51
|
Cho H, Huh KM, Cho HJ, Kim B, Shim MS, Cho YY, Lee JY, Lee HS, Kwon YJ, Kang HC. Beyond nanoparticle-based oral drug delivery: transporter-mediated absorption and disease targeting. Biomater Sci 2024; 12:3045-3067. [PMID: 38712883 DOI: 10.1039/d4bm00313f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Various strategies at the microscale/nanoscale have been developed to improve oral absorption of therapeutics. Among them, gastrointestinal (GI)-transporter/receptor-mediated nanosized drug delivery systems (NDDSs) have drawn attention due to their many benefits, such as improved water solubility, improved chemical/physical stability, improved oral absorption, and improved targetability of their payloads. Their therapeutic potential in disease animal models (e.g., solid tumors, virus-infected lungs, metastasis, diabetes, and so on) has been investigated, and could be expanded to disease targeting after systemic/lymphatic circulation, although the detailed paths and mechanisms of endocytosis, endosomal escape, intracellular trafficking, and exocytosis through the epithelial cell lining in the GI tract are still unclear. Thus, this review summarizes and discusses potential GI transporters/receptors, their absorption and distribution, in vivo studies, and potential sequential targeting (e.g., oral absorption and disease targeting in organs/tissues).
Collapse
Affiliation(s)
- Hana Cho
- Department of Pharmacy, College of Pharmacy, The Catholic University of Korea, Bucheon, 14662, Republic of Korea.
| | - Kang Moo Huh
- Department of Polymer Science and Engineering & Materials Science and Engineering, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Hyun Ji Cho
- Department of Pharmacy, College of Pharmacy, The Catholic University of Korea, Bucheon, 14662, Republic of Korea.
| | - Bogeon Kim
- Department of Pharmacy, College of Pharmacy, The Catholic University of Korea, Bucheon, 14662, Republic of Korea.
| | - Min Suk Shim
- Division of Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Yong-Yeon Cho
- Department of Pharmacy, College of Pharmacy, The Catholic University of Korea, Bucheon, 14662, Republic of Korea.
- Regulated Cell Death (RCD) Control Material Research Institute, The Catholic University of Korea, Bucheon, 14662, Republic of Korea
| | - Joo Young Lee
- Department of Pharmacy, College of Pharmacy, The Catholic University of Korea, Bucheon, 14662, Republic of Korea.
- Regulated Cell Death (RCD) Control Material Research Institute, The Catholic University of Korea, Bucheon, 14662, Republic of Korea
| | - Hye Suk Lee
- Department of Pharmacy, College of Pharmacy, The Catholic University of Korea, Bucheon, 14662, Republic of Korea.
- Regulated Cell Death (RCD) Control Material Research Institute, The Catholic University of Korea, Bucheon, 14662, Republic of Korea
| | - Young Jik Kwon
- Department of Pharmaceutical Sciences, University of California, Irvine, CA 92697, USA
| | - Han Chang Kang
- Department of Pharmacy, College of Pharmacy, The Catholic University of Korea, Bucheon, 14662, Republic of Korea.
- Regulated Cell Death (RCD) Control Material Research Institute, The Catholic University of Korea, Bucheon, 14662, Republic of Korea
| |
Collapse
|
52
|
Cavalcante P, Mantegazza R, Antozzi C. Targeting autoimmune mechanisms by precision medicine in Myasthenia Gravis. Front Immunol 2024; 15:1404191. [PMID: 38903526 PMCID: PMC11187261 DOI: 10.3389/fimmu.2024.1404191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 05/24/2024] [Indexed: 06/22/2024] Open
Abstract
Myasthenia Gravis (MG) is a chronic disabling autoimmune disease caused by autoantibodies to the neuromuscular junction (NMJ), characterized clinically by fluctuating weakness and early fatigability of ocular, skeletal and bulbar muscles. Despite being commonly considered a prototypic autoimmune disorder, MG is a complex and heterogeneous condition, presenting with variable clinical phenotypes, likely due to distinct pathophysiological settings related with different immunoreactivities, symptoms' distribution, disease severity, age at onset, thymic histopathology and response to therapies. Current treatment of MG based on international consensus guidelines allows to effectively control symptoms, but most patients do not reach complete stable remission and require life-long immunosuppressive (IS) therapies. Moreover, a proportion of them is refractory to conventional IS treatment, highlighting the need for more specific and tailored strategies. Precision medicine is a new frontier of medicine that promises to greatly increase therapeutic success in several diseases, including autoimmune conditions. In MG, B cell activation, antibody recycling and NMJ damage by the complement system are crucial mechanisms, and their targeting by innovative biological drugs has been proven to be effective and safe in clinical trials. The switch from conventional IS to novel precision medicine approaches based on these drugs could prospectively and significantly improve MG care. In this review, we provide an overview of key immunopathogenetic processes underlying MG, and discuss on emerging biological drugs targeting them. We also discuss on future direction of research to address the need for patients' stratification in endotypes according with genetic and molecular biomarkers for successful clinical decision making within precision medicine workflow.
Collapse
Affiliation(s)
- Paola Cavalcante
- Neurology 4 – Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Renato Mantegazza
- Neurology 4 – Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Carlo Antozzi
- Neurology 4 – Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
- Immunotherapy and Apheresis Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| |
Collapse
|
53
|
Boulard P, Azzopardi N, Levard R, Cornec JM, Lamamy J, Prieur B, Demattei MV, Watier H, Gatault P, Gouilleux-Gruart V. Albumin influences leucocyte FcRn expression in the early days of kidney transplantation. Clin Exp Immunol 2024; 216:307-317. [PMID: 38353127 PMCID: PMC11097912 DOI: 10.1093/cei/uxae011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/28/2023] [Accepted: 02/08/2024] [Indexed: 05/18/2024] Open
Abstract
FcRn, a receptor originally known for its involvement in IgG and albumin transcytosis and recycling, is also important in the establishment of the innate and adaptive immune response. Dysregulation of the immune response has been associated with variations in FcRn expression, as observed in cancer. Recently, a link between autophagy and FcRn expression has been demonstrated. Knowing that autophagy is strongly involved in the development of reperfusion injury in kidney transplantation and that albuminemia is transiently decreased in the first 2 weeks after transplantation, we investigated variations in FcRn expression after kidney transplantation. We monitored FcRn levels by flow cytometry in leukocytes from 25 renal transplant patients and considered parameters such as albumin concentrations, estimated glomerular filtration rate, serum creatinine, serum IgG levels, and ischaemia/reperfusion time. Two groups of patients could be distinguished according to their increased or non-increased FcRn expression levels between days 2 and 6 (d2-d6) post-transplantation. Leukocyte FcRn expression at d2-d6 was correlated with albumin concentrations at d0-d2. These results suggest that albumin concentrations at d0-d2 influence FcRn expression at d2-d6, raising new questions about the mechanisms underlying these original observations.
Collapse
Affiliation(s)
- Pierre Boulard
- Centre d’Étude des Pathologies Respiratoires (CEPR) U1100 INSERM, Tours, France
- Laboratoire d’immunologie, CHU de Tours, Tours,France
| | | | - Romain Levard
- Laboratoire d’immunologie, CHU de Tours, Tours,France
| | | | - Juliette Lamamy
- EA7501 GICC, Faculté de Médecine, Université de Tours, Tours,France
| | | | | | - Hervé Watier
- Laboratoire d’immunologie, CHU de Tours, Tours,France
- EA7501 GICC, Faculté de Médecine, Université de Tours, Tours,France
| | - Philippe Gatault
- EA4245 T2I, Faculté de Médecine, Université de Tours, Tours,France
- Service de Néphrologie, CHU de Tours, Tours,France
| | - Valérie Gouilleux-Gruart
- Laboratoire d’immunologie, CHU de Tours, Tours,France
- EA7501 GICC, Faculté de Médecine, Université de Tours, Tours,France
| |
Collapse
|
54
|
Ma G, Crowley AR, Heyndrickx L, Rogiers I, Parthoens E, Van Santbergen J, Ober RJ, Bobkov V, de Haard H, Ulrichts P, Hofman E, Louagie E, Balbino B, Ward ES. Differential effects of FcRn antagonists on the subcellular trafficking of FcRn and albumin. JCI Insight 2024; 9:e176166. [PMID: 38713534 PMCID: PMC11141909 DOI: 10.1172/jci.insight.176166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 04/10/2024] [Indexed: 05/09/2024] Open
Abstract
The homeostasis of IgG is maintained by the neonatal Fc receptor, FcRn. Consequently, antagonism of FcRn to reduce endogenous IgG levels is an emerging strategy for treating antibody-mediated autoimmune disorders using either FcRn-specific antibodies or an engineered Fc fragment. For certain FcRn-specific antibodies, this approach has resulted in reductions in the levels of serum albumin, the other major ligand transported by FcRn. Cellular and molecular analyses of a panel of FcRn antagonists have been carried out to elucidate the mechanisms leading to their differential effects on albumin homeostasis. These analyses have identified 2 processes underlying decreases in albumin levels during FcRn blockade: increased degradation of FcRn and competition between antagonist and albumin for FcRn binding. These findings have potential implications for the design of drugs to modulate FcRn function.
Collapse
Affiliation(s)
- Guanglong Ma
- Centre for Cancer Immunology, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Andrew R. Crowley
- Centre for Cancer Immunology, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | | | | | - Eef Parthoens
- VIB BioImaging Core, Center for Inflammation Research, Ghent, Belgium
| | | | - Raimund J. Ober
- Centre for Cancer Immunology, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | | | | | | | | | | | | | - E. Sally Ward
- Centre for Cancer Immunology, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
55
|
Sampson JM, Cannon DA, Duan J, Epstein JCK, Sergeeva AP, Katsamba PS, Mannepalli SM, Bahna FA, Adihou H, Guéret SM, Gopalakrishnan R, Geschwindner S, Rees DG, Sigurdardottir A, Wilkinson T, Dodd RB, De Maria L, Mobarec JC, Shapiro L, Honig B, Buchanan A, Friesner RA, Wang L. Robust prediction of relative binding energies for protein-protein complex mutations using free energy perturbation calculations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.22.590325. [PMID: 38712280 PMCID: PMC11071377 DOI: 10.1101/2024.04.22.590325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Computational free energy-based methods have the potential to significantly improve throughput and decrease costs of protein design efforts. Such methods must reach a high level of reliability, accuracy, and automation to be effectively deployed in practical industrial settings in a way that impacts protein design projects. Here, we present a benchmark study for the calculation of relative changes in protein-protein binding affinity for single point mutations across a variety of systems from the literature, using free energy perturbation (FEP+) calculations. We describe a method for robust treatment of alternate protonation states for titratable amino acids, which yields improved correlation with and reduced error compared to experimental binding free energies. Following careful analysis of the largest outlier cases in our dataset, we assess limitations of the default FEP+ protocols and introduce an automated script which identifies probable outlier cases that may require additional scrutiny and calculates an empirical correction for a subset of charge-related outliers. Through a series of three additional case study systems, we discuss how protein FEP+ can be applied to real-world protein design projects, and suggest areas of further study.
