51
|
Castledine M, Padfield D, Sierocinski P, Soria Pascual J, Hughes A, Mäkinen L, Friman VP, Pirnay JP, Merabishvili M, de Vos D, Buckling A. Parallel evolution of Pseudomonas aeruginosa phage resistance and virulence loss in response to phage treatment in vivo and in vitro. eLife 2022; 11:73679. [PMID: 35188102 PMCID: PMC8912922 DOI: 10.7554/elife.73679] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 02/20/2022] [Indexed: 12/02/2022] Open
Abstract
With rising antibiotic resistance, there has been increasing interest in treating pathogenic bacteria with bacteriophages (phage therapy). One limitation of phage therapy is the ease at which bacteria can evolve resistance. Negative effects of resistance may be mitigated when resistance results in reduced bacterial growth and virulence, or when phage coevolves to overcome resistance. Resistance evolution and its consequences are contingent on the bacteria-phage combination and their environmental context, making therapeutic outcomes hard to predict. One solution might be to conduct ‘in vitro evolutionary simulations’ using bacteria-phage combinations from the therapeutic context. Overall, our aim was to investigate parallels between in vitro experiments and in vivo dynamics in a human participant. Evolutionary dynamics were similar, with high levels of resistance evolving quickly with limited evidence of phage evolution. Resistant bacteria—evolved in vitro and in vivo—had lower virulence. In vivo, this was linked to lower growth rates of resistant isolates, whereas in vitro phage resistant isolates evolved greater biofilm production. Population sequencing suggests resistance resulted from selection on de novo mutations rather than sorting of existing variants. These results highlight the speed at which phage resistance can evolve in vivo, and how in vitro experiments may give useful insights for clinical evolutionary outcomes.
Collapse
Affiliation(s)
- Meaghan Castledine
- College of Life and Environmental Sciences, University of Exeter, Penryn, United Kingdom
| | - Daniel Padfield
- College of Life and Environmental Sciences, University of Exeter, Penryn, United Kingdom
| | - Pawel Sierocinski
- College of Life and Environmental Sciences, University of Exeter, Penryn, United Kingdom
| | - Jesica Soria Pascual
- College of Life and Environmental Sciences, University of Exeter, Penryn, United Kingdom
| | - Adam Hughes
- College of Life and Environmental Sciences, University of Exeter, Penryn, United Kingdom
| | - Lotta Mäkinen
- College of Life and Environmental Sciences, University of Exeter, Penryn, United Kingdom
| | | | - Jean-Paul Pirnay
- Laboratory for Molecular and Cellular Technology, Queen Astrid Military Hospital, Brussels, Belgium
| | - Maya Merabishvili
- Laboratory for Molecular and Cellular Technology, Queen Astrid Military Hospital, Brussels, Belgium
| | - Daniel de Vos
- Laboratory for Molecular and Cellular Technology, Queen Astrid Military Hospital, Brussels, Belgium
| | - Angus Buckling
- College of Life and Environmental Sciences, University of Exeter, Penryn, United Kingdom
| |
Collapse
|
52
|
Mitigation of evolved bacterial resistance to phage therapy. Curr Opin Virol 2022; 53:101201. [PMID: 35180532 DOI: 10.1016/j.coviro.2022.101201] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/31/2021] [Accepted: 01/06/2022] [Indexed: 12/19/2022]
Abstract
The ease with which bacteria can evolve resistance to phages is a key consideration for development of phage therapy. Here, we review recent work on the different evolutionary and ecological approaches to mitigate the problem. The approaches are broadly categorised into two areas: Minimising evolved phage resistance; and Directing phage-resistance evolution towards therapeutically beneficial outcomes.
