51
|
Warmbold B, Ronzheimer S, Freibert SA, Seubert A, Hoffmann T, Bremer E. Two MarR-Type Repressors Balance Precursor Uptake and Glycine Betaine Synthesis in Bacillus subtilis to Provide Cytoprotection Against Sustained Osmotic Stress. Front Microbiol 2020; 11:1700. [PMID: 32849357 PMCID: PMC7396694 DOI: 10.3389/fmicb.2020.01700] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 06/29/2020] [Indexed: 02/01/2023] Open
Abstract
Bacillus subtilis adjusts to high osmolarity surroundings through the amassing of compatible solutes. It synthesizes the compatible solute glycine betaine from prior imported choline and scavenges many pre-formed osmostress protectants, including glycine betaine, from environmental sources. Choline is imported through the substrate-restricted ABC transporter OpuB and the closely related, but promiscuous, OpuC system, followed by its GbsAB-mediated oxidation to glycine betaine. We have investigated the impact of two MarR-type regulators, GbsR and OpcR, on gbsAB, opuB, and opuC expression. Judging by the position of the previously identified OpcR operator in the regulatory regions of opuB and opuC [Lee et al. (2013) Microbiology 159, 2087−2096], and that of the GbsR operator identified in the current study, we found that the closely related GbsR and OpcR repressors use different molecular mechanisms to control transcription. OpcR functions by sterically hindering access of RNA-polymerase to the opuB and opuC promoters, while GbsR operates through a roadblock mechanism to control gbsAB and opuB transcription. Loss of GbsR or OpcR de-represses opuB and opuC transcription, respectively. With respect to the osmotic control of opuB and opuC expression, we found that this environmental cue operates independently of the OpcR and GbsR regulators. When assessed over a wide range of salinities, opuB and opuC exhibit a surprisingly different transcriptional profile. Expression of opuB increases monotonously in response to incrementally increase in salinity, while opuC transcription levels decrease after an initial up-regulation at moderate salinities. Transcription of the gbsR and opcR regulatory genes is up-regulated in response to salt stress, and is also affected through auto-regulatory processes. The opuB and opuC operons have evolved through a gene duplication event. However, evolution has shaped their mode of genetic regulation, their osmotic-stress dependent transcriptional profile, and the substrate specificity of the OpuB and OpuC ABC transporters in a distinctive fashion.
Collapse
Affiliation(s)
- Bianca Warmbold
- Laboratory for Microbiology, Department of Biology, Philipps-University Marburg, Marburg, Germany
| | - Stefanie Ronzheimer
- Laboratory for Microbiology, Department of Biology, Philipps-University Marburg, Marburg, Germany
| | - Sven-Andreas Freibert
- Department of Medicine, Institute for Cytobiology and Cytopathology, Philipps-University Marburg, Marburg, Germany
| | - Andreas Seubert
- Faculty of Chemistry, Analytical Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Tamara Hoffmann
- Laboratory for Microbiology, Department of Biology, Philipps-University Marburg, Marburg, Germany
| | - Erhard Bremer
- Laboratory for Microbiology, Department of Biology, Philipps-University Marburg, Marburg, Germany.,Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Marburg, Germany
| |
Collapse
|
52
|