Collapse
Affiliation(s)
| | | | - Jianxin Duan
- Schrödinger, GmbH, Life Sciences Software, Mannheim, Germany
| | | | - Alina P. Sergeeva
- Columbia University, Department of Systems Biology, New York, NY, USA
| | | | - Seetha M. Mannepalli
- Columbia University, Zuckerman Mind Brain Behavior Institute, New York, NY, USA, 10027
| | - Fabiana A. Bahna
- Columbia University, Zuckerman Mind Brain Behavior Institute, New York, NY, USA, 10027
| | - Hélène Adihou
- AstraZeneca, Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, Gothenburg, Sweden
- Max Planck Institute of Molecular Physiology, AstraZeneca-MPI Satellite Unit, Dortmund, Germany
| | - Stéphanie M. Guéret
- AstraZeneca, Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, Gothenburg, Sweden
- Max Planck Institute of Molecular Physiology, AstraZeneca-MPI Satellite Unit, Dortmund, Germany
| | - Ranganath Gopalakrishnan
- AstraZeneca, Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, Gothenburg, Sweden
- Max Planck Institute of Molecular Physiology, AstraZeneca-MPI Satellite Unit, Dortmund, Germany
| | - Stefan Geschwindner
- AstraZeneca, Mechanistic and Structural Biology, Discovery Sciences, R&D, Cambridge, UK
| | | | | | | | - Roger B. Dodd
- AstraZeneca, Biologics Engineering, R&D, Cambridge, UK
| | - Leonardo De Maria
- AstraZeneca, Medicinal Chemistry, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, Gothenburg, Sweden
| | - Juan Carlos Mobarec
- AstraZeneca, Mechanistic and Structural Biology, Discovery Sciences, R&D, Cambridge, UK
| | - Lawrence Shapiro
- Columbia University, Zuckerman Mind Brain Behavior Institute, New York, NY, USA, 10027
- Columbia University, Department of Biochemistry and Molecular Biophysics, New York, NY, USA
| | - Barry Honig
- Columbia University, Department of Systems Biology, New York, NY, USA
- Columbia University, Zuckerman Mind Brain Behavior Institute, New York, NY, USA, 10027
- Columbia University, Department of Biochemistry and Molecular Biophysics, New York, NY, USA
- Columbia University, Department of Medicine, New York, NY, USA
| | | | | | - Lingle Wang
- Schrödinger, Inc., Life Sciences Software, New York, NY, USA
| |
Collapse
|
56
|
Chen J, Feng L, Li S, Wang H, Huang X, Shen C, Feng H. Therapeutic Plasma Exchange in AChR-Ab Positive Generalized Myasthenia Gravis: A Real World Study About Its Early Response. J Inflamm Res 2024; 17:2299-2308. [PMID: 38645879 PMCID: PMC11032135 DOI: 10.2147/jir.s455104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/06/2024] [Indexed: 04/23/2024] Open
Abstract
Background Since there is no clear priority or selection principle in the guidelines for myasthenia crisis, therapeutic plasma exchange (TPE) and intravenous immunoglobulin are often administered randomly. However, it should be more prudent in taking TPE due to its higher cost and risk. Studying its early response factors is crucial for managing myasthenia crisis and can improve medical and economic benefits. Methods A prospective observational study was conducted, and patients classified as having "impending myasthenia crisis" or experiencing a myasthenia crisis and treated by TPE were included. The primary endpoint was the response after TPE. Univariate logistic regression analysis and repeated measurement were performed to analyze factors related to TPE efficacy. Results A total of 30 patients who treated with TPE as their fast-acting treatments were enrolled. After TPE, those whose QMGs and/or MGCs decreased by ≥5 points or ≥30% of the baseline were judged as "response group", accounting for 66.67% (20/30). Respiratory symptoms had a response rate of 72.00% (18/25), showing the most remarkable improvement. Meanwhile, extraocular symptoms were the least sensitive, with only 8.00% (2/25) showing efficacy. Thymoma (100.00% vs 50.00%, P=0.002) and a high concentration of AChR-Ab (37.37 nmol/L vs 25.4 nmol/L, P=0.039) were common in the early response group. Repeated measures showed significant changes in AChR-Ab and CD19+ B cells before and after TPE (all with P < 0.05). After treatment, the CD19+ B cells tended to decrease in the response group. Discussion These results indicated that, for AChR-Ab positive generalized MG, TPE can quickly improve respiratory symptoms. Thymoma and a high concentration of AChR-Ab before TPE predict an early better response. Additionally, TPE may work by decreasing AChR-Ab levels and inducing immune regulation. Future prospective and randomized controlled studies are needed.
Collapse
Affiliation(s)
- Jiaxin Chen
- Department of Neurology and Neurointensive Care Unit, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, People’s Republic of China
| | - Li Feng
- Department of Neurology and Neurointensive Care Unit, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, People’s Republic of China
| | - Shiyin Li
- Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, People’s Republic of China
| | - Haiyan Wang
- Department of Neurology and Neurointensive Care Unit, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, People’s Republic of China
| | - Xin Huang
- Department of Neurology and Neurointensive Care Unit, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, People’s Republic of China
| | - Cunzhou Shen
- Department of Neurology and Neurointensive Care Unit, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, People’s Republic of China
| | - Huiyu Feng
- Department of Neurology and Neurointensive Care Unit, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, People’s Republic of China
| |
Collapse
|
57
|
Macri C, Paxman M, Jenika D, Lin XP, Elahi Z, Gleeson PA, Caminschi I, Lahoud MH, Villadangos JA, Mintern JD. FcRn regulates antigen presentation in dendritic cells downstream of DEC205-targeted vaccines. NPJ Vaccines 2024; 9:76. [PMID: 38594284 PMCID: PMC11003989 DOI: 10.1038/s41541-024-00854-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 02/29/2024] [Indexed: 04/11/2024] Open
Abstract
Dendritic cell (DC)-targeted vaccination is a new mode of antigen delivery that relies on the use of monoclonal antibodies (mAb) to target antigen to specific DC subsets. The neonatal Fc receptor (FcRn) is a non-classical Fc receptor that binds to immunoglobulin G (IgG) in acidified endosomes and controls its intracellular transport and recycling. FcRn is known to participate in the antigen presentation of immune complexes, however its contribution to DC-targeted vaccination has not previously been examined. Here we have investigated the role of FcRn in antigen presentation using antigen conjugated to IgG mAb which target specific DC receptors, including DEC205 and Clec9A expressed by the conventional DC 1 (cDC1) subset. We show that FcRn is expressed at high levels by cDC1, both at steady-state and following activation and plays a significant role in MHC I cross-presentation and MHC II presentation of antigens that are targeted to cDC1 via mAb specific for DEC205. This effect of FcRn is intrinsic to cDC1 and FcRn impacts the efficacy of anti-DEC205-mediated vaccination against B cell lymphoma. In contrast, FcRn does not impact presentation of antigens targeted to Clec9A and does not regulate presentation of cell-associated antigen. These data highlight a new and unique role of FcRn in controlling the immunogenicity of anti-DEC205-based vaccination, with consequences for exploiting this pathway to improve DC-targeted vaccine outcomes.
Collapse
Affiliation(s)
- Christophe Macri
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Rd, Parkville, The University of Melbourne, Victoria, 3010, Australia
| | - Matthew Paxman
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Rd, Parkville, The University of Melbourne, Victoria, 3010, Australia
| | - Devi Jenika
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Rd, Parkville, The University of Melbourne, Victoria, 3010, Australia
| | - Xiao Peng Lin
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Rd, Parkville, The University of Melbourne, Victoria, 3010, Australia
| | - Zahra Elahi
- Department of Anatomy and Physiology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Paul A Gleeson
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Rd, Parkville, The University of Melbourne, Victoria, 3010, Australia
| | - Irina Caminschi
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria, 3010, Australia
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, 3800, Australia
| | - Mireille H Lahoud
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, 3800, Australia
| | - Jose A Villadangos
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Rd, Parkville, The University of Melbourne, Victoria, 3010, Australia
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Justine D Mintern
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Rd, Parkville, The University of Melbourne, Victoria, 3010, Australia.
| |
Collapse
|
58
|
Lagassé HD, Ou J, Sauna ZE, Golding B. Factor VIII moiety of recombinant Factor VIII Fc fusion protein impacts Fc effector function and CD16 + NK cell activation. Front Immunol 2024; 15:1341013. [PMID: 38655263 PMCID: PMC11035769 DOI: 10.3389/fimmu.2024.1341013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 03/28/2024] [Indexed: 04/26/2024] Open
Abstract
Recombinant Factor VIII-Fc fusion protein (rFVIIIFc) is an enhanced half-life therapeutic protein product used for the management of hemophilia A. Recent studies have demonstrated that rFVIIIFc interacts with Fc gamma receptors (FcγR) resulting in the activation or inhibition of various FcγR-expressing immune cells. We previously demonstrated that rFVIIIFc, unlike recombinant Factor IX-Fc (rFIXFc), activates natural killer (NK) cells via Fc-mediated interactions with FcγRIIIA (CD16). Additionally, we showed that rFVIIIFc activated CD16+ NK cells to lyse a FVIII-specific B cell clone. Here, we used human NK cell lines and primary NK cells enriched from peripheral blood leukocytes to study the role of the FVIII moiety in rFVIIIFc-mediated NK cell activation. Following overnight incubation of NK cells with rFVIIIFc, cellular activation was assessed by measuring secretion of the inflammatory cytokine IFNγ by ELISA or by cellular degranulation. We show that anti-FVIII, anti-Fc, and anti-CD16 all inhibited indicating that these molecules were involved in rFVIIIFc-mediated NK cell activation. To define which domains of FVIII were involved, we used antibodies that are FVIII domain-specific and demonstrated that blocking FVIII C1 or C2 domain-mediated membrane binding potently inhibited rFVIIIFc-mediated CD16+ NK cell activation, while targeting the FVIII heavy chain domains did not. We also show that rFVIIIFc binds CD16 with about five-fold higher affinity than rFIXFc. Based on our results we propose that FVIII light chain-mediated membrane binding results in tethering of the fusion protein to the cell surface, and this, together with increased binding affinity for CD16, allows for Fc-CD16 interactions to proceed, resulting in NK cellular activation. Our working model may explain our previous results where we observed that rFVIIIFc activated NK cells via CD16, whereas rFIXFc did not despite having identical IgG1 Fc domains.
Collapse
Affiliation(s)
- H.A. Daniel Lagassé
- Division of Hemostasis, Office of Plasma Protein Therapeutics CMC, Office of Therapeutic Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, United States
| | - Jiayi Ou
- Division of Hemostasis, Office of Plasma Protein Therapeutics CMC, Office of Therapeutic Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, United States
| | - Zuben E. Sauna
- Division of Hemostasis, Office of Plasma Protein Therapeutics CMC, Office of Therapeutic Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, United States
| | - Basil Golding
- Office of Plasma Protein Therapeutics CMC, Office of Therapeutic Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, United States
| |
Collapse
|
59
|
Zheng Y, Xu R, Cheng H, Tai W. Mono-amino acid linkers enable highly potent small molecule-drug conjugates by conditional release. Mol Ther 2024; 32:1048-1060. [PMID: 38369752 PMCID: PMC11163218 DOI: 10.1016/j.ymthe.2024.02.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/18/2024] [Accepted: 02/15/2024] [Indexed: 02/20/2024] Open
Abstract
The endosome cleavable linkers have been widely employed by antibody-drug conjugates and small molecule-drug conjugates (SMDCs) to control the accurate release of payloads. An effective linker should provide stability in systemic circulation but efficient payload release at its targeted tumor sites. This conflicting requirement always leads to linker design with increasing structural complexity. Balance of the effectiveness and structural complexity presents a linker design challenge. Here, we explored the possibility of mono-amino acid as so far the simplest cleavable linker (X-linker) for SMDC-based auristatin delivery. Within a diverse set of X-linkers, the SMDCs differed widely in bioactivity, with one (Asn-linker) having significantly improved potency (IC50 = 0.1 nM) and fast response to endosomal cathepsin B cleavage. Notably, this SMDC, once grafted with effector protein fragment crystallizable (Fc), demonstrated a profound in vivo therapeutic effect in aspects of targetability, circulation half-life (t1/2 = 73 h), stability, and anti-tumor efficacy. On the basis of these results, we believe that this mono-amino acid linker, together with the new SMDC-Fc scaffold, has significant potential in targeted delivery application.