Collapse
|
53
|
Meaden S, Biswas A, Arkhipova K, Morales SE, Dutilh BE, Westra ER, Fineran PC. High viral abundance and low diversity are associated with increased CRISPR-Cas prevalence across microbial ecosystems. Curr Biol 2022; 32:220-227.e5. [PMID: 34758284 DOI: 10.1101/2021.06.24.449667v2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/12/2021] [Accepted: 10/19/2021] [Indexed: 05/27/2023]
Abstract
CRISPR-Cas are adaptive immune systems that protect their hosts against viruses and other parasitic mobile genetic elements.1 Although widely distributed among prokaryotic taxa, CRISPR-Cas systems are not ubiquitous.2-4 Like most defense-system genes, CRISPR-Cas are frequently lost and gained, suggesting advantages are specific to particular environmental conditions.5 Selection from viruses is assumed to drive the acquisition and maintenance of these immune systems in nature, and both theory6-8 and experiments have identified phage density and diversity as key fitness determinants.9,10 However, these approaches lack the biological complexity inherent in nature. Here, we exploit metagenomic data from 324 samples across diverse ecosystems to analyze CRISPR abundance in natural environments. For each metagenome, we quantified viral abundance and diversity to test whether these contribute to CRISPR-Cas abundance across ecosystems. We find a strong positive association between CRISPR-Cas abundance and viral abundance. In addition, when controlling for differences in viral abundance, CRISPR-Cas systems are more abundant when viral diversity is low, suggesting that such adaptive immune systems may offer limited protection when required to target a diverse viral community. CRISPR-Cas abundance also differed among environments, with environmental classification explaining roughly a quarter of the variation in CRISPR-Cas relative abundance. The relationships between CRISPR-Cas abundance, viral abundance, and viral diversity are broadly consistent across environments, providing robust evidence from natural ecosystems that supports predictions of when CRISPR is beneficial. These results indicate that viral abundance and diversity are major ecological factors that drive the selection and maintenance of CRISPR-Cas in microbial ecosystems.
Collapse
Affiliation(s)
- Sean Meaden
- Environment and Sustainability Institute, Biosciences, University of Exeter, Penryn TR10 9EZ, UK; Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand.
| | - Ambarish Biswas
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand; Grasslands Research Centre, AgResearch, PO Box 11008, Palmerston North 4442, New Zealand
| | - Ksenia Arkhipova
- Theoretical Biology and Bioinformatics, Science for Life, Utrecht University, Utrecht, the Netherlands
| | - Sergio E Morales
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Bas E Dutilh
- Theoretical Biology and Bioinformatics, Science for Life, Utrecht University, Utrecht, the Netherlands
| | - Edze R Westra
- Environment and Sustainability Institute, Biosciences, University of Exeter, Penryn TR10 9EZ, UK
| | - Peter C Fineran
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand; Bioprotection Aotearoa, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| |
Collapse
|
54
|
Bacteriostatic antibiotics promote CRISPR-Cas adaptive immunity by enabling increased spacer acquisition. Cell Host Microbe 2021; 30:31-40.e5. [PMID: 34932986 DOI: 10.1016/j.chom.2021.11.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 10/12/2021] [Accepted: 11/24/2021] [Indexed: 01/21/2023]
Abstract
Phages impose strong selection on bacteria to evolve resistance against viral predation. Bacteria can rapidly evolve phage resistance via receptor mutation or using their CRISPR-Cas adaptive immune systems. Acquisition of CRISPR immunity relies on the insertion of a phage-derived sequence into CRISPR arrays in the bacterial genome. Using Pseudomonas aeruginosa and its phage DMS3vir as a model, we demonstrate that conditions that reduce bacterial growth rates, such as exposure to bacteriostatic antibiotics (which inhibit cell growth without killing), promote the evolution of CRISPR immunity. We demonstrate that this is due to slower phage development under these conditions, which provides more time for cells to acquire phage-derived sequences and mount an immune response. Our data reveal that the speed of phage development is a key determinant of the evolution of CRISPR immunity and suggest that use of bacteriostatic antibiotics can trigger elevated levels of CRISPR immunity in human-associated and natural environments.