Clusters of bacterial RNA polymerase are biomolecular condensates that assemble through liquid-liquid phase separation. Proc Natl Acad Sci U S A 2020; 117:18540-18549. [PMID: 32675239 PMCID: PMC7414142 DOI: 10.1073/pnas.2005019117] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Bacterial cells are small and were long thought to have little to no internal structure. However, advances in microscopy have revealed that bacteria do indeed contain subcellular compartments. But how these compartments form has remained a mystery. Recent progress in larger, more complex eukaryotic cells has identified a novel mechanism for intracellular organization known as liquid–liquid phase separation. This process causes certain types of molecules to concentrate within distinct compartments inside the cell. Here, we demonstrate that the same process also occurs in bacteria. This work, together with a growing body of literature, suggests that liquid–liquid phase separation is a common mechanism for intracellular organization in both eukaryotic and prokaryotic cells. Once described as mere “bags of enzymes,” bacterial cells are in fact highly organized, with many macromolecules exhibiting nonuniform localization patterns. Yet the physical and biochemical mechanisms that govern this spatial heterogeneity remain largely unknown. Here, we identify liquid–liquid phase separation (LLPS) as a mechanism for organizing clusters of RNA polymerase (RNAP) in Escherichia coli. Using fluorescence imaging, we show that RNAP quickly transitions from a dispersed to clustered localization pattern as cells enter log phase in nutrient-rich media. RNAP clusters are sensitive to hexanediol, a chemical that dissolves liquid-like compartments in eukaryotic cells. In addition, we find that the transcription antitermination factor NusA forms droplets in vitro and in vivo, suggesting that it may nucleate RNAP clusters. Finally, we use single-molecule tracking to characterize the dynamics of cluster components. Our results indicate that RNAP and NusA molecules move inside clusters, with mobilities faster than a DNA locus but slower than bulk diffusion through the nucleoid. We conclude that RNAP clusters are biomolecular condensates that assemble through LLPS. This work provides direct evidence for LLPS in bacteria and demonstrates that this process can serve as a mechanism for intracellular organization in prokaryotes and eukaryotes alike.
Collapse
|
53
|
Kwok ACM, Zhang F, Ma Z, Chan WS, Yu VC, Tsang JSH, Wong JTY. Functional responses between PMP3 small membrane proteins and membrane potential. Environ Microbiol 2020; 22:3066-3080. [PMID: 32307863 DOI: 10.1111/1462-2920.15027] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 04/15/2020] [Indexed: 01/07/2023]
Abstract
The Plasma Membrane Proteolipid 3 (PMP3, UPF0057 family in Uniprot) family consists of abundant small hydrophobic polypeptides with two predicted transmembrane helices. Plant homologues were upregulated in response to drought/salt-stresses and yeast deletion mutants exhibited conditional growth defects. We report here abundant expression of Group I PMP3 homologues (PMP3(i)hs) during normal vegetative growth in both prokaryotic and eukaryotic cells, at a level comparable to housekeeping genes, implicating the regular cellular functions. Expression of eukaryotic PMP3(i)hs was dramatically upregulated in response to membrane potential (Vm) variability (Vmvar ), whereas PMP3(i)hs deletion-knockdown led to Vm changes with conditional growth defects. Bacterial PMP3(i)h yqaE deletion led to a shift of salt sensitivity; Vmvar alternations with exogenous K+ addition downregulated prokaryotic PMP3(i)hs, suggesting [K+ ]-Vmvar axis being a significant feedback element in prokaryotic ionic homeostasis. Remarkably, the eukaryotic homologues functionally suppressed the conditional growth defects in bacterial deletion mutant, demonstrating the conserved cross-kingdom membrane functions by PMP3(i)hs. These data demonstrated a direct reciprocal relationship between PMP3(i)hs expression and Vm differentials in both prokaryotic and eukaryotic cells. Cumulative with PMP3(i)hs ubiquitous abundance, their lipid-binding selectivity and membrane protein colocalization, we propose [PMP3(i)hs]-Vmvar axis as a key element in membrane homeostasis.