Collapse
Affiliation(s)
- Yan Zheng
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei 430071, China
| | - Ruolin Xu
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei 430071, China
| | - Hong Cheng
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei 430071, China
| | - Wanyi Tai
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei 430071, China.
| |
Collapse
|
60
|
Strohl WR. Structure and function of therapeutic antibodies approved by the US FDA in 2023. Antib Ther 2024; 7:132-156. [PMID: 38617189 PMCID: PMC11011201 DOI: 10.1093/abt/tbae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 04/16/2024] Open
Abstract
In calendar year 2023, the United States Food and Drug Administration (US FDA) approved a total of 55 new molecular entities, of which 12 were in the class of therapeutic antibodies. Besides antibody protein drugs, the US FDA also approved another five non-antibody protein drugs, making the broader class of protein drugs about 31% of the total approved drugs. Among the 12 therapeutic antibodies approved by the US FDA, 8 were relatively standard IgG formats, 3 were bivalent, bispecific antibodies and 1 was a trivalent, bispecific antibody. In 2023, no new antibody-drug conjugates, immunocytokines or chimeric antigen receptor-T cells were approved. Of the approved antibodies, two targeted programmed cell death receptor-1 (PD-1) for orphan indications, two targeted CD20 for diffuse large B cell lymphoma, two targeted different receptors (B-cell maturation antigen [BCMA] and G-coupled protein receptor class C, group 5, member D [GPRC5D]) for treatment of multiple myeloma, and one each that targeted amyloid-β protofibrils for Alzheimer's disease, neonatal Fc receptor alpha-chain for myasthenia gravis, complement factor C5 for CD55 deficiency with hyper-activation of complement, angiopathic thrombosis and severe protein-losing enteropathy disease, interleukin (IL)-23p19 for severely active ulcerative colitis, IL-17A-F for plaque psoriasis and respiratory syncytial virus (RSV)-F protein for season-long RSV prophylaxis in infants.
Collapse
Affiliation(s)
- William R Strohl
- Scientific Advisor Department, BiStro Biotechnology Consulting, 1086 Tullo Farm Rd., Bridgewater, NJ 08807, USA
| |
Collapse
|
61
|
Sidonio RF, Weisel JW, Stafford D. Unresolved hemostasis issues in haemophilia. Haemophilia 2024; 30 Suppl 3:70-77. [PMID: 38575518 DOI: 10.1111/hae.14999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/04/2024] [Accepted: 03/04/2024] [Indexed: 04/06/2024]
Abstract
Despite rapid technological advancement in factor and nonfactor products in the prevention and treatment of bleeding in haemophilia patients, it is imperative that we acknowledge gaps in our understanding of how hemostasis is achieved. The authors will briefly review three unresolved issues in persons with haemophilia (PwH) focusing on the forgotten function that red blood cells play in hemostasis, the critical role of extravascular (outside circulation) FIX in hemostasis in the context of unmodified and extended half-life FIX products and finally on the role that skeletal muscle myosin plays in prothrombinase assembly and subsequent thrombin generation that could mitigate breakthrough muscle hematomas.
Collapse
Affiliation(s)
- Robert F Sidonio
- Hemophilia of Georgia Center for Bleeding and Clotting Disorders of CHOA, Atlanta, Georgia, USA
| | - John W Weisel
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Darrel Stafford
- University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
62
|
Klein C, Brinkmann U, Reichert JM, Kontermann RE. The present and future of bispecific antibodies for cancer therapy. Nat Rev Drug Discov 2024; 23:301-319. [PMID: 38448606 DOI: 10.1038/s41573-024-00896-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2024] [Indexed: 03/08/2024]
Abstract
Bispecific antibodies (bsAbs) enable novel mechanisms of action and/or therapeutic applications that cannot be achieved using conventional IgG-based antibodies. Consequently, development of these molecules has garnered substantial interest in the past decade and, as of the end of 2023, 14 bsAbs have been approved: 11 for the treatment of cancer and 3 for non-oncology indications. bsAbs are available in different formats, address different targets and mediate anticancer function via different molecular mechanisms. Here, we provide an overview of recent developments in the field of bsAbs for cancer therapy. We focus on bsAbs that are approved or in clinical development, including bsAb-mediated dual modulators of signalling pathways, tumour-targeted receptor agonists, bsAb-drug conjugates, bispecific T cell, natural killer cell and innate immune cell engagers, and bispecific checkpoint inhibitors and co-stimulators. Finally, we provide an outlook into next-generation bsAbs in earlier stages of development, including trispecifics, bsAb prodrugs, bsAbs that induce degradation of tumour targets and bsAbs acting as cytokine mimetics.
Collapse
Affiliation(s)
- Christian Klein
- Roche Pharma Research and Early Development, Roche Innovation Center Zurich, Schlieren, Switzerland.
| | - Ulrich Brinkmann
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | | | - Roland E Kontermann
- Institute of Cell Biology and Immunology, University Stuttgart, Stuttgart, Germany.
| |
Collapse
|
63
|
Haddad G, Blaine J. Identification of Four Mouse FcRn Splice Variants and FcRn-Specific Vesicles. Cells 2024; 13:594. [PMID: 38607033 PMCID: PMC11012118 DOI: 10.3390/cells13070594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 03/26/2024] [Accepted: 03/28/2024] [Indexed: 04/13/2024] Open
Abstract
Research into the neonatal Fc receptor (FcRn) has increased dramatically ever since Simister and Mostov first purified a rat version of the receptor. Over the years, FcRn has been shown to function not only as a receptor that transfers immunity from mother to fetus but also performs an array of different functions that include transport and recycling of immunoglobulins and albumin in the adult. Due to its important cellular roles, several clinical trials have been designed to either inhibit/enhance FcRn function or develop of non-invasive therapeutic delivery system such as fusion of drugs to IgG Fc or albumin to enhance delivery inside the cells. Here, we report the accidental identification of several FcRn alternatively spliced variants in both mouse and human cells. The four new mouse splice variants are capable of binding immunoglobulins' Fc and Fab portions. In addition, we have identified FcRn-specific vesicles in which immunoglobulins and albumin can be stored and that are involved in the endosomal-lysosomal system. The complexity of FcRn functions offers significant potential to design and develop novel and targeted therapeutics.
Collapse
Affiliation(s)
| | - Judith Blaine
- Division of Renal Disease and Hypertension, Department of Medicine, School of Medicine, University of Colorado, Aurora, CO 80045, USA;
| |
Collapse
|
64
|
Yan C, Yue Y, Guan Y, Bu B, Ke Q, Duan R, Deng H, Xue Q, Jiang H, Xiao F, Yang H, Chang T, Zou Z, Li H, Tan S, Xiao H, Zhou H, Zhang H, Meng Q, Li W, Li W, Guo J, Zhang Y, Li Z, Tu J, Shi J, Li W, Lee M, Chen Y, Tao X, Zhao S, Li P, Zhao C. Batoclimab vs Placebo for Generalized Myasthenia Gravis: A Randomized Clinical Trial. JAMA Neurol 2024; 81:2815832. [PMID: 38436998 PMCID: PMC10913013 DOI: 10.1001/jamaneurol.2024.0044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/22/2023] [Indexed: 03/05/2024]
Abstract
Importance Myasthenia gravis (MG) is caused by autoantibodies that disrupt the neuromuscular junction. The neonatal fragment crystallizable receptor (FcRn) antagonists, efgartigimod and rozanolixizumab, reduce immunoglobulin G (IgG) level in the circulation and alleviate symptoms in patients with generalized MG. Objective To examine the efficacy and safety profile of batoclimab, a monoclonal IgG1 antibody, in patients with generalized MG. Design, Setting, and Participants This was a multicenter randomized clinical trial conducted from September 15, 2021, to June 29, 2022, at 27 centers in China. Adult patients 18 years or older with generalized MG were screened, and those who were antibody positive were enrolled. Intervention Eligible patients received batoclimab or matching placebo in addition to standard of care. Each treatment cycle consisted of 6 weekly subcutaneous injections of batoclimab, 680 mg, or matching placebo followed by 4 weeks of observation. A second treatment cycle was conducted in patients who required continuing treatment. Main Outcome and Measure The primary outcome was sustained improvement, as defined by a 3-point or greater reduction in the Myasthenia Gravis Activities of Daily Living (MG-ADL) score from baseline for 4 or more consecutive weeks in the first cycle in individuals who were positive for acetylcholine receptor or muscle-specific kinase antibodies. Results A total of 178 adult patients with generalized MG were screened, 132 were randomly assigned, 131 tested positive for antibodies, and 1 tested negative for antibodies. A total of 132 patients (mean [SE] age, 43.8 [13.6] years; 88 women [67.2%]) were enrolled. The rate of sustained MG-ADL improvement in the first cycle in antibody-positive patients was 31.3% (20 of 64) in the placebo group vs 58.2% (39 of 67) in the batoclimab group (odds ratio, 3.45; 95% CI, 1.62-7.35; P = .001). The MG-ADL score diverged between the 2 groups as early as week 2. The mean (SE) maximum difference in MG-ADL score reduction occurred 1 week after the last dose (day 43, 1.7 [0.3] in the placebo group vs 3.6 [0.3] in the batoclimab group; group difference, -1.9; 95% CI, -2.8 to -1.0; nominal P < .001). The rates of treatment-related and severe treatment-emergent adverse events in patients were 36.9% (24 of 65) and 7.7% (5 of 65) in the placebo group vs 70.1% (47 of 67) and 3.0% (2 of 67) in the batoclimab group, respectively. Conclusions and Relevance Batoclimab increased the rate of sustained MG-ADL improvement and was well tolerated in adult patients with generalized MG. Clinical effects and the extent of IgG reduction were similar to those previously reported for efgartigimod and rozanolixizumab. Future studies of large sample size are needed to further understand the safety profile of batoclimab. Trial Registration ClinicalTrials.gov Identifier: NCT05039190.
