu Road, Hefei, 230031, Anhui, China
| | - Tongchui Wu
- Department of Hepatobiliary Surgery, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, Anhui, China
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, 350 Shushanhu Road, Hefei, 230031, Anhui, China
| | - Yadong Lan
- Department of Hepatobiliary Surgery, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, Anhui, China
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, 350 Shushanhu Road, Hefei, 230031, Anhui, China
| | - Wulin Yang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, 350 Shushanhu Road, Hefei, 230031, Anhui, China
- Medical Pathology Centre, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, Anhui, China
| |
Collapse
|
95
|
Caner B, Ertas H, Ocak B, Cubukcu E. Hyperprogression and hypercalcemia after nivolumab treatment in three cases with renal cell carcinoma. J Oncol Pharm Pract 2022; 28:1645-1649. [PMID: 35188841 DOI: 10.1177/10781552221077418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
INTRODUCTION Hyperprogression is a specific type of response seen with immunotherapy that is observed in all malignancies with a frequency of 9% - 29%, characterized by a rapid increase in tumor burden. Many possible related factors and possible markers have been evaluated but a clinical or laboratory parameter associated with hyperprogression has not yet been established. For renal cell carcinoma, hypercalcemia is known to be a poor prognostic factor but it has not been linked to hyperprogression. CASE REPORT We retrospectively evaluated 52 patients diagnosed with renal cell carcinoma who had nivolumab treatment in any line. 3 of 9 patients who had hyperprogression were noticed to have hypercalcemia preceding hyperprogression. Here we present those 3 cases who developed hypercalcemia after nivolumab and had hyperprogression at follow-up. MANAGEMENT AND OUTCOME All cases had less than 4 courses of nivolumab and showed hyperprogression in assessment. Nivolumab was discontinued. However, patients' survival was extremely poor, as expected. DISCUSSION The development of hypercalcemia may help predict hyperprogression in patients with renal cell carcinoma who receive immunotherapy. In such cases, early evaluation of progression and cessation of nivolumab may be considered.
Collapse
Affiliation(s)
- Burcu Caner
- 37523Bursa Uludag University, 64048Faculty of Medicine, Department of Medical Oncology, Bursa, TURKEY
| | - Hulya Ertas
- 584778Bursa City Hospital, Department of Medical Oncology, Bursa, TURKEY
| | - Birol Ocak
- 147003Bursa Yuksek Ihtisas Training and Research Hospital, Department of Medical Oncology, Bursa, TURKEY
| | - Erdem Cubukcu
- 37523Bursa Uludag University, 64048Faculty of Medicine, Department of Medical Oncology, Bursa, TURKEY
| |
Collapse
|
96
|
Assi T, Mir O. Hyperprogressive disease in leiomyosarcoma: a threat to the use of single-agent anti-PD-(L)1 therapy? Immunotherapy 2022; 14:271-274. [DOI: 10.2217/imt-2021-0297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Tarek Assi
- Department of Cancer Medicine, Gustave Roussy, Villejuif, France
| | - Olivier Mir
- Department of Ambulatory Cancer Care, Gustave Roussy, Villejuif, France
| |
Collapse
|
97
|
CCR8-targeted specific depletion of clonally expanded Treg cells in tumor tissues evokes potent tumor immunity with long-lasting memory. Proc Natl Acad Sci U S A 2022; 119:2114282119. [PMID: 35140181 PMCID: PMC8851483 DOI: 10.1073/pnas.2114282119] [Citation(s) in RCA: 78] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2022] [Indexed: 12/15/2022] Open
Abstract