Collapse
Affiliation(s)
- Alvin C M Kwok
- Division of Life Science, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong, China
| | - Fang Zhang
- Division of Life Science, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong, China
| | - Zhiyi Ma
- Division of Life Science, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong, China
| | - Wai Sun Chan
- Division of Life Science, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong, China
| | - Vivian C Yu
- Division of Life Science, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong, China
| | - Jimmy S H Tsang
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Joseph T Y Wong
- Division of Life Science, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong, China
| |
Collapse
|
54
|
Abstract
Over the past decade, advances in methodologies for the determination of chromosome conformation have provided remarkable insight into the local and higher-order organization of bacterial and eukaryotic chromosomes. Locally folded domains are found in both bacterial and eukaryotic genomes, although they vary in size. Importantly, genomes of metazoans also possess higher-order organization into A- and B-type compartments, regions of transcriptionally active and inactive chromatin, respectively. Until recently, nothing was known about the organization of genomes of organisms in the third domain of life - the archaea. However, despite archaea possessing simple circular genomes that are morphologically reminiscent of those seen in many bacteria, a recent study of archaea of the genus Sulfolobus has revealed that it organizes its genome into large-scale domains. These domains further interact to form defined A- and B-type compartments. The interplay of transcription and localization of a novel structural maintenance of chromosomes (SMC) superfamily protein, termed coalescin, defines compartment identity. In this Review, we discuss the mechanistic and evolutionary implications of these findings.
Collapse
Affiliation(s)
- Naomichi Takemata
- Biology Department, Indiana University, Bloomington, USA.,Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, USA
| | - Stephen D Bell
- Biology Department, Indiana University, Bloomington, USA .,Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, USA
| |
Collapse
|
55
|
Novel Divisome-Associated Protein Spatially Coupling the Z-Ring with the Chromosomal Replication Terminus in Caulobacter crescentus. mBio 2020; 11:mBio.00487-20. [PMID: 32345642 PMCID: PMC7188993 DOI: 10.1128/mbio.00487-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Growing bacteria require careful tuning of cell division processes with dynamic organization of replicating chromosomes. In enteric bacteria, ZapA associates with the cytoskeletal Z-ring and establishes a physical linkage to the chromosomal replication terminus through its interaction with ZapB-MatP-DNA complexes. However, because ZapB and MatP are found only in enteric bacteria, it remains unclear how the Z-ring and the terminus are coordinated in the vast majority of bacteria. Here, we provide evidence that a novel conserved protein, termed ZapT, mediates colocalization of the Z-ring with the terminus in Caulobacter crescentus, a model organism that is phylogenetically distant from enteric bacteria. Given that ZapT facilitates cell division processes in C. crescentus, this study highlights the universal importance of the physical linkage between the Z-ring and the terminus in maintaining cell integrity. Cell division requires proper spatial coordination with the chromosome, which undergoes dynamic changes during chromosome replication and segregation. FtsZ is a bacterial cytoskeletal protein that assembles into the Z-ring, providing a platform to build the cell division apparatus. In the model bacterium Caulobacter crescentus, the cellular localization of the Z-ring is controlled during the cell cycle in a chromosome replication-coupled manner. Although dynamic localization of the Z-ring at midcell is driven primarily by the replication origin-associated FtsZ inhibitor MipZ, the mechanism ensuring accurate positioning of the Z-ring remains unclear. In this study, we showed that the Z-ring colocalizes with the replication terminus region, located opposite the origin, throughout most of the C. crescentus cell cycle. Spatial organization of the two is mediated by ZapT, a previously uncharacterized protein that interacts with the terminus region and associates with ZapA and ZauP, both of which are part of the incipient division apparatus. While the Z-ring and the terminus region coincided with the presence of ZapT, colocalization of the two was perturbed in cells lacking zapT, which is accompanied by delayed midcellular positioning of the Z-ring. Moreover, cells overexpressing ZapT showed compromised positioning of the Z-ring and MipZ. These findings underscore the important role of ZapT in controlling cell division processes. We propose that ZapT acts as a molecular bridge that physically links the terminus region to the Z-ring, thereby ensuring accurate site selection for the Z-ring. Because ZapT is conserved in proteobacteria, these findings may define a general mechanism coordinating cell division with chromosome organization.