Collapse
Affiliation(s)
- Chong Yan
- National Center for Neurological Disorders, Huashan Rare Disease Centre, Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yaoxian Yue
- Department of Neurology, Qilu Hospital (Qingdao), Shandong University, Qingdao, China
| | - Yuzhou Guan
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Bitao Bu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qing Ke
- Department of Neurology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ruisheng Duan
- Department of Neurology, the First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Ji’nan, China
| | - Hui Deng
- Department of Neurology and Neuroscience Center, the First Hospital of Jilin University, Changchun, China
| | - Qun Xue
- Department of Neurology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Haishan Jiang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Fei Xiao
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Huan Yang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Ting Chang
- Department of Neurology, Tangdu Hospital, the Fourth Military Medical University, Xi’an, China
| | - Zhangyu Zou
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Haifeng Li
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Song Tan
- Department of Neurology, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Haibing Xiao
- Neuromedicine Center, Department of Neurology, The University of Hong Kong—Shenzhen Hospital, Shenzhen, China
| | - Hongyu Zhou
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Hua Zhang
- Department of Neurology, Beijing Hospital, Beijing, China
| | - Qiang Meng
- Department of Neurology, the First People’s Hospital of Yunnan Province & the Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Wenyu Li
- Department of Neurology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Wei Li
- Department of Neurology, Qilu Hospital, Shandong University, Ji’nan, China
| | - Junhong Guo
- Department of Neurology, First Hospital, Shanxi Medical University, Taiyuan, China
| | - Yali Zhang
- Department of Neurology, Chifeng Municipal Hospital, Chifeng, China
| | - Zunbo Li
- Department of Neurology, Xi’an Gaoxin Hospital, Xi’an Medical College, Xi’an, China
| | - Jianglong Tu
- Department of Neurology, the Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jianquan Shi
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Wei Li
- Department of Neurology, Army Medical Center of PLA, Army Medical University, Chongqing, China
| | - Michael Lee
- Nona Biosciences (Suzhou) Co Ltd, Shanghai, China
| | - Yu Chen
- Nona Biosciences (Suzhou) Co Ltd, Shanghai, China
| | - Xiaolu Tao
- Nona Biosciences (Suzhou) Co Ltd, Shanghai, China
| | - Shuai Zhao
- Nona Biosciences (Suzhou) Co Ltd, Shanghai, China
| | - Ping Li
- Nona Biosciences (Suzhou) Co Ltd, Shanghai, China
| | - Chongbo Zhao
- National Center for Neurological Disorders, Huashan Rare Disease Centre, Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
65
|
Tremblay TL, Alata W, Slinn J, Baumann E, Delaney CE, Moreno M, Haqqani AS, Stanimirovic DB, Hill JJ. The proteome of the blood-brain barrier in rat and mouse: highly specific identification of proteins on the luminal surface of brain microvessels by in vivo glycocapture. Fluids Barriers CNS 2024; 21:23. [PMID: 38433215 PMCID: PMC10910681 DOI: 10.1186/s12987-024-00523-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 02/19/2024] [Indexed: 03/05/2024] Open
Abstract
BACKGROUND The active transport of molecules into the brain from blood is regulated by receptors, transporters, and other cell surface proteins that are present on the luminal surface of endothelial cells at the blood-brain barrier (BBB). However, proteomic profiling of proteins present on the luminal endothelial cell surface of the BBB has proven challenging due to difficulty in labelling these proteins in a way that allows efficient purification of these relatively low abundance cell surface proteins. METHODS Here we describe a novel perfusion-based labelling workflow: in vivo glycocapture. This workflow relies on the oxidation of glycans present on the luminal vessel surface via perfusion of a mild oxidizing agent, followed by subsequent isolation of glycoproteins by covalent linkage of their oxidized glycans to hydrazide beads. Mass spectrometry-based identification of the isolated proteins enables high-confidence identification of endothelial cell surface proteins in rats and mice. RESULTS Using the developed workflow, 347 proteins were identified from the BBB in rat and 224 proteins in mouse, for a total of 395 proteins in both species combined. These proteins included many proteins with transporter activity (73 proteins), cell adhesion proteins (47 proteins), and transmembrane signal receptors (31 proteins). To identify proteins that are enriched in vessels relative to the entire brain, we established a vessel-enrichment score and showed that proteins with a high vessel-enrichment score are involved in vascular development functions, binding to integrins, and cell adhesion. Using publicly-available single-cell RNAseq data, we show that the proteins identified by in vivo glycocapture were more likely to be detected by scRNAseq in endothelial cells than in any other cell type. Furthermore, nearly 50% of the genes encoding cell-surface proteins that were detected by scRNAseq in endothelial cells were also identified by in vivo glycocapture. CONCLUSIONS The proteins identified by in vivo glycocapture in this work represent the most complete and specific profiling of proteins on the luminal BBB surface to date. The identified proteins reflect possible targets for the development of antibodies to improve the crossing of therapeutic proteins into the brain and will contribute to our further understanding of BBB transport mechanisms.
Collapse
Affiliation(s)
- Tammy-Lynn Tremblay
- Human Health Therapeutics, National Research Council Canada, 100 Sussex Dr., Ottawa, ON, K1A 0R6, Canada
| | - Wael Alata
- Human Health Therapeutics, National Research Council Canada, 100 Sussex Dr., Ottawa, ON, K1A 0R6, Canada
- Biology Program, New York University Abu Dhabi, Saadiyat Island Campus, P.O. Box 129188, Abu Dhabi, United Arab Emirates
| | - Jacqueline Slinn
- Human Health Therapeutics, National Research Council Canada, 100 Sussex Dr., Ottawa, ON, K1A 0R6, Canada
| | - Ewa Baumann
- Human Health Therapeutics, National Research Council Canada, 100 Sussex Dr., Ottawa, ON, K1A 0R6, Canada
| | - Christie E Delaney
- Human Health Therapeutics, National Research Council Canada, 100 Sussex Dr., Ottawa, ON, K1A 0R6, Canada
| | - Maria Moreno
- Human Health Therapeutics, National Research Council Canada, 100 Sussex Dr., Ottawa, ON, K1A 0R6, Canada
| | - Arsalan S Haqqani
- Human Health Therapeutics, National Research Council Canada, 100 Sussex Dr., Ottawa, ON, K1A 0R6, Canada
| | - Danica B Stanimirovic
- Human Health Therapeutics, National Research Council Canada, 100 Sussex Dr., Ottawa, ON, K1A 0R6, Canada
| | - Jennifer J Hill
- Human Health Therapeutics, National Research Council Canada, 100 Sussex Dr., Ottawa, ON, K1A 0R6, Canada.
| |
Collapse
|
66
|
Ait-Oudhia S, Wang YM, Dosne AG, Roy A, Jin JY, Shen J, Kagan L, Musuamba FT, Zhang L, Kijima S, Gastonguay MR, Ouellet D. Challenging the Norm: A Multidisciplinary Perspective on Intravenous to Subcutaneous Bridging Strategies for Biologics. Clin Pharmacol Ther 2024; 115:412-421. [PMID: 38069528 DOI: 10.1002/cpt.3133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/15/2023] [Indexed: 12/19/2023]
Abstract
The transition from intravenous (i.v.) to subcutaneous (s.c.) administration of biologics is a critical strategy in drug development aimed at improving patient convenience, compliance, and therapeutic outcomes. Focusing on the increasing role of model-informed drug development (MIDD) in the acceleration of this transition, an in-depth overview of the essential clinical pharmacology, and regulatory considerations for successful i.v. to s.c. bridging for biologics after the i.v. formulation has been approved are presented. Considerations encompass multiple aspects beginning with adequate pharmacokinetic (PK) and pharmacodynamic (i.e., exposure-response) evaluations which play a vital role in establishing comparability between the i.v. and s.c. routes of administrations. Selected key recommendations and points to consider include: (i) PK characterization of the s.c. formulation, supported by the increasing preclinical understanding of the s.c. absorption, and robust PK study design and analyses in humans; (ii) a thorough characterization of the exposure-response profiles including important metrics of exposure for both efficacy and safety; (iii) comparability studies designed to meet regulatory considerations and support approval of the s.c. formulation, including noninferiority studies with PK and/or efficacy and safety as primary end points; and (iv) comprehensive safety package addressing assessments of immunogenicity and patients' safety profile with the new route of administration. Recommendations for successful bridging strategies are evolving and MIDD approaches have been used successfully to accelerate the transition to s.c. dosing, ultimately leading to improved patient experiences, adherence, and clinical outcomes.
Collapse
Affiliation(s)
| | - Yow-Ming Wang
- US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Anne-Gaelle Dosne
- Janssen Research & Development, LLC, Beerse, Belgium
- Bristol Myers Squibb, Princeton, New Jersey, USA
| | - Amit Roy
- Bristol Myers Squibb, Princeton, New Jersey, USA
| | - Jin Y Jin
- Genentech Inc., South San Francisco, California, USA
| | - Jun Shen
- Bristol Myers Squibb, Princeton, New Jersey, USA
| | - Leonid Kagan
- Department of Pharmaceutics and Center of Excellence for Pharmaceutical Translational Research and Education, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Flora T Musuamba
- Belgian Federal Agency for Medicines and Health Products, Brussels, Belgium
- NAmur Research Institute for LIfe Sciences (NARILIS), University of Namur, Namur, Belgium
| | - Lucia Zhang
- Health Canada, Biologic and Radiopharmaceutical Drugs Directorate, Ottawa, Ontario, Canada
| | - Shinichi Kijima
- Pharmaceuticals and Medical Devices Agency (PMDA), Tokyo, Japan
| | | | - Daniele Ouellet
- Janssen Research & Development, LLC, Spring House, Pennsylvania, USA
| |
Collapse
|
67
|
Uysal SP, Morren JA. Promising therapies for the treatment of myasthenia gravis. Expert Opin Pharmacother 2024; 25:395-408. [PMID: 38523508 DOI: 10.1080/14656566.2024.2332610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 03/14/2024] [Indexed: 03/26/2024]
Abstract
INTRODUCTION Myasthenia gravis (MG) is an autoimmune condition targeting the neuromuscular junction, which manifests with neuromuscular symptoms of varying severity and significant morbidity. The mainstay of treatment in MG is mitigation of the immune cascade with steroids and non-steroidal immunosuppressive therapies. The therapeutic strategies in MG are transitioning from broad and indiscriminate immunosuppression to novel agents targeting key steps in MG pathogenesis, including T cell activation, B cell proliferation, complement activation, maintenance of pathogenic antibody production, and proinflammatory cytokine production. AREAS COVERED In this review, an overview of the pathogenesis of MG and traditional MG therapies is presented, followed by a discussion of the novel MG drugs that have been evaluated in phase 3 clinical trials with an emphasis on those which have received regulatory approval. EXPERT OPINION Novel MG therapeutics belonging to the classes of complement inhibitors, neonatal Fc receptor (FcRn) inhibitors and B cell depletors, as well as the other emerging MG drugs in the pipeline constitute promising treatment strategies with potentially better efficacy and safety compared to the conventional MG treatments. However, further long-term research is needed in order to optimize the implementation of these new treatment options for the appropriate patient populations.
Collapse
Affiliation(s)
- Sanem Pinar Uysal
- Department of Neurology, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - John A Morren
- Neuromuscular Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
68
|
Lindroos JLV, Bjørk MH, Gilhus NE. Transient Neonatal Myasthenia Gravis as a Common Complication of a Rare Disease: A Systematic Review. J Clin Med 2024; 13:1136. [PMID: 38398450 PMCID: PMC10889526 DOI: 10.3390/jcm13041136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/09/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
Myasthenia gravis (MG) is a rare autoimmune disease. Transient neonatal myasthenia gravis (TNMG) is caused by pathogenic maternal autoantibodies that cross the placenta and disrupt signaling at the neuromuscular junction. This is a systematic review of this transient immunoglobulin G (IgG)-mediated disease. TNMG affects 10-20% of children born to mothers with MG. The severity of symptoms ranges from minor feeding difficulties to life-threatening respiratory weakness. Minor symptoms might go unnoticed but can still interfere with breastfeeding. Acetylcholine-esterase inhibitors and antibody-clearing therapies such as immunoglobulins can be used to treat TNMG, but most children do well with observation only. TNMG is self-limiting within weeks as circulating antibodies are naturally cleared from the blood. In rare cases, TNMG is associated with permanent skeletal malformations or permanent myopathy. The mother's antibodies can also lead to spontaneous abortions. All healthcare professionals meeting pregnant or birthing women with MG or their neonates should be aware of TNMG. TNMG is hard to predict. Reoccurrence is common among siblings. Pre-pregnancy thymectomy and intravenous immunoglobulins during pregnancy reduce the risk. Neonatal fragment crystallizable receptor (FcRn) blocking drugs for MG might reduce TNMG risk.
