51
|
Abstract
This is an overview of recent publications on the prospects of searching for nonminimal Lorentz-violating effects in atomic spectroscopy experiments. The article discusses the differences in the signals for Lorentz violation in the presence of minimal and nonminimal operators and what systems are more sensitive to certain types of Lorentz-violating operators.
Collapse
|
52
|
Higgins G, Pokorny F, Zhang C, Hennrich M. Highly Polarizable Rydberg Ion in a Paul Trap. PHYSICAL REVIEW LETTERS 2019; 123:153602. [PMID: 31702307 DOI: 10.1103/physrevlett.123.153602] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Indexed: 06/10/2023]
Abstract
Usually the influence of the quadratic Stark effect on an ion's trapping potential is minuscule and only needs to be considered in atomic clock experiments. In this work we excite a trapped ion to a Rydberg state with polarizability ∼8 orders of magnitude higher than a low-lying electronic state; we find that the highly polarizable ion experiences a vastly different trapping potential owing to the Stark effect. We observe changes in trap stiffness, equilibrium position, and minimum potential, which can be tuned using the trapping electric fields. These effects lie at the heart of several proposed studies, including a high-fidelity submicrosecond entangling operation; in addition we demonstrate these effects may be used to minimize ion micromotion. Mitigation of Stark effects is important for coherent control of Rydberg ions; we illustrate this by carrying out the first Rabi oscillations between a low-lying electronic state and a Rydberg state of an ion.
Collapse
Affiliation(s)
- Gerard Higgins
- Department of Physics, Stockholm University, SE-106 91 Stockholm, Sweden
- Institut für Experimentalphysik, Universität Innsbruck, AT-6020 Innsbruck, Austria
| | - Fabian Pokorny
- Department of Physics, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Chi Zhang
- Department of Physics, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Markus Hennrich
- Department of Physics, Stockholm University, SE-106 91 Stockholm, Sweden
| |
Collapse
|
53
|
Hutson RB, Goban A, Marti GE, Sonderhouse L, Sanner C, Ye J. Engineering Quantum States of Matter for Atomic Clocks in Shallow Optical Lattices. PHYSICAL REVIEW LETTERS 2019; 123:123401. [PMID: 31633951 DOI: 10.1103/physrevlett.123.123401] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Indexed: 06/10/2023]
Abstract
We investigate the effects of stimulated scattering of optical lattice photons on atomic coherence times in a state-of-the art ^{87}Sr optical lattice clock. Such scattering processes are found to limit the achievable coherence times to less than 12 s (corresponding to a quality factor of 1×10^{16}), significantly shorter than the predicted 145(40) s lifetime of ^{87}Sr's excited clock state. We suggest that shallow, state-independent optical lattices with increased lattice constants can give rise to sufficiently small lattice photon scattering and motional dephasing rates as to enable coherence times on the order of the clock transition's natural lifetime. Not only should this scheme be compatible with the relatively high atomic density associated with Fermi-degenerate gases in three-dimensional optical lattices, but we anticipate that certain properties of various quantum states of matter-such as the localization of atoms in a Mott insulator-can be used to suppress dephasing due to tunneling.
Collapse
Affiliation(s)
- Ross B Hutson
- JILA, NIST and University of Colorado, 440 UCB, Boulder, Colorado 80309, USA and Department of Physics, University of Colorado, 390 UCB, Boulder, Colorado 80309, USA
| | - Akihisa Goban
- JILA, NIST and University of Colorado, 440 UCB, Boulder, Colorado 80309, USA and Department of Physics, University of Colorado, 390 UCB, Boulder, Colorado 80309, USA
| | - G Edward Marti
- JILA, NIST and University of Colorado, 440 UCB, Boulder, Colorado 80309, USA and Department of Physics, University of Colorado, 390 UCB, Boulder, Colorado 80309, USA
| | - Lindsay Sonderhouse
- JILA, NIST and University of Colorado, 440 UCB, Boulder, Colorado 80309, USA and Department of Physics, University of Colorado, 390 UCB, Boulder, Colorado 80309, USA
| | - Christian Sanner
- JILA, NIST and University of Colorado, 440 UCB, Boulder, Colorado 80309, USA and Department of Physics, University of Colorado, 390 UCB, Boulder, Colorado 80309, USA
| | - Jun Ye
- JILA, NIST and University of Colorado, 440 UCB, Boulder, Colorado 80309, USA and Department of Physics, University of Colorado, 390 UCB, Boulder, Colorado 80309, USA
| |
Collapse
|
54
|
Herbers S, Dörscher S, Benkler E, Lisdat C. Phase noise of frequency doublers in optical clock lasers. OPTICS EXPRESS 2019; 27:23262-23273. [PMID: 31510607 DOI: 10.1364/oe.27.023262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 07/13/2019] [Indexed: 06/10/2023]
Abstract
Frequency doublers are widely used in high-resolution spectroscopy to shift the operation wavelength of a laser to a more easily accessible or otherwise preferable spectral region. We investigate the use of a periodically-poled lithium niobate (PPLN) waveguide frequency doubler in an optical clock. We focus on the phase evolution between the fundamental (1396 nm) and frequency-doubled (698 nm) light and its effect on clock performance. We find that the excess phase noise of the doubler under steady-state operation is at least two orders of magnitude lower than the noise of today's best interrogation lasers. Phase chirps related to changes of the optical power in the doubler unit and their influence on the accuracy of optical clocks are evaluated. We also observe substantial additional noise when characterizing the doubler unit with an optical frequency comb instead of using two identical waveguide doublers.
Collapse
|
55
|
Megidish E, Broz J, Greene N, Häffner H. Improved Test of Local Lorentz Invariance from a Deterministic Preparation of Entangled States. PHYSICAL REVIEW LETTERS 2019; 122:123605. [PMID: 30978053 DOI: 10.1103/physrevlett.122.123605] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Indexed: 06/09/2023]
Abstract
The high degree of control available over individual atoms enables precision tests of fundamental physical concepts. In this Letter, we experimentally study how precision measurements can be improved by preparing entangled states immune to the dominant source of decoherence. Using ^{40}Ca^{+} ions, we explicitly demonstrate the advantage from entanglement on a precision test of local Lorentz invariance for the electron. Reaching the quantum projection noise limit set by quantum mechanics, we observe, for bipartite entangled states, the expected gain of a factor of two in the precision. Under specific conditions, multipartite entangled states may yield substantial further improvements. Our measurements improve the previous best limit for local Lorentz invariance of the electron using ^{40}Ca^{+} ions by a factor of two to four to about 5×10^{-19}.
Collapse
Affiliation(s)
- Eli Megidish
- Department of Physics, University of California, Berkeley, California 94720, USA
| | - Joseph Broz
- Department of Physics, University of California, Berkeley, California 94720, USA
| | - Nicole Greene
- Department of Physics, University of California, Berkeley, California 94720, USA
| | - Hartmut Häffner
- Department of Physics, University of California, Berkeley, California 94720, USA
| |
Collapse
|