Collapse
|
56
|
Pióro M, Jakimowicz D. Chromosome Segregation Proteins as Coordinators of Cell Cycle in Response to Environmental Conditions. Front Microbiol 2020; 11:588. [PMID: 32351468 PMCID: PMC7174722 DOI: 10.3389/fmicb.2020.00588] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 03/18/2020] [Indexed: 12/11/2022] Open
Abstract
Chromosome segregation is a crucial stage of the cell cycle. In general, proteins involved in this process are DNA-binding proteins, and in most bacteria, ParA and ParB are the main players; however, some bacteria manage this process by employing other proteins, such as condensins. The dynamic interaction between ParA and ParB drives movement and exerts positioning of the chromosomal origin of replication (oriC) within the cell. In addition, both ParA and ParB were shown to interact with the other proteins, including those involved in cell division or cell elongation. The significance of these interactions for the progression of the cell cycle is currently under investigation. Remarkably, DNA binding by ParA and ParB as well as their interactions with protein partners conceivably may be modulated by intra- and extracellular conditions. This notion provokes the question of whether chromosome segregation can be regarded as a regulatory stage of the cell cycle. To address this question, we discuss how environmental conditions affect chromosome segregation and how segregation proteins influence other cell cycle processes.
Collapse
Affiliation(s)
- Monika Pióro
- Department of Molecular Microbiology, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Dagmara Jakimowicz
- Department of Molecular Microbiology, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| |
Collapse
|
57
|
Sicard A, Castillo AI, Voeltz M, Chen H, Zeilinger AR, De La Fuente L, Almeida RPP. Inference of Bacterial Pathogen Instantaneous Population Growth Dynamics. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:402-411. [PMID: 31972098 DOI: 10.1094/mpmi-10-19-0274-ta] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Although bacterial host colonization is a dynamic process that requires population growth, studies often focus on comparing bacterial populations at a given time point. However, this may not reflect the dynamics of the colonization process. Time-course assays provide important insights into the dynamics of host colonization but are laborious and may still lack resolution for immediate processes affecting populations. An alternative way to address this issue, using widely accessible tools (such as quantitative PCR [qPCR]), is to take advantage of the relationship between bacterial chromosomal replication and cell division to determine population growth status at the sampling time. Conceptually, the ratio between the number of copies at the origin of replication and that at the terminus of replication should be correlated with the measured bacterial growth rate. This peak-to-trough ratio (PTR) to estimate instantaneous population growth status was tested with the slow-growing plant-pathogenic bacterium Xylella fastidiosa. We found no correlation between PTR and the measured growth rate when using genome-level data but overall sequencing depth of coverage trends matched theoretical expectations. On the other hand, the population growth status of X. fastidiosa was predicted by PTR when using qPCR data, which was improved by the pretreatment of cells with a photoreactive DNA-binding dye. Our results suggest that PTR could be used to determine X. fastidiosa growth status both in planta and in insect vectors. We expect PTR will perform better with fast-growing bacterial pathogens, potentially becoming a powerful tool for easily and quickly assessing population growth status.
Collapse
Affiliation(s)
- Anne Sicard
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA, U.S.A
| | - Andreina I Castillo
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA, U.S.A
| | - Michael Voeltz
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA, U.S.A
| | - Hongyu Chen
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, U.S.A
| | - Adam R Zeilinger
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA, U.S.A
| | | | - Rodrigo P P Almeida
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA, U.S.A
| |
Collapse
|
58
|
Laloux G. Shedding Light on the Cell Biology of the Predatory Bacterium Bdellovibrio bacteriovorus. Front Microbiol 2020; 10:3136. [PMID: 32038570 PMCID: PMC6985089 DOI: 10.3389/fmicb.2019.03136] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 12/26/2019] [Indexed: 12/25/2022] Open
Abstract
Bdellovibrio bacteriovorus is a predatory bacterium that feeds upon and proliferates inside other Gram-negative bacteria. Upon entry into the periplasmic space of the prey envelope, B. bacteriovorus initiates an exquisite developmental program in which it digests the host resources and grows as a filament, which eventually divides in a non-binary manner, releasing a variable number of daughter cells. The progeny then escape from the prey ghost to encounter new victims and resume the predation cycle. Owing to its unique biology, B. bacteriovorus undoubtedly represents an attractive model to unravel novel mechanisms of bacterial cell cycle control and cellular organization. Yet, the molecular factors behind the sophisticated lifestyle of this micro-predator are still mysterious. In particular, the spatiotemporal dynamics of proteins that control key cellular processes such as transmission of the genetic information, cell growth and division remain largely unexplored. In this Perspective article, I highlight outstanding fundamental questions related to these aspects and arising from the original biology of this bacterium. I also discuss available insights and potential cell biology approaches based on quantitative live imaging techniques, in combination with bacterial genetics and biochemistry, to shed light on the intracellular organization of B. bacteriovorus in space and time.