Collapse
Affiliation(s)
- Jenny Linnea Victoria Lindroos
- Department of Clinical Medicine, University of Bergen, 5020 Bergen, Norway; (J.L.V.L.); (M.-H.B.)
- Department of Neurology, Haukeland University Hospital, 5053 Bergen, Norway
| | - Marte-Helene Bjørk
- Department of Clinical Medicine, University of Bergen, 5020 Bergen, Norway; (J.L.V.L.); (M.-H.B.)
- Department of Neurology, Haukeland University Hospital, 5053 Bergen, Norway
| | - Nils Erik Gilhus
- Department of Clinical Medicine, University of Bergen, 5020 Bergen, Norway; (J.L.V.L.); (M.-H.B.)
- Department of Neurology, Haukeland University Hospital, 5053 Bergen, Norway
| |
Collapse
|
69
|
Wijngaarden JE, Jauw YWS, Zwezerijnen GJC, de Wit-van der Veen BJ, Vugts DJ, Zijlstra JM, van Dongen GAMS, Boellaard R, Menke-van der Houven van Oordt CW, Huisman MC. Non-specific irreversible 89Zr-mAb uptake in tumours: evidence from biopsy-proven target-negative tumours using 89Zr-immuno-PET. EJNMMI Res 2024; 14:18. [PMID: 38358425 PMCID: PMC10869322 DOI: 10.1186/s13550-024-01079-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/02/2024] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND Distribution of mAbs into tumour tissue may occur via different processes contributing differently to the 89Zr-mAb uptake on PET. Target-specific binding in tumours is of main interest; however, non-specific irreversible uptake may also be present, which influences quantification. The aim was to investigate the presence of non-specific irreversible uptake in tumour tissue using Patlak linearization on 89Zr-immuno-PET data of biopsy-proven target-negative tumours. Data of two studies, including target status obtained from biopsies, were retrospectively analysed, and Patlak linearization provided the net rate of irreversible uptake (Ki). RESULTS Two tumours were classified as CD20-negative and two as CD20-positive. Four tumours were classified as CEA-negative and nine as CEA-positive. Ki values of CD20-negative (0.43 µL/g/h and 0.92 µL/g/h) and CEA-negative tumours (mdn = 1.97 µL/g/h, interquartile range (IQR) = 1.50-2.39) were higher than zero. Median Ki values of target-negative tumours were lower than CD20-positive (1.87 µL/g/h and 1.90 µL/g/h) and CEA-positive tumours (mdn = 2.77 µL/g/h, IQR = 2.11-3.65). CONCLUSION Biopsy-proven target-negative tumours showed irreversible uptake of 89Zr-mAbs measured in vivo using 89Zr-immuno-PET data, which suggests the presence of non-specific irreversible uptake in tumours. Consequently, for 89Zr-immuno-PET, even if the target is absent, a tumour-to-plasma ratio always increases over time.
Collapse
Affiliation(s)
- Jessica E Wijngaarden
- Department of Radiology and Nuclear Medicine, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands.
- Imaging and Biomarkers, Cancer Center Amsterdam, Amsterdam, The Netherlands.
| | - Yvonne W S Jauw
- Department of Radiology and Nuclear Medicine, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Imaging and Biomarkers, Cancer Center Amsterdam, Amsterdam, The Netherlands
- Department of Haematology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Gerben J C Zwezerijnen
- Department of Radiology and Nuclear Medicine, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Imaging and Biomarkers, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Berlinda J de Wit-van der Veen
- Department of Nuclear Medicine, Antoni Van Leeuwenhoek Nederlands Kanker Instituut, Plesmanlaan 121, Amsterdam, The Netherlands
| | - Daniëlle J Vugts
- Department of Radiology and Nuclear Medicine, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Imaging and Biomarkers, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Josée M Zijlstra
- Department of Haematology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Guus A M S van Dongen
- Department of Radiology and Nuclear Medicine, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Imaging and Biomarkers, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Ronald Boellaard
- Department of Radiology and Nuclear Medicine, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Imaging and Biomarkers, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | | | - Marc C Huisman
- Department of Radiology and Nuclear Medicine, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Imaging and Biomarkers, Cancer Center Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
70
|
Wu B, Wang J, Chen Y, Fu Y. Inflammation-Targeted Drug Delivery Strategies via Albumin-Based Systems. ACS Biomater Sci Eng 2024; 10:743-761. [PMID: 38194444 DOI: 10.1021/acsbiomaterials.3c01744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Albumin, being the most abundant serum protein, has the potential to significantly enhance the physicochemical properties of therapeutic payloads, thereby improving their pharmacological effects. Apart from its passive transport via the enhanced permeability and retention effect, albumin can actively accumulate in tumor microenvironments or inflammatory tissues via receptor-mediated processes. This unique property makes albumin a promising scaffold for targeted drug delivery. This review focuses on exploring different delivery strategies that combine albumin with drug payloads to achieve targeted therapy for inflammatory diseases. Also, albumin-derived therapeutic products on the market or undergoing clinical trials in the past decade have been summarized to gain insight into the future development of albumin-based drug delivery systems. Given the involvement of inflammation in numerous diseases, drug delivery systems utilizing albumin demonstrate remarkable advantages, including enhanced properties, improved in vivo behavior and efficacy. Albumin-based drug delivery systems have been demonstrated in clinical trials, while more advanced strategies for improving the capacity of drug delivery systems with the help of albumin remain to be discovered. This could pave the way for biomedical applications in more effective and precise treatments.
Collapse
Affiliation(s)
- Bangqing Wu
- Department of Pharmacy, Guiyang Public Health Clinical Center, Guiyang 550004, China
| | - Jingwen Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yi Chen
- Department of Pharmacy, Guiyang Public Health Clinical Center, Guiyang 550004, China
| | - Yao Fu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
71
|
Wells JA, Kumru K. Extracellular targeted protein degradation: an emerging modality for drug discovery. Nat Rev Drug Discov 2024; 23:126-140. [PMID: 38062152 DOI: 10.1038/s41573-023-00833-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2023] [Indexed: 02/08/2024]
Abstract
Targeted protein degradation (TPD) has emerged in the past decade as a major new drug modality to remove intracellular proteins with bispecific small molecules that recruit the protein of interest (POI) to an E3 ligase for degradation in the proteasome. Unlike classic occupancy-based drugs, intracellular TPD (iTPD) eliminates the target and works catalytically, and so can be more effective and sustained, with lower dose requirements. Recently, this approach has been expanded to the extracellular proteome, including both secreted and membrane proteins. Extracellular targeted protein degradation (eTPD) uses bispecific antibodies, conjugates or small molecules to degrade extracellular POIs by trafficking them to the lysosome for degradation. Here, we focus on recent advances in eTPD, covering degrader systems, targets, molecular designs and parameters to advance them. Now almost any protein, intracellular or extracellular, is addressable in principle with TPD.
Collapse
Affiliation(s)
- James A Wells
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA.
- Department of Cellular & Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA.
| | - Kaan Kumru
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
72
|
Iorio R. Myasthenia gravis: the changing treatment landscape in the era of molecular therapies. Nat Rev Neurol 2024; 20:84-98. [PMID: 38191918 DOI: 10.1038/s41582-023-00916-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2023] [Indexed: 01/10/2024]
Abstract
Myasthenia gravis (MG) is an autoimmune disorder that affects the neuromuscular junction, leading to muscle weakness and fatigue. MG is caused by antibodies against the acetylcholine receptor (AChR), the muscle-specific kinase (MuSK) or other AChR-related proteins that are expressed in the postsynaptic muscle membrane. The standard therapeutic approach for MG has relied on acetylcholinesterase inhibitors, corticosteroids and immunosuppressants, which have shown good efficacy in improving MG-related symptoms in most people with the disease; however, these therapies can carry a considerable burden of long-term adverse effects. Moreover, up to 15% of individuals with MG exhibit limited or no response to these standard therapies. The emergence of molecular therapies, including monoclonal antibodies, B cell-depleting agents and chimeric antigen receptor T cell-based therapies, has the potential to revolutionize the MG treatment landscape. This Review provides a comprehensive overview of the progress achieved in molecular therapies for MG associated with AChR antibodies and MuSK antibodies, elucidating both the challenges and the opportunities these therapies present to the field. The latest developments in MG treatment are described, exploring the potential for personalized medicine approaches.
Collapse
Affiliation(s)
- Raffaele Iorio
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy.
- Neurology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.
| |
Collapse
|
73
|
Müller L, Dabbiru VAS, Schönborn L, Greinacher A. Therapeutic strategies in FcγIIA receptor-dependent thrombosis and thromboinflammation as seen in heparin-induced thrombocytopenia (HIT) and vaccine-induced immune thrombocytopenia and thrombosis (VITT). Expert Opin Pharmacother 2024; 25:281-294. [PMID: 38465524 DOI: 10.1080/14656566.2024.2328241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/05/2024] [Indexed: 03/12/2024]
Abstract
INTRODUCTION Fcγ-receptors (FcγR) are membrane receptors expressed on a variety of immune cells, specialized in recognition of the Fc part of immunoglobulin G (IgG) antibodies. FcγRIIA-dependent platelet activation in platelet factor 4 (PF4) antibody-related disorders have gained major attention, when these antibodies were identified as the cause of the adverse vaccination event termed vaccine-induced immune thrombocytopenia and thrombosis (VITT) during the COVID-19 vaccination campaign. With the recognition of anti-PF4 antibodies as cause for severe spontaneous and sometimes recurrent thromboses independent of vaccination, their clinical relevance extended far beyond heparin-induced thrombocytopenia (HIT) and VITT. AREAS COVERED Patients developing these disorders show life-threatening thromboses, and the outcome is highly dependent on effective treatment. This narrative literature review summarizes treatment options for HIT and VITT that are currently available for clinical application and provides the perspective toward new developments. EXPERT OPINION Nearly all these novel approaches are based on in vitro, preclinical observations, or case reports with only limited implementation in clinical practice. The therapeutic potential of these approaches still needs to be proven in larger cohort studies to ensure treatment efficacy and long-term patient safety.