Collapse
|
55
|
Meaden S, Biswas A, Arkhipova K, Morales SE, Dutilh BE, Westra ER, Fineran PC. High viral abundance and low diversity are associated with increased CRISPR-Cas prevalence across microbial ecosystems. Curr Biol 2021; 32:220-227.e5. [PMID: 34758284 PMCID: PMC8751634 DOI: 10.1016/j.cub.2021.10.038] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/12/2021] [Accepted: 10/19/2021] [Indexed: 11/28/2022]
Abstract
CRISPR-Cas are adaptive immune systems that protect their hosts against viruses and other parasitic mobile genetic elements.1 Although widely distributed among prokaryotic taxa, CRISPR-Cas systems are not ubiquitous.2, 3, 4 Like most defense-system genes, CRISPR-Cas are frequently lost and gained, suggesting advantages are specific to particular environmental conditions.5 Selection from viruses is assumed to drive the acquisition and maintenance of these immune systems in nature, and both theory6, 7, 8 and experiments have identified phage density and diversity as key fitness determinants.9,10 However, these approaches lack the biological complexity inherent in nature. Here, we exploit metagenomic data from 324 samples across diverse ecosystems to analyze CRISPR abundance in natural environments. For each metagenome, we quantified viral abundance and diversity to test whether these contribute to CRISPR-Cas abundance across ecosystems. We find a strong positive association between CRISPR-Cas abundance and viral abundance. In addition, when controlling for differences in viral abundance, CRISPR-Cas systems are more abundant when viral diversity is low, suggesting that such adaptive immune systems may offer limited protection when required to target a diverse viral community. CRISPR-Cas abundance also differed among environments, with environmental classification explaining roughly a quarter of the variation in CRISPR-Cas relative abundance. The relationships between CRISPR-Cas abundance, viral abundance, and viral diversity are broadly consistent across environments, providing robust evidence from natural ecosystems that supports predictions of when CRISPR is beneficial. These results indicate that viral abundance and diversity are major ecological factors that drive the selection and maintenance of CRISPR-Cas in microbial ecosystems. Metagenomic data from diverse ecosystems are used to analyze CRISPR prevalence Environment type explains ∼a quarter of the variation in CRISPR-Cas abundance There is a positive association between CRISPR-Cas abundance and viral abundance CRISPR-Cas is more abundant when viral diversity is comparatively lower
Collapse
Affiliation(s)
- Sean Meaden
- Environment and Sustainability Institute, Biosciences, University of Exeter, Penryn TR10 9EZ, UK; Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand.
| | - Ambarish Biswas
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand; Grasslands Research Centre, AgResearch, PO Box 11008, Palmerston North 4442, New Zealand
| | - Ksenia Arkhipova
- Theoretical Biology and Bioinformatics, Science for Life, Utrecht University, Utrecht, the Netherlands
| | - Sergio E Morales
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Bas E Dutilh
- Theoretical Biology and Bioinformatics, Science for Life, Utrecht University, Utrecht, the Netherlands
| | - Edze R Westra
- Environment and Sustainability Institute, Biosciences, University of Exeter, Penryn TR10 9EZ, UK
| | - Peter C Fineran
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand; Bioprotection Aotearoa, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| |
Collapse
|
56
|
Blazanin M, Turner PE. Community context matters for bacteria-phage ecology and evolution. THE ISME JOURNAL 2021; 15:3119-3128. [PMID: 34127803 PMCID: PMC8528888 DOI: 10.1038/s41396-021-01012-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/30/2021] [Accepted: 05/11/2021] [Indexed: 02/03/2023]
Abstract
Bacteria-phage symbioses are ubiquitous in nature and serve as valuable biological models. Historically, the ecology and evolution of bacteria-phage systems have been studied in either very simple or very complex communities. Although both approaches provide insight, their shortcomings limit our understanding of bacteria and phages in multispecies contexts. To address this gap, here we synthesize the emerging body of bacteria-phage experiments in medium-complexity communities, specifically those that manipulate bacterial community presence. Generally, community presence suppresses both focal bacterial (phage host) and phage densities, while sometimes altering bacteria-phage ecological interactions in diverse ways. Simultaneously, community presence can have an array of evolutionary effects. Sometimes community presence has no effect on the coevolutionary dynamics of bacteria and their associated phages, whereas other times the presence of additional bacterial species constrains bacteria-phage coevolution. At the same time, community context can alter mechanisms of adaptation and interact with the pleiotropic consequences of (co)evolution. Ultimately, these experiments show that community context can have important ecological and evolutionary effects on bacteria-phage systems, but many questions still remain unanswered and ripe for additional investigation.