Collapse
Affiliation(s)
- Géraldine Laloux
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
59
|
Kawalek A, Wawrzyniak P, Bartosik AA, Jagura-Burdzy G. Rules and Exceptions: The Role of Chromosomal ParB in DNA Segregation and Other Cellular Processes. Microorganisms 2020; 8:E105. [PMID: 31940850 PMCID: PMC7022226 DOI: 10.3390/microorganisms8010105] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/07/2020] [Accepted: 01/09/2020] [Indexed: 12/11/2022] Open
Abstract
The segregation of newly replicated chromosomes in bacterial cells is a highly coordinated spatiotemporal process. In the majority of bacterial species, a tripartite ParAB-parS system, composed of an ATPase (ParA), a DNA-binding protein (ParB), and its target(s) parS sequence(s), facilitates the initial steps of chromosome partitioning. ParB nucleates around parS(s) located in the vicinity of newly replicated oriCs to form large nucleoprotein complexes, which are subsequently relocated by ParA to distal cellular compartments. In this review, we describe the role of ParB in various processes within bacterial cells, pointing out interspecies differences. We outline recent progress in understanding the ParB nucleoprotein complex formation and its role in DNA segregation, including ori positioning and anchoring, DNA condensation, and loading of the structural maintenance of chromosome (SMC) proteins. The auxiliary roles of ParBs in the control of chromosome replication initiation and cell division, as well as the regulation of gene expression, are discussed. Moreover, we catalog ParB interacting proteins. Overall, this work highlights how different bacterial species adapt the DNA partitioning ParAB-parS system to meet their specific requirements.
Collapse
Affiliation(s)
| | | | | | - Grazyna Jagura-Burdzy
- Department of Microbial Biochemistry, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland; (A.K.); (P.W.); (A.A.B.)
| |
Collapse
|
60
|
Schvartzman JB, Hernández P, Krimer DB, Dorier J, Stasiak A. Closing the DNA replication cycle: from simple circular molecules to supercoiled and knotted DNA catenanes. Nucleic Acids Res 2019; 47:7182-7198. [PMID: 31276584 PMCID: PMC6698734 DOI: 10.1093/nar/gkz586] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/20/2019] [Accepted: 07/02/2019] [Indexed: 01/28/2023] Open
Abstract
Due to helical structure of DNA, massive amounts of positive supercoils are constantly introduced ahead of each replication fork. Positive supercoiling inhibits progression of replication forks but various mechanisms evolved that permit very efficient relaxation of that positive supercoiling. Some of these mechanisms lead to interesting topological situations where DNA supercoiling, catenation and knotting coexist and influence each other in DNA molecules being replicated. Here, we first review fundamental aspects of DNA supercoiling, catenation and knotting when these qualitatively different topological states do not coexist in the same circular DNA but also when they are present at the same time in replicating DNA molecules. We also review differences between eukaryotic and prokaryotic cellular strategies that permit relaxation of positive supercoiling arising ahead of the replication forks. We end our review by discussing very recent studies giving a long-sought answer to the question of how slow DNA topoisomerases capable of relaxing just a few positive supercoils per second can counteract the introduction of hundreds of positive supercoils per second ahead of advancing replication forks.