Collapse
Affiliation(s)
- Luisa Müller
- Institut für Transfusionsmedizin, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Venkata A S Dabbiru
- Institut für Transfusionsmedizin, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Linda Schönborn
- Institut für Transfusionsmedizin, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Andreas Greinacher
- Institut für Transfusionsmedizin, Universitätsmedizin Greifswald, Greifswald, Germany
| |
Collapse
|
74
|
Leu JH, Vermeulen A, Abbes C, Arroyo S, Denney WS, Ling LE. Pharmacokinetics and pharmacodynamics across infusion rates of intravenously administered nipocalimab: results of a phase 1, placebo-controlled study. Front Neurosci 2024; 18:1302714. [PMID: 38362023 PMCID: PMC10867144 DOI: 10.3389/fnins.2024.1302714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/03/2024] [Indexed: 02/17/2024] Open
Abstract
Introduction Nipocalimab is a high-affinity, fully human, aglycosylated, effectorless, immunoglobulin G (IgG) 1 monoclonal antibody that targets the neonatal Fc receptor (FcRn), decreases systemic IgG including autoantibodies, and is under development in several IgG autoantibody- and alloantibody-mediated diseases, including generalized myasthenia gravis, chronic inflammatory demyelinating polyneuropathy, maternal-fetal medicine, and multiple other therapeutic areas. An initial phase 1 study with single and multiple ascending doses of nipocalimab infused intravenously (IV) over 2 h demonstrated dose-dependent serum pharmacokinetics and IgG reductions, with an adverse event (AE) profile comparable to placebo. Methods The current investigation evaluates the safety, tolerability, pharmacokinetics, and pharmacodynamics of single doses of nipocalimab across various IV infusion rates in a randomized, double-blind, placebo-controlled, sequential-dose study. Forty participants were randomized to receive nipocalimab 30 mg/kg over 60, 30, 15 or 7.5 min (0.5, 1, 2, or 4 mg/kg/min); nipocalimab 60 mg/kg over 15 min (4 mg/kg/min); or matching placebo. Results At doses up to 60 mg/kg and infusion rates up to 4 mg/kg/min (maximum clinically feasible rate), single doses of nipocalimab were tolerable, with 12 (40%) participants experiencing AEs across nipocalimab cohorts compared with 1 (10%) participant in the placebo cohort. AEs deemed treatment related occurred in 6 (20%) participants receiving nipocalimab and 1 (10%) participant receiving placebo. None of the AEs were severe, and no participants discontinued treatment due to AEs. Nipocalimab provided consistent, dose-dependent serum pharmacokinetics and IgG reductions, regardless of infusion rate. Discussion This study supports the use of shortened durations of nipocalimab infusion for future studies.
Collapse
Affiliation(s)
- Jocelyn H. Leu
- Janssen Research & Development, LLC, Spring House, PA, United States
| | - An Vermeulen
- Janssen Research & Development, LLC, a Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - Claudia Abbes
- Momenta Pharmaceuticals, Inc., Cambridge, MA, United States
| | | | | | - Leona E. Ling
- Janssen Research & Development, LLC, Cambridge, MA, United States
| |
Collapse
|
75
|
Pigors M, Patzelt S, Reichhelm N, Dworschak J, Khil'chenko S, Emtenani S, Bieber K, Hofrichter M, Kamaguchi M, Goletz S, Köhl G, Köhl J, Komorowski L, Probst C, Vanderheyden K, Balbino B, Ludwig RJ, Verheesen P, Schmidt E. Bullous pemphigoid induced by IgG targeting type XVII collagen non-NC16A/NC15A extracellular domains is driven by Fc gamma receptor- and complement-mediated effector mechanisms and is ameliorated by neonatal Fc receptor blockade. J Pathol 2024; 262:161-174. [PMID: 37929639 DOI: 10.1002/path.6220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/18/2023] [Accepted: 09/21/2023] [Indexed: 11/07/2023]
Abstract
Bullous pemphigoid (BP) is an autoimmune blistering disease characterized by autoantibodies targeting type XVII collagen (Col17) with the noncollagenous 16A (NC16A) ectodomain representing the immunodominant site. The role of additional extracellular targets of Col17 outside NC16A has not been unequivocally demonstrated. In this study, we showed that Col17 ectodomain-reactive patient sera depleted in NC16A IgG induced dermal-epidermal separation in a cryosection model indicating the pathogenic potential of anti-Col17 non-NC16A extracellular IgG. Moreover, injection of IgG targeting the murine Col17 NC14-1 domains (downstream of NC15A, the murine homologue of human NC16A) into C57BL/6J mice resulted in erythematous skin lesions and erosions. Clinical findings were accompanied by IgG/C3 deposits along the basement membrane and subepidermal blistering with inflammatory infiltrates. Disease development was significantly reduced in either Fc-gamma receptor (FcγR)- or complement-5a receptor-1 (C5aR1)-deficient mice. Inhibition of the neonatal FcR (FcRn), an atypical FcγR regulating IgG homeostasis, with the murine Fc fragment IgG2c-ABDEG, a derivative of efgartigimod, reduced anti-NC14-1 IgG levels, resulting in ameliorated skin inflammation compared with isotype-treated controls. These data demonstrate that the pathogenic effects of IgG targeting the Col17 domain outside human NC16A/murine NC15A are partly attributable to antibody-mediated FcγR- and C5aR1 effector mechanisms while pharmacological inhibition of the FcRn represents a promising treatment for BP. The mouse model of BP will be instrumental in further investigating the role of Col17 non-NC16A/NC15A extracellular epitopes and validating new therapies for this disease. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Manuela Pigors
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Sabrina Patzelt
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Niklas Reichhelm
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Jenny Dworschak
- Institute of Experimental Immunology, EUROIMMUN AG, Lübeck, Germany
| | | | - Shirin Emtenani
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Katja Bieber
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Maxi Hofrichter
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Mayumi Kamaguchi
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Stephanie Goletz
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Gabriele Köhl
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Jörg Köhl
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Lars Komorowski
- Institute of Experimental Immunology, EUROIMMUN AG, Lübeck, Germany
| | - Christian Probst
- Institute of Experimental Immunology, EUROIMMUN AG, Lübeck, Germany
| | | | | | - Ralf J Ludwig
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
- Department of Dermatology, Allergology and Venerology, University of Lübeck, Lübeck, Germany
| | | | - Enno Schmidt
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
- Department of Dermatology, Allergology and Venerology, University of Lübeck, Lübeck, Germany
| |
Collapse
|
76
|
Zhong X, Liu Y, Ardekani AM. A compartment model for subcutaneous injection of monoclonal antibodies. Int J Pharm 2024; 650:123687. [PMID: 38103705 DOI: 10.1016/j.ijpharm.2023.123687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 12/01/2023] [Accepted: 12/06/2023] [Indexed: 12/19/2023]
Abstract
Despite the growing popularity of subcutaneous (SC) administration for monoclonal antibodies (mAbs), there remains a limited understanding of the significance of mAb transport rate constants within the interstitial space and the lymphatic system on their pharmacokinetics. To bridge this knowledge gap, we introduce a compartmental model for subcutaneously administered mAbs. Our model differentiates FcRn-expressing cells across various sites, and the model predictions agree with experimental data from both human and rat studies. Our findings indicate that the time to reach the maximum mAb concentration in the plasma, denoted by Tmax, displays a weak positive correlation with mAb half-life and a negligible correlation with bioavailability. In contrast, the half-life of mAbs exhibits a strong positive correlation with bioavailability. Moreover, the rate of mAb transport from lymph to plasma significantly affects the mAb half-life. Increasing the transport rates of mAbs from the injection site to the lymph or from lymph to plasma enhances bioavailability. These insights, combined with our compartmental model, contribute to a deeper understanding of the pharmacokinetics of subcutaneously administered mAbs.
Collapse
Affiliation(s)
- Xiaoxu Zhong
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47906, United States
| | - Yikai Liu
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47906, United States
| | - Arezoo M Ardekani
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47906, United States.
| |
Collapse
|
77
|
Armitage CW, O'Meara CP, Bryan ER, Kollipara A, Trim LK, Hickey D, Carey AJ, Huston WM, Donnelly G, Yazdani A, Blumberg RS, Beagley KW. IgG exacerbates genital chlamydial pathology in females by enhancing pathogenic CD8 + T cell responses. Scand J Immunol 2024; 99:e13331. [PMID: 38441219 PMCID: PMC10909563 DOI: 10.1111/sji.13331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/25/2023] [Accepted: 09/11/2023] [Indexed: 03/07/2024]
Abstract
Chlamydia trachomatis infections are an important sexually transmitted infection that can lead to inflammation, scarring and hydrosalpinx/infertility. However, infections are commonly clinically asymptomatic and do not receive treatment. The underlying cause of asymptomatic immunopathology remains unknown. Here, we demonstrate that IgG produced during male infection enhanced the incidence of immunopathology and infertility in females. Human endocervical cells expressing the neonatal Fc Receptor (FcRn) increased translocation of human IgG-opsonized C. trachomatis. Using total IgG purified from infected male mice, we opsonized C. muridarum and then infected female mice, mimicking sexual transmission. Following infection, IgG-opsonized Chlamydia was found to transcytose the epithelial barrier in the uterus, where it was phagocytosed by antigen-presenting cells (APCs) and trafficked to the draining lymph nodes. APCs then expanded both CD4+ and CD8+ T cell populations and caused significantly more infertility in female mice infected with non-opsonized Chlamydia. Enhanced phagocytosis of IgG-opsonized Chlamydia significantly increased pro-inflammatory signalling and T cell proliferation. As IgG is transcytosed by FcRn, we utilized FcRn-/- mice and observed that shedding kinetics of Chlamydia were only affected in FcRn-/- mice infected with IgG-opsonized Chlamydia. Depletion of CD8+ T cells in FcRn-/- mice lead to a significant reduction in the incidence of infertility. Taken together, these data demonstrate that IgG seroconversion during male infection can amplify female immunopathology, dependent on FcRn transcytosis, APC differentiation and enhanced CD8 T cell responses.
Collapse
Affiliation(s)
- Charles W. Armitage
- Centre for Immunology and Infection Control and School of Biomedical SciencesQueensland University of Technology (QUT)BrisbaneQueenslandAustralia
| | - Connor P. O'Meara
- Centre for Immunology and Infection Control and School of Biomedical SciencesQueensland University of Technology (QUT)BrisbaneQueenslandAustralia
- Drop Bio Ltd, School of Biotechnology and Biomolecular Sciences (BABS)University of New South WalesSydneyNew South WalesAustralia
| | - Emily R. Bryan
- Centre for Immunology and Infection Control and School of Biomedical SciencesQueensland University of Technology (QUT)BrisbaneQueenslandAustralia
| | - Avinash Kollipara
- Centre for Immunology and Infection Control and School of Biomedical SciencesQueensland University of Technology (QUT)BrisbaneQueenslandAustralia
| | - Logan K. Trim
- Centre for Immunology and Infection Control and School of Biomedical SciencesQueensland University of Technology (QUT)BrisbaneQueenslandAustralia
| | - Danica Hickey
- Centre for Immunology and Infection Control and School of Biomedical SciencesQueensland University of Technology (QUT)BrisbaneQueenslandAustralia
| | - Alison J. Carey
- Centre for Immunology and Infection Control and School of Biomedical SciencesQueensland University of Technology (QUT)BrisbaneQueenslandAustralia
| | - Wilhelmina M. Huston
- School of Life SciencesUniversity of Technology (UTS) SydneyUltimoNew South WalesAustralia
| | - Gavin Donnelly
- Queensland Fertility Group (QFG)BrisbaneQueenslandAustralia
| | - Anusch Yazdani
- Queensland Fertility Group (QFG)BrisbaneQueenslandAustralia
| | - Richard S. Blumberg
- Division of Gastroenterology, Department of MedicineBrigham & Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Kenneth W. Beagley
- Centre for Immunology and Infection Control and School of Biomedical SciencesQueensland University of Technology (QUT)BrisbaneQueenslandAustralia
| |
Collapse
|
78
|
Wemlinger SM, Cambier JC. Therapeutic tactics for targeting B lymphocytes in autoimmunity and cancer. Eur J Immunol 2024; 54:e2249947. [PMID: 37816494 DOI: 10.1002/eji.202249947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 10/05/2023] [Accepted: 10/09/2023] [Indexed: 10/12/2023]
Abstract
B lymphocytes have become a very popular therapeutic target in a number of autoimmune indications due to their newly appreciated roles, and approachability, in these diseases. Many of the therapies now applied in autoimmunity were initially developed to deplete malignant B cells. These strategies have also been found to benefit patients suffering from such autoimmune diseases as multiple sclerosis, type I diabetes, systemic lupus erythematosus, and rheumatoid arthritis, to name a few. These observations have supported the expansion of research addressing the mechanistic contributions of B cells in these diseases, as well as blossoming of therapeutics that target them. This review seeks to summarize cutting-edge modalities for targeting B cells, including monoclonal antibodies, bispecific antibodies, antibody-drug conjugates, chimeric antigen receptor-T cells, and small molecule inhibitors. Efforts to refine B-cell targeted therapy to eliminate only pathogenic autoreactive cells will be addressed as well as the potential for future B-cell-based cellular therapeutics. Finally, we also address approaches that seek to silence B-cell function without depletion.