Immunosuppressive Foxp3-expressing regulatory T cells (Tregs) in tumor tissues are assumed to be clonally expanding via recognizing tumor-associated antigens. By single-cell RNA sequencing, we have searched for the molecules that are specifically expressed by such multiclonal tumor Tregs, but not by tumor-infiltrating effector T cells or natural Tregs in other tissues. The search revealed the chemokine receptor CCR8 as a candidate. Treatment of tumor-bearing mice with cell-depleting anti-CCR8 antibody indeed selectively removed multiclonal tumor Tregs without affecting effector T cells or tissue Tregs, eradicating established tumors with induction of potent tumor-specific effector/memory T cells and without activating autoimmune T cells. Thus, specific depletion of clonally expanding tumor Tregs is clinically instrumental for evoking effective tumor immunity without autoimmune adverse effects. Foxp3-expressing CD25+CD4+ regulatory T cells (Tregs) are abundant in tumor tissues. Here, hypothesizing that tumor Tregs would clonally expand after they are activated by tumor-associated antigens to suppress antitumor immune responses, we performed single-cell analysis on tumor Tregs to characterize them by T cell receptor clonotype and gene-expression profiles. We found that multiclonal Tregs present in tumor tissues predominantly expressed the chemokine receptor CCR8. In mice and humans, CCR8+ Tregs constituted 30 to 80% of tumor Tregs in various cancers and less than 10% of Tregs in other tissues, whereas most tumor-infiltrating conventional T cells (Tconvs) were CCR8–. CCR8+ tumor Tregs were highly differentiated and functionally stable. Administration of cell-depleting anti-CCR8 monoclonal antibodies (mAbs) indeed selectively eliminated multiclonal tumor Tregs, leading to cure of established tumors in mice. The treatment resulted in the expansion of CD8+ effector Tconvs, including tumor antigen-specific ones, that were more activated and less exhausted than those induced by PD-1 immune checkpoint blockade. Anti-CCR8 mAb treatment also evoked strong secondary immune responses against the same tumor cell line inoculated several months after tumor eradication, indicating that elimination of tumor-reactive multiclonal Tregs was sufficient to induce memory-type tumor-specific effector Tconvs. Despite induction of such potent tumor immunity, anti-CCR8 mAb treatment elicited minimal autoimmunity in mice, contrasting with systemic Treg depletion, which eradicated tumors but induced severe autoimmune disease. Thus, specific removal of clonally expanding Tregs in tumor tissues for a limited period by cell-depleting anti-CCR8 mAb treatment can generate potent tumor immunity with long-lasting memory and without deleterious autoimmunity.
Collapse
|
98
|
Liao X, Liu M, Wang R, Zhang J. Potentials of Non-Invasive 18F-FDG PET/CT in Immunotherapy Prediction for Non-Small Cell Lung Cancer. Front Genet 2022; 12:810011. [PMID: 35186013 PMCID: PMC8855498 DOI: 10.3389/fgene.2021.810011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/31/2021] [Indexed: 12/26/2022] Open
Abstract
The immune checkpoint inhibitors (ICIs), by targeting cytotoxic-T-lymphocyte-associated protein 4, programmed cell death 1 (PD-1), or PD-ligand 1, have dramatically changed the natural history of several cancers, including non-small cell lung cancer (NSCLC). There are unusual response manifestations (such as pseudo-progression, hyper-progression, and immune-related adverse events) observed in patients with ICIs because of the unique mechanisms of these agents. These specific situations challenge response and prognostic assessment to ICIs challenging. This review demonstrates how 18F-FDG PET/CT can help identify these unusual response patterns in a non-invasive and effective way. Then, a series of semi-quantitative parameters derived from 18F-FDG PET/CT are introduced. These indexes have been recognized as the non-invasive biomarkers to predicting the efficacy of ICIs and survival of NSCLC patients according to the latest clinical studies. Moreover, the current situation regarding the functional criteria based on 18F-FDG PET/CT for immunotherapeutic response assessment is presented and analyzed. Although the criteria based on 18F-FDG PET/CT proposed some resolutions to overcome limitations of morphologic criteria in the assessment of tumor response to ICIs, further researches should be performed to validate and improve these assessing systems. Then, the last part in this review displays the present status and a perspective of novel specific PET probes targeting key molecules relevant to immunotherapy in prediction and response assessment.