Collapse
Affiliation(s)
- Michael Blazanin
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA.
- BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI, USA.
| | - Paul E Turner
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
- BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI, USA
- Program in Microbiology, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
57
|
Weissman JL, Alseth EO, Meaden S, Westra ER, Fuhrman JA. Immune lag is a major cost of prokaryotic adaptive immunity during viral outbreaks. Proc Biol Sci 2021; 288:20211555. [PMID: 34666523 PMCID: PMC8527200 DOI: 10.1098/rspb.2021.1555] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Clustered regularly interspaced short palindromic repeat (CRISPR)-Cas adaptive immune systems enable bacteria and archaea to efficiently respond to viral pathogens by creating a genomic record of previous encounters. These systems are broadly distributed across prokaryotic taxa, yet are surprisingly absent in a majority of organisms, suggesting that the benefits of adaptive immunity frequently do not outweigh the costs. Here, combining experiments and models, we show that a delayed immune response which allows viruses to transiently redirect cellular resources to reproduction, which we call ‘immune lag’, is extremely costly during viral outbreaks, even to completely immune hosts. Critically, the costs of lag are only revealed by examining the early, transient dynamics of a host–virus system occurring immediately after viral challenge. Lag is a basic parameter of microbial defence, relevant to all intracellular, post-infection antiviral defence systems, that has to-date been largely ignored by theoretical and experimental treatments of host-phage systems.
Collapse
Affiliation(s)
- Jake L Weissman
- Department of Biological Sciences-Marine and Environmental Biology, University of Southern California, Los Angeles, CA, USA
| | - Ellinor O Alseth
- Environment and Sustainability Institute, Biosciences, University of Exeter, Penryn Campus, Penryn, UK
| | - Sean Meaden
- Environment and Sustainability Institute, Biosciences, University of Exeter, Penryn Campus, Penryn, UK
| | - Edze R Westra
- Environment and Sustainability Institute, Biosciences, University of Exeter, Penryn Campus, Penryn, UK
| | - Jed A Fuhrman
- Department of Biological Sciences-Marine and Environmental Biology, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
58
|
Exploring the diversity of bacteriophage specific to Oenococcus oeni and Lactobacillus spp and their role in wine production. Appl Microbiol Biotechnol 2021; 105:8575-8592. [PMID: 34694447 DOI: 10.1007/s00253-021-11509-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/03/2021] [Accepted: 08/06/2021] [Indexed: 12/19/2022]
Abstract
The widespread existence of bacteriophage has been of great interest to the biological research community and ongoing investigations continue to explore their diversity and role. They have also attracted attention and in-depth research in connection to fermented food processing, in particular from the dairy and wine industries. Bacteriophage, mostly oenophage, may in fact be a 'double edged sword' for winemakers: whilst they have been implicated as a causal agent of difficulties with malolactic fermentation (although not proven), they are also beginning to be considered as alternatives to using sulphur dioxide to prevent wine spoilage. Investigation and characterisation of oenophage of Oenococcus oeni, the main species used in winemaking, are still limited compared to lactococcal bacteriophage of Lactococcus lactis and Lactiplantibacillus plantarum (formally Lactobacillus plantarum), the drivers of most fermented dairy products. Interestingly, these strains are also being used or considered for use in winemaking. In this review, the genetic diversity and life cycle of phage, together with the debate on the consequent impact of phage predation in wine, and potential control strategies are discussed. KEY POINTS: • Bacteriophage detected in wine are diverse. • Many lysogenic bacteriophage are found in wine bacteria. • Phage impact on winemaking can depend on the stage of the winemaking process. • Bacteriophage as potential antimicrobial agents against spoilage organisms.