Collapse
Affiliation(s)
- Scott M Wemlinger
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - John C Cambier
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| |
Collapse
|
79
|
Malá E, Afshari M, Krejsek J. IgG4 Subclass of Immunoglobulins; Immunobiology and Roles in Relation to Human Diseases. ACTA MEDICA (HRADEC KRALOVE) 2024; 67:101-106. [PMID: 40179839 DOI: 10.14712/18059694.2025.6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
IgG4, a subclass of antibodies known as immunoglobulins have unique structural features, in particular, their Fc regions, that prevents their interactions with other receptors on effector cells and thus disabling them of activating complements system. IgG4 antibodies can undergo a process called Fab-arm exchange, wherein they exchange half-molecules with other IgG4 antibodies, thus forming bispecific monovalent antibodies. Isotypic switch in mature B cells in germinal centres of secondary lymphoid organs is controlled by Tfh subset of T cells. Functionally IgG4 antibodies exert immunomodulatory and blocking activities, modulating protective inflammation evolved by parasitic invasion and allergic inflammation. From the pathophysiological point of view, IgG4 autoantibodies are prominently observed in autoimmune diseases under the umbrella of IgG4-autoimmune diseases (IgG4-AID). Furthermore, IgG4-related diseases (IgG4-RD) are affecting various organs characterized by lymphoplasmacytic infiltrates and storiform fibrosis in tissues, together with elevated IgG4 levels in the blood. A better understanding of IgG4 immunobiology helps us diagnose and treat patients suffering from these rare forms of diseases.
Collapse
Affiliation(s)
- Eva Malá
- Department of Clinical Immunology, Charles University, Faculty of Medicine in Hradec Králové, Czech Republic
| | - Moeina Afshari
- Department of Clinical Immunology, Charles University, Faculty of Medicine in Hradec Králové, Czech Republic.
| | - Jan Krejsek
- Department of Clinical Immunology, Charles University, Faculty of Medicine in Hradec Králové, Czech Republic
| |
Collapse
|
80
|
Amash A, Volkers G, Farber P, Griffin D, Davison KS, Goodman A, Tonikian R, Yamniuk A, Barnhart B, Jacobs T. Developability considerations for bispecific and multispecific antibodies. MAbs 2024; 16:2394229. [PMID: 39189686 DOI: 10.1080/19420862.2024.2394229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/08/2024] [Accepted: 08/15/2024] [Indexed: 08/28/2024] Open
Abstract
Bispecific antibodies (bsAb) and multispecific antibodies (msAb) encompass a diverse variety of formats that can concurrently bind multiple epitopes, unlocking mechanisms to address previously difficult-to-treat or incurable diseases. Early assessment of candidate developability enables demotion of antibodies with low potential and promotion of the most promising candidates for further development. Protein-based therapies have a stringent set of developability requirements in order to be competitive (e.g. high-concentration formulation, and long half-life) and their assessment requires a robust toolkit of methods, few of which are validated for interrogating bsAbs/msAbs. Important considerations when assessing the developability of bsAbs/msAbs include their molecular format, likelihood for immunogenicity, specificity, stability, and potential for high-volume production. Here, we summarize the critical aspects of developability assessment, and provide guidance on how to develop a comprehensive plan tailored to a given bsAb/msAb.
Collapse
Affiliation(s)
- Alaa Amash
- AbCellera Biologics Inc, Vancouver, BC, Canada
| | | | | | | | | | | | | | | | | | - Tim Jacobs
- AbCellera Biologics Inc, Vancouver, BC, Canada
| |
Collapse
|
81
|
Dylewski JF, Haddad G, Blaine J. Exploiting the neonatal crystallizable fragment receptor to treat kidney disease. Kidney Int 2024; 105:54-64. [PMID: 38707675 PMCID: PMC11068363 DOI: 10.1016/j.kint.2023.09.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/11/2023] [Accepted: 09/25/2023] [Indexed: 05/07/2024]
Abstract
The neonatal Fc receptor (FcRn) was initially discovered as the receptor that allowed passive immunity in newborns by transporting maternal IgG through the placenta and enterocytes. Since its initial discovery, FcRn has been found to exist throughout all stages of life and in many different cell types. Beyond passive immunity, FcRn is necessary for intrinsic albumin and IgG recycling and is important for antigen processing and presentation. Given its multiple important roles, FcRn has been utilized in many disease treatments including a new class of agents that were developed to inhibit FcRn for treatment of a variety of autoimmune diseases. Certain cell populations within the kidney also express high levels of this receptor. Specifically, podocytes, proximal tubule epithelial cells, and vascular endothelial cells have been found to utilize FcRn. In this review, we summarize what is known about FcRn and its function within the kidney. We also discuss how FcRn has been used for therapeutic benefit, including how newer FcRn inhibiting agents are being used to treat autoimmune diseases. Lastly, we will discuss what renal diseases may respond to FcRn inhibitors and how further work studying FcRn within the kidney may lead to therapies for kidney diseases.
Collapse
Affiliation(s)
- James F. Dylewski
- Division of Renal Disease and Hypertension, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
- Division of Nephrology, Denver Health Medical Center, Denver, CO, USA
| | - George Haddad
- Division of Renal Disease and Hypertension, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Judith Blaine
- Division of Renal Disease and Hypertension, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| |
Collapse
|
82
|
Reusch J, Andersen JT, Rant U, Schlothauer T. Insight into the avidity-affinity relationship of the bivalent, pH-dependent interaction between IgG and FcRn. MAbs 2024; 16:2361585. [PMID: 38849969 PMCID: PMC11164218 DOI: 10.1080/19420862.2024.2361585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 05/24/2024] [Indexed: 06/09/2024] Open
Abstract
Monoclonal antibodies (mAbs) as therapeutics necessitate favorable pharmacokinetic properties, including extended serum half-life, achieved through pH-dependent binding to the neonatal Fc receptor (FcRn). While prior research has mainly investigated IgG-FcRn binding kinetics with a focus on single affinity values, it has been shown that each IgG molecule can engage two FcRn molecules throughout an endosomal pH gradient. As such, we present here a more comprehensive analysis of these interactions with an emphasis on both affinity and avidity by taking advantage of switchSENSE technology, a surface-based biosensor where recombinant FcRn was immobilized via short DNA nanolevers, mimicking the membranous orientation of the receptor. The results revealed insight into the avidity-to-affinity relationship, where assessing binding through a pH gradient ranging from pH 5.8 to 7.4 showed that the half-life extended IgG1-YTE has an affinity inflection point at pH 7.2, reflecting its engineering for improved FcRn binding compared with the wild-type counterpart. Furthermore, IgG1-YTE displayed a pH switch for the avidity enhancement factor at pH 6.2, reflecting strong receptor binding to both sides of the YTE-containing Fc, while avidity was abolished at pH 7.4. When compared with classical surface plasmon resonance (SPR) technology and complementary methods, the use of switchSENSE demonstrated superior capabilities in differentiating affinity from avidity within a single measurement. Thus, the methodology provides reliable kinetic rate parameters for both binding modes and their direct relationship as a function of pH. Also, it deciphers the potential effect of the variable Fab arms on FcRn binding, in which SPR has limitations. Our study offers guidance for how FcRn binding properties can be studied for IgG engineering strategies.
Collapse
Affiliation(s)
- Johannes Reusch
- Dynamic Biosensors GmbH, Munich, Germany
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Munich, Roche Diagnostics GmbH, Penzberg, Germany
| | - Jan Terje Andersen
- Department of Immunology, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, Department of Pharmacology, University of Oslo, Oslo, Norway
- Precision Immunotherapy Alliance (PRIMA), University of Oslo, Oslo, Norway
| | | | - Tilman Schlothauer
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Munich, Roche Diagnostics GmbH, Penzberg, Germany
| |
Collapse
|
83
|
Zikos J, Webb GM, Wu HL, Reed JS, Watanabe J, Usachenko JL, Shaqra AM, Schiffer CA, Van Rompay KKA, Sacha JB, Magnani DM. FcRn-enhancing mutations lead to increased and prolonged levels of the HIV CCR5-blocking monoclonal antibody leronlimab in the fetuses and newborns of pregnant rhesus macaques. MAbs 2024; 16:2406788. [PMID: 39324549 PMCID: PMC11441024 DOI: 10.1080/19420862.2024.2406788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 09/17/2024] [Accepted: 09/17/2024] [Indexed: 09/27/2024] Open
Abstract
Prenatal administration of monoclonal antibodies (mAbs) is a strategy that could be exploited to prevent viral infections during pregnancy and early life. To reach protective levels in fetuses, mAbs must be transported across the placenta, a selective barrier that actively and specifically promotes the transfer of antibodies (Abs) into the fetus through the neonatal Fc receptor (FcRn). Because FcRn also regulates Ab half-life, Fc mutations like the M428L/N434S, commonly known as LS mutations, and others have been developed to enhance binding affinity to FcRn and improve drug pharmacokinetics. We hypothesized that these FcRn-enhancing mutations could similarly affect the delivery of therapeutic Abs to the fetus. To test this hypothesis, we measured the transplacental transfer of leronlimab, an anti-CCR5 mAb, in clinical development for preventing HIV infections, using pregnant rhesus macaques to model in utero mAb transfer. We also generated a stabilized and FcRn-enhanced form of leronlimab, termed leronlimab-PLS. Leronlimab-PLS maintained higher levels within the maternal compartment while also reaching higher mAb levels in the fetus and newborn circulation. Further, a single dose of leronlimab-PLS led to complete CCR5 receptor occupancy in mothers and newborns for almost a month after birth. These findings support the optimization of FcRn interactions in mAb therapies designed for administration during pregnancy.