Collapse
Affiliation(s)
| | | | | | - Jianhua Zhang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China
| |
Collapse
|
99
|
Yang F, Yang J, Xiang W, Zhong BY, Li WC, Shen J, Zhang S, Yin Y, Sun HP, Wang WS, Zhu XL. Safety and Efficacy of Transarterial Chemoembolization Combined With Immune Checkpoint Inhibitors and Tyrosine Kinase Inhibitors for Hepatocellular Carcinoma. Front Oncol 2022; 11:657512. [PMID: 35096555 PMCID: PMC8792047 DOI: 10.3389/fonc.2021.657512] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 12/20/2021] [Indexed: 12/12/2022] Open
Abstract
Purpose To explore the safety and efficacy of transarterial chemoembolization (TACE) in combination with immune checkpoint inhibitors (ICIs) and tyrosine kinase inhibitors (TKIs) for the treatment of unresectable hepatocellular carcinoma (uHCC). Materials and Methods From August 2019 to July 2020, patients who received TACE combined with ICIs and TKIs were retrospectively analyzed. Treatment-related adverse events (AEs) were recorded. The Kaplan-Meier method was used to estimate time to progression (TTP) and progression-free survival (PFS). Results In total, 31 patients with uHCC were included. Eleven patients were classified as BCLC-C. Nineteen patients had multiple lesions, and the cumulative targeted lesions were 69 mm (range, 21-170 mm) according to mRECIST. Twenty-nine (93%) patients experienced at least one AE during the treatment. Four (12.9%) patients developed AEs of higher grade (grade≥3). The objective response rate (ORR) and disease control rate (DCR) were 64.5% and 77.4%, respectively. The median time to response was 7 weeks (range, 4-30 w), and the duration of response was 17.5 weeks (range, 2-46 w). From the first ICIs, TTP and PFS were 6.5 months (95% CI, 3.5-11) and 8.5 months (95% CI, 3.5-NE), respectively. Conclusions TACE combined with ICIs and TKIs shows an acceptable safety profile and considerable efficacy in patients with HCC.
Collapse
Affiliation(s)
- Fei Yang
- Department of Interventional Radiology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Department of Interventional Radiology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Jun Yang
- Department of Interventional Radiology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Wei Xiang
- Department of Interventional Radiology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Department of Oncology Intervention, Taizhou Municipal Hospital, Taizhou, China
| | - Bin-Yan Zhong
- Department of Interventional Radiology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Wan-Ci Li
- Department of Interventional Radiology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jian Shen
- Department of Interventional Radiology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Shuai Zhang
- Department of Interventional Radiology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yu Yin
- Department of Interventional Radiology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Hong-Peng Sun
- Department of Child Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou, China
| | - Wan-Sheng Wang
- Department of Interventional Radiology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiao-Li Zhu
- Department of Interventional Radiology, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
100
|
Kazemi NY, Langstraat C, John Weroha S. Non-gestational choriocarcinoma with hyperprogression on pembrolizumab: A case report and review of the literature. Gynecol Oncol Rep 2022; 39:100923. [PMID: 35111894 PMCID: PMC8789587 DOI: 10.1016/j.gore.2022.100923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/16/2021] [Accepted: 01/03/2022] [Indexed: 11/21/2022] Open
Abstract
Non gestational choriocarcinoma is diagnosed by history, pathology, & genetics. There is a paucity of data regarding the efficacy of immunotherapy in this disease. Hyperprogression on immunotherapy can occur in gynecologic malignancies. Hyperprogression was associated with aberrations in the CHEK2/TP53 pathway.
Non-gestational choriocarcinoma is a rare and aggressive germ cell tumor. Here we present the case of a post-menopausal 49-year-old woman who presented with metastatic disease and initially achieved a complete radiographic and biomarker response with seven cycles of EMA-CO chemotherapy. Upon recurrence, she received two separate courses of chemotherapy, initially with paclitaxel/cisplatin/etoposide and later FOLFOX. Tumor analysis revealed 22% PD-L1 positivity (tumor proportion score) and she was treated with pembrolizumab. However, βhCG levels rose abruptly and uncharacteristically through all three cycles of anti-PD1 therapy. The patient developed dyspnea on exertion, cough, and right flank pain. CT imaging demonstrated marked progression of liver metastases and innumerable new pulmonary metastases and the patient died 10 weeks after starting pembrolizumab. Here we describe the clinical presentation and management of this patient, along with analysis of molecular aberrations which could potentially explain hyperprogression in response to pembrolizumab.
Collapse
|