Collapse
|
59
|
Hussain FA, Dubert J, Elsherbini J, Murphy M, VanInsberghe D, Arevalo P, Kauffman K, Rodino-Janeiro BK, Gavin H, Gomez A, Lopatina A, Le Roux F, Polz MF. Rapid evolutionary turnover of mobile genetic elements drives bacterial resistance to phages. Science 2021; 374:488-492. [PMID: 34672730 DOI: 10.1126/science.abb1083] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Fatima Aysha Hussain
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Javier Dubert
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Microbiology and Parasitology, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Joseph Elsherbini
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Mikayla Murphy
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - David VanInsberghe
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Philip Arevalo
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kathryn Kauffman
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Bruno Kotska Rodino-Janeiro
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.,Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Center for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Hannah Gavin
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Annika Gomez
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Anna Lopatina
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Center for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Frédérique Le Roux
- Ifremer, Unité Physiologie Fonctionnelle des Organismes Marins, CS 10070, F-29280 Plouzané, France.,Sorbonne Universités, UPMC Paris 06, CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688 Roscoff Cedex, France
| | - Martin F Polz
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.,Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Center for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| |
Collapse
|
60
|
Egido JE, Costa AR, Aparicio-Maldonado C, Haas PJ, Brouns SJJ. Mechanisms and clinical importance of bacteriophage resistance. FEMS Microbiol Rev 2021; 46:6374866. [PMID: 34558600 PMCID: PMC8829019 DOI: 10.1093/femsre/fuab048] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 09/15/2021] [Indexed: 12/24/2022] Open
Abstract
We are in the midst of a golden age of uncovering defense systems against bacteriophages. Apart from the fundamental interest in these defense systems, and revolutionary applications that have been derived from them (e.g. CRISPR-Cas9 and restriction endonucleases), it is unknown how defense systems contribute to resistance formation against bacteriophages in clinical settings. Bacteriophages are now being reconsidered as therapeutic agents against bacterial infections due the emergence of multidrug resistance. However, bacteriophage resistance through defense systems and other means could hinder the development of successful phage-based therapies. Here, we review the current state of the field of bacteriophage defense, highlight the relevance of bacteriophage defense for potential clinical use of bacteriophages as therapeutic agents and suggest new directions of research.
Collapse
Affiliation(s)
- Julia E Egido
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, Netherlands
| | - Ana Rita Costa
- Department of Bionanoscience, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, Netherlands.,Kavli Institute of Nanoscience, Delft, Netherlands.,Fagenbank, Delft, Netherlands
| | - Cristian Aparicio-Maldonado
- Department of Bionanoscience, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, Netherlands.,Kavli Institute of Nanoscience, Delft, Netherlands
| | - Pieter-Jan Haas
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, Netherlands
| | - Stan J J Brouns
- Department of Bionanoscience, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, Netherlands.,Kavli Institute of Nanoscience, Delft, Netherlands.,Fagenbank, Delft, Netherlands
| |
Collapse
|
61
|
Lindsay RJ, Jepson A, Butt L, Holder PJ, Smug BJ, Gudelj I. Would that it were so simple: Interactions between multiple traits undermine classical single-trait-based predictions of microbial community function and evolution. Ecol Lett 2021; 24:2775-2795. [PMID: 34453399 DOI: 10.1111/ele.13861] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/11/2021] [Accepted: 07/27/2021] [Indexed: 12/15/2022]
Abstract
Understanding how microbial traits affect the evolution and functioning of microbial communities is fundamental for improving the management of harmful microorganisms, while promoting those that are beneficial. Decades of evolutionary ecology research has focused on examining microbial cooperation, diversity, productivity and virulence but with one crucial limitation. The traits under consideration, such as public good production and resistance to antibiotics or predation, are often assumed to act in isolation. Yet, in reality, multiple traits frequently interact, which can lead to unexpected and undesired outcomes for the health of macroorganisms and ecosystem functioning. This is because many predictions generated in a single-trait context aimed at promoting diversity, reducing virulence or controlling antibiotic resistance can fail for systems where multiple traits interact. Here, we provide a much needed discussion and synthesis of the most recent research to reveal the widespread and diverse nature of multi-trait interactions and their consequences for predicting and controlling microbial community dynamics. Importantly, we argue that synthetic microbial communities and multi-trait mathematical models are powerful tools for managing the beneficial and detrimental impacts of microbial communities, such that past mistakes, like those made regarding the stewardship of antimicrobials, are not repeated.