Collapse
MESH Headings
- Animals
- Pregnancy
- Receptors, Fc/genetics
- Receptors, Fc/immunology
- Receptors, Fc/metabolism
- Female
- Histocompatibility Antigens Class I/genetics
- Histocompatibility Antigens Class I/immunology
- Macaca mulatta
- Fetus/immunology
- Receptors, CCR5/genetics
- Receptors, CCR5/immunology
- Animals, Newborn
- Humans
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/genetics
- HIV Infections/immunology
- HIV Infections/drug therapy
- HIV Infections/genetics
- Maternal-Fetal Exchange/immunology
- Mutation
- HIV Antibodies/immunology
- HIV Antibodies/genetics
- CCR5 Receptor Antagonists/pharmacology
- Antibodies, Monoclonal, Humanized/immunology
Collapse
Affiliation(s)
- Joanna Zikos
- Nonhuman Primate Reagent Resource (NHPRR), Department of Medicine - Innate Immunity, UMass Chan Medical School, Worcester, MA, USA
| | - Gabriela M Webb
- Division of Pathobiology & Immunology, Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR, USA
| | - Helen L Wu
- Division of Pathobiology & Immunology, Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR, USA
| | - Jason S Reed
- Division of Pathobiology & Immunology, Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR, USA
| | - Jennifer Watanabe
- California National Primate Research Center (CNPRC), University of California, Davis, CA, USA
| | - Jodie L Usachenko
- California National Primate Research Center (CNPRC), University of California, Davis, CA, USA
| | - Ala M Shaqra
- Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, Worcester, MA, USA
| | - Celia A Schiffer
- Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, Worcester, MA, USA
| | - Koen K A Van Rompay
- California National Primate Research Center (CNPRC), University of California, Davis, CA, USA
- Department of Pathology, Microbiology and Immunology, University of California, Davis, CA, USA
| | - Jonah B Sacha
- Division of Pathobiology & Immunology, Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR, USA
| | - Diogo M Magnani
- Nonhuman Primate Reagent Resource (NHPRR), Department of Medicine - Innate Immunity, UMass Chan Medical School, Worcester, MA, USA
| |
Collapse
|
84
|
Schellhammer L, Beffinger M, Salazar U, Laman JD, Buch T, vom Berg J. Exit pathways of therapeutic antibodies from the brain and retention strategies. iScience 2023; 26:108132. [PMID: 37915602 PMCID: PMC10616392 DOI: 10.1016/j.isci.2023.108132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023] Open
Abstract
Treating brain diseases requires therapeutics to pass the blood-brain barrier (BBB) which is nearly impermeable for large biologics such as antibodies. Several methods now facilitate crossing or circumventing the BBB for antibody therapeutics. Some of these exploit receptor-mediated transcytosis, others use direct delivery bypassing the BBB. However, successful delivery into the brain does not preclude exit back to the systemic circulation. Various mechanisms are implicated in the active and passive export of antibodies from the central nervous system. Here we review findings on active export via transcytosis of therapeutic antibodies - in particular, the role of the neonatal Fc receptor (FcRn) - and discuss a possible contribution of passive efflux pathways such as lymphatic and perivascular drainage. We point out open questions and how to address these experimentally. In addition, we suggest how emerging findings could aid the design of the next generation of therapeutic antibodies for neurologic diseases.
Collapse
Affiliation(s)
- Linda Schellhammer
- Institute of Laboratory Animal Science, University of Zurich, 8952 Schlieren, Switzerland
| | - Michal Beffinger
- Institute of Laboratory Animal Science, University of Zurich, 8952 Schlieren, Switzerland
- InCephalo AG, 4123 Allschwil, Switzerland
| | - Ulisse Salazar
- Institute of Laboratory Animal Science, University of Zurich, 8952 Schlieren, Switzerland
| | - Jon D. Laman
- Department of Pathology & Medical Biology, University of Groningen, University Medical Center Groningen, Groningen 9713, the Netherlands
| | - Thorsten Buch
- Institute of Laboratory Animal Science, University of Zurich, 8952 Schlieren, Switzerland
| | - Johannes vom Berg
- Institute of Laboratory Animal Science, University of Zurich, 8952 Schlieren, Switzerland
- InCephalo AG, 4123 Allschwil, Switzerland
| |
Collapse
|
85
|
Bernstein ZJ, Shenoy A, Chen A, Heller NM, Spangler JB. Engineering the IL-4/IL-13 axis for targeted immune modulation. Immunol Rev 2023; 320:29-57. [PMID: 37283511 DOI: 10.1111/imr.13230] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 05/19/2023] [Indexed: 06/08/2023]
Abstract
The structurally and functionally related interleukin-4 (IL-4) and IL-13 cytokines play pivotal roles in shaping immune activity. The IL-4/IL-13 axis is best known for its critical role in T helper 2 (Th2) cell-mediated Type 2 inflammation, which protects the host from large multicellular pathogens, such as parasitic helminth worms, and regulates immune responses to allergens. In addition, IL-4 and IL-13 stimulate a wide range of innate and adaptive immune cells, as well as non-hematopoietic cells, to coordinate various functions, including immune regulation, antibody production, and fibrosis. Due to its importance for a broad spectrum of physiological activities, the IL-4/IL-13 network has been targeted through a variety of molecular engineering and synthetic biology approaches to modulate immune behavior and develop novel therapeutics. Here, we review ongoing efforts to manipulate the IL-4/IL-13 axis, including cytokine engineering strategies, formulation of fusion proteins, antagonist development, cell engineering approaches, and biosensor design. We discuss how these strategies have been employed to dissect IL-4 and IL-13 pathways, as well as to discover new immunotherapies targeting allergy, autoimmune diseases, and cancer. Looking ahead, emerging bioengineering tools promise to continue advancing fundamental understanding of IL-4/IL-13 biology and enabling researchers to exploit these insights to develop effective interventions.
Collapse
Affiliation(s)
- Zachary J Bernstein
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Anjali Shenoy
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Amy Chen
- Department of Molecular and Cellular Biology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Nicola M Heller
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
- Division of Allergy and Clinical Immunology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
- Department of Molecular Microbiology and Immunology, The Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Jamie B Spangler
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Molecular Microbiology and Immunology, The Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA
- Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Sidney Kimmel Cancer Center, The Johns Hopkins University, Baltimore, Maryland, USA
- Department of Ophthalmology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
86
|
Olbrich H, Sadik CD, Schmidt E. Autoimmune blistering diseases: promising agents in clinical trials. Expert Opin Investig Drugs 2023; 32:615-623. [PMID: 37526503 DOI: 10.1080/13543784.2023.2242778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/26/2023] [Indexed: 08/02/2023]
Abstract
INTRODUCTION Treatment options for autoimmune bullous diseases (AIBD) are currently limited to corticosteroids and traditional immunomodulants and immunosuppressants that are associated with unfavorable adverse effect profiles. The most frequent AIBDs, i.e. bullous pemphigoid, pemphigus vulgaris, and mucous membrane pemphigoid, impose a high disease burden onto affected patients and can be detrimental due to infections, exsiccosis, and impaired food intake. Significant progress has been made in elucidating disease mechanisms and key mediators by in vivo and in vitro models, thus identifying a multifaceted range of possible drug targets. However, except for rituximab for pemphigus vulgaris, no new drugs have been approved for the treatment of AIBDs in the last decades. AREAS COVERED This review covers new drug developments and includes ongoing or completed phase 2 and 3 clinical trials. Studies were identified by querying the registries of ClinicalTrials.gov and Cochrane Library. EXPERT OPINION Promising results were shown for a variety of new agents including nomacopan, efgartigimod, omalizumab, dupilumab, as well as chimeric autoantibody receptor T cells. Clinical translation in the field of AIBDs is highly active, and we anticipate significant advances in the treatment landscape.
Collapse
Affiliation(s)
- Henning Olbrich
- Department of Dermatology, University of Lübeck, Lübeck, Germany
| | | | - Enno Schmidt
- Department of Dermatology, University of Lübeck, Lübeck, Germany
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| |
Collapse
|
87
|
Vrignaud LL, Schwartz O, Bruel T. Polyfunctionality of broadly neutralizing HIV-1 antibodies. Curr Opin HIV AIDS 2023; 18:178-183. [PMID: 37249912 DOI: 10.1097/coh.0000000000000799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
PURPOSE OF REVIEW The discovery of broadly neutralizing HIV-1 antibodies (bNAbs) has provided a framework for vaccine design and created new hope toward an HIV-1 cure. These antibodies recognize the HIV-1 Envelope and inhibit viral fusion with unprecedented breadth and potency. Beyond their unique neutralization capacity, bNAbs also activate immune cells and interfere with viral spread through nonneutralizing activities. Here, we review the landscape of bNAbs functions and their contribution to clinical efficacy. RECENT FINDINGS Parallel evaluation of bNAbs nonneutralizing activities using in vivo and in vitro models have revealed how their importance varies across antibodies and strains. Nonneutralizing bNAbs functions target both infected cells and viral particles, leading to their destruction through various mechanisms. Reservoir targeting and prevention in context of suboptimal neutralization highly depends on bNAbs polyfunctionality. We recently showed that bNAbs tether virions at the surface of infected cells, impairing release and forming immune complexes, with consequences that are still to be understood. SUMMARY Nonneutralizing activities of bNAbs target infected cells, virions, and immune complexes, promoting viral clearance and possibly improving immune responses. We review how these functions participate to the efficacy of bNAbs and how they can be manipulated to improve bNAbs therapies.
Collapse
Affiliation(s)
- Lou-Léna Vrignaud
- Virus & Immunity Unit, CNRS UMR3569, Université Paris Cité, Institut Pasteur
- Sorbonne Université, Paris
| | - Olivier Schwartz
- Virus & Immunity Unit, CNRS UMR3569, Université Paris Cité, Institut Pasteur
- Sorbonne Université, Paris
| | - Timothée Bruel
- Virus & Immunity Unit, CNRS UMR3569, Université Paris Cité, Institut Pasteur
- Sorbonne Université, Paris
- Vaccine Research Institute, Faculté de Médecine, INSERM U955, Université Paris-Est Créteil, Créteil, France
| |
Collapse
|
88
|
Van der Weken H, Jahantigh HR, Cox E, Devriendt B. Targeted delivery of oral vaccine antigens to aminopeptidase N protects pigs against pathogenic E. coli challenge infection. Front Immunol 2023; 14:1192715. [PMID: 37457692 PMCID: PMC10338862 DOI: 10.3389/fimmu.2023.1192715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/16/2023] [Indexed: 07/18/2023] Open
Abstract
Oral subunit vaccines are an interesting alternative strategy to traditional live-attenuated or inactivated vaccines for conferring protection against gut pathogens. Despite being safer and more cost-effective, the development of oral subunit vaccines remains challenging due to barriers imposed by the gastrointestinal tract, such as digestive enzymes, a tolerogenic immune environment and the inability of larger proteins to cross the epithelial barrier. Recent advances have focused on overcoming these barriers by using potent mucosal adjuvants or pH-responsive delivery vehicles to protect antigens from degradation and promote their release in the intestinal lumen. A promising approach to allow vaccine antigens to pass the epithelial barrier is by their targeting towards aminopeptidase N (APN; CD13), an abundant membrane protein present on small intestinal enterocytes. APN is a peptidase involved in digestion, but also a receptor for several enteric pathogens. In addition, upon antibody-mediated crosslinking, APN facilitated the transport of antibody-antigen fusion constructs across the gut epithelium. This epithelial transport resulted in antigen-specific immune responses. Here, we present evidence that oral administration of APN-specific antibody-antigen fusion constructs comprising the porcine IgA Fc-domain and the FedF tipadhesin of F18-fimbriated E. coli elicited both mucosal and systemic immune responses and provided at least partial protection to piglets against a subsequent challenge infection with an F18-fimbriated STEC strain. Altogether, these findings will contribute to the further development of new oral subunit vaccines and provide a first proof-of-concept for the protective efficacy of APN-targeted vaccine antigens.
Collapse
Affiliation(s)
- Hans Van der Weken
- Laboratory of Immunology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Hamid Reza Jahantigh
- Department of Pathology, Faculty of Medicine, Emory University, Atlanta, GA, United States
- Interdisciplinary Department of Medicine – Section of Occupational Medicine, University of Bari, Bari, Italy
| | - Eric Cox
- Laboratory of Immunology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Bert Devriendt
- Laboratory of Immunology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|