Collapse
Affiliation(s)
- Jorge B Schvartzman
- Department of Cell and Molecular Biology, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Pablo Hernández
- Department of Cell and Molecular Biology, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Dora B Krimer
- Department of Cell and Molecular Biology, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Julien Dorier
- SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Andrzej Stasiak
- SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland.,Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
61
|
Manina G, Griego A, Singh LK, McKinney JD, Dhar N. Preexisting variation in DNA damage response predicts the fate of single mycobacteria under stress. EMBO J 2019; 38:e101876. [PMID: 31583725 PMCID: PMC6856624 DOI: 10.15252/embj.2019101876] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 08/06/2019] [Accepted: 09/16/2019] [Indexed: 11/09/2022] Open
Abstract
Clonal microbial populations are inherently heterogeneous, and this diversification is often considered as an adaptation strategy. In clinical infections, phenotypic diversity is found to be associated with drug tolerance, which in turn could evolve into genetic resistance. Mycobacterium tuberculosis, which ranks among the top ten causes of mortality with high incidence of drug-resistant infections, exhibits considerable phenotypic diversity. In this study, we quantitatively analyze the cellular dynamics of DNA damage responses in mycobacteria using microfluidics and live-cell fluorescence imaging. We show that individual cells growing under optimal conditions experience sporadic DNA-damaging events manifested by RecA expression pulses. Single-cell responses to these events occur as transient pulses of fluorescence expression, which are dependent on the gene-network structure but are triggered by extrinsic signals. We demonstrate that preexisting subpopulations, with discrete levels of DNA damage response, are associated with differential susceptibility to fluoroquinolones. Our findings reveal that the extent of DNA integrity prior to drug exposure impacts the drug activity against mycobacteria, with conceivable therapeutic implications.
Collapse
Affiliation(s)
- Giulia Manina
- Microbial Individuality and Infection GroupCell Biology and Infection DepartmentInstitut PasteurParisFrance
- School of Life SciencesSwiss Federal Institute of Technology in Lausanne (EPFL)LausanneSwitzerland
| | - Anna Griego
- Microbial Individuality and Infection GroupCell Biology and Infection DepartmentInstitut PasteurParisFrance
- Université Paris DescartesSorbonne Paris CitéParisFrance
| | - Lalit Kumar Singh
- Microbial Individuality and Infection GroupCell Biology and Infection DepartmentInstitut PasteurParisFrance
| | - John D McKinney
- School of Life SciencesSwiss Federal Institute of Technology in Lausanne (EPFL)LausanneSwitzerland
| | - Neeraj Dhar
- School of Life SciencesSwiss Federal Institute of Technology in Lausanne (EPFL)LausanneSwitzerland
| |
Collapse
|
62
|
Abstract
In all domains of life, genomes contain epigenetic information superimposed over the nucleotide sequence. Epigenetic signals control DNA-protein interactions and can cause phenotypic change in the absence of mutation. A nearly universal mechanism of epigenetic signalling is DNA methylation. In bacteria, DNA methylation has roles in genome defence, chromosome replication and segregation, nucleoid organization, cell cycle control, DNA repair and regulation of transcription. In many bacterial species, DNA methylation controls reversible switching (phase variation) of gene expression, a phenomenon that generates phenotypic cell variants. The formation of epigenetic lineages enables the adaptation of bacterial populations to harsh or changing environments and modulates the interaction of pathogens with their eukaryotic hosts.
Collapse
|
63
|
Khoo JH, Miller HL. The power of three spatial dimensions. Nat Rev Microbiol 2019; 17:591. [PMID: 31435028 DOI: 10.1038/s41579-019-0260-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jia Hui Khoo
- Department of Biochemistry, University of Oxford, Oxford, UK.
| | - Helen L Miller
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, UK.
| |
Collapse
|