Collapse
Affiliation(s)
- Richard J Lindsay
- Biosciences and Living Systems Institute, University of Exeter, Exeter, UK
| | - Alys Jepson
- Biosciences and Living Systems Institute, University of Exeter, Exeter, UK
| | - Lisa Butt
- Biosciences and Living Systems Institute, University of Exeter, Exeter, UK
| | - Philippa J Holder
- Biosciences and Living Systems Institute, University of Exeter, Exeter, UK
| | - Bogna J Smug
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Ivana Gudelj
- Biosciences and Living Systems Institute, University of Exeter, Exeter, UK
| |
Collapse
|
62
|
Chevallereau A, Pons BJ, van Houte S, Westra ER. Interactions between bacterial and phage communities in natural environments. Nat Rev Microbiol 2021; 20:49-62. [PMID: 34373631 DOI: 10.1038/s41579-021-00602-y] [Citation(s) in RCA: 207] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 06/28/2021] [Indexed: 12/20/2022]
Abstract
We commonly acknowledge that bacterial viruses (phages) shape the composition and evolution of bacterial communities in nature and therefore have important roles in ecosystem functioning. This view stems from studies in the 1990s to the first decade of the twenty-first century that revealed high viral abundance, high viral diversity and virus-induced microbial death in aquatic ecosystems as well as an association between collapses in bacterial density and peaks in phage abundance. The recent surge in metagenomic analyses has provided deeper insight into the abundance, genomic diversity and spatio-temporal dynamics of phages in a wide variety of ecosystems, ranging from deep oceans to soil and the mammalian digestive tract. However, the causes and consequences of variations in phage community compositions remain poorly understood. In this Review, we explore current knowledge of the composition and evolution of phage communities, as well as their roles in controlling the population and evolutionary dynamics of bacterial communities. We discuss the need for greater ecological realism in laboratory studies to capture the complexity of microbial communities that thrive in natural environments.
Collapse
Affiliation(s)
- Anne Chevallereau
- Environment and Sustainability Institute, Biosciences, University of Exeter, Penryn, UK. .,Department of Infection, Immunity and Inflammation, Institut Cochin, INSERM U1016, CNRS UMR8104, Université de Paris, Paris, France.
| | - Benoît J Pons
- Environment and Sustainability Institute, Biosciences, University of Exeter, Penryn, UK
| | - Stineke van Houte
- Environment and Sustainability Institute, Biosciences, University of Exeter, Penryn, UK
| | - Edze R Westra
- Environment and Sustainability Institute, Biosciences, University of Exeter, Penryn, UK.
| |
Collapse
|
63
|
The effect of Quorum sensing inhibitors on the evolution of CRISPR-based phage immunity in Pseudomonas aeruginosa. THE ISME JOURNAL 2021; 15:2465-2473. [PMID: 33692485 PMCID: PMC8319334 DOI: 10.1038/s41396-021-00946-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 02/15/2021] [Accepted: 02/18/2021] [Indexed: 01/31/2023]
Abstract
Quorum sensing controls the expression of a wide range of important traits in the opportunistic pathogen Pseudomonas aeruginosa, including the expression of virulence genes and its CRISPR-cas immune system, which protects from bacteriophage (phage) infection. This finding has led to the speculation that synthetic quorum sensing inhibitors could be used to limit the evolution of CRISPR immunity during phage therapy. Here we use experimental evolution to explore if and how a quorum sensing inhibitor influences the population and evolutionary dynamics of P. aeruginosa upon phage DMS3vir infection. We find that chemical inhibition of quorum sensing decreases phage adsorption rates due to downregulation of the Type IV pilus, which causes delayed lysis of bacterial cultures and favours the evolution of CRISPR immunity. Our data therefore suggest that inhibiting quorum sensing may reduce rather than improve the therapeutic efficacy of pilus-specific phage, and this is likely a general feature when phage receptors are positively regulated by quorum sensing.
Collapse
|
64
|
Luo G, Jiang Y, Xie C, Lu X. Metal‐organic framework‐based biomaterials for biomedical applications. BIOSURFACE AND BIOTRIBOLOGY 2021. [DOI: 10.1049/bsb2.12012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Affiliation(s)
- Gang Luo
- Key Laboratory of Advanced Technologies of Materials Ministry of Education School of Materials Science and Engineering Yibin Institute of Southwest Jiaotong University Southwest Jiaotong University Chengdu China
| | - Yanan Jiang
- Key Laboratory of Advanced Technologies of Materials Ministry of Education School of Materials Science and Engineering Yibin Institute of Southwest Jiaotong University Southwest Jiaotong University Chengdu China
| | - Chaoming Xie
- Key Laboratory of Advanced Technologies of Materials Ministry of Education School of Materials Science and Engineering Yibin Institute of Southwest Jiaotong University Southwest Jiaotong University Chengdu China
| | - Xiong Lu
- Key Laboratory of Advanced Technologies of Materials Ministry of Education School of Materials Science and Engineering Yibin Institute of Southwest Jiaotong University Southwest Jiaotong University Chengdu China
| |
Collapse
|
65
|
Sánchez Á, Vila JCC, Chang CY, Diaz-Colunga J, Estrela S, Rebolleda-Gomez M. Directed Evolution of Microbial Communities. Annu Rev Biophys 2021; 50:323-341. [PMID: 33646814 PMCID: PMC8105285 DOI: 10.1146/annurev-biophys-101220-072829] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Directed evolution is a form of artificial selection that has been used for decades to find biomolecules and organisms with new or enhanced functional traits. Directed evolution can be conceptualized as a guided exploration of the genotype-phenotype map, where genetic variants with desirable phenotypes are first selected and then mutagenized to search the genotype space for an even better mutant. In recent years, the idea of applying artificial selection to microbial communities has gained momentum. In this article, we review the main limitations of artificial selection when applied to large and diverse collectives of asexually dividing microbes and discuss how the tools of directed evolution may be deployed to engineer communities from the top down. We conceptualize directed evolution of microbial communities as a guided exploration of an ecological structure-function landscape and propose practical guidelines for navigating these ecological landscapes.
Collapse
Affiliation(s)
- Álvaro Sánchez
- Department of Ecology & Evolutionary Biology and Microbial Sciences Institute, Yale University, New Haven, Connecticut 06520, USA; , , , , ,
| | - Jean C C Vila
- Department of Ecology & Evolutionary Biology and Microbial Sciences Institute, Yale University, New Haven, Connecticut 06520, USA; , , , , ,
| | - Chang-Yu Chang
- Department of Ecology & Evolutionary Biology and Microbial Sciences Institute, Yale University, New Haven, Connecticut 06520, USA; , , , , ,
| | - Juan Diaz-Colunga
- Department of Ecology & Evolutionary Biology and Microbial Sciences Institute, Yale University, New Haven, Connecticut 06520, USA; , , , , ,
| | - Sylvie Estrela
- Department of Ecology & Evolutionary Biology and Microbial Sciences Institute, Yale University, New Haven, Connecticut 06520, USA; , , , , ,
| | - María Rebolleda-Gomez
- Department of Ecology & Evolutionary Biology and Microbial Sciences Institute, Yale University, New Haven, Connecticut 06520, USA; , , , , ,
| |
Collapse
|
66
|
Abstract
CRISPR-Cas systems provide bacteria and archaea with adaptive, heritable immunity against their viruses (bacteriophages and phages) and other parasitic genetic elements. CRISPR-Cas systems are highly diverse, and we are only beginning to understand their relative importance in phage defense. In this review, we will discuss when and why CRISPR-Cas immunity against phages evolves, and how this, in turn, selects for the evolution of immune evasion by phages. Finally, we will discuss our current understanding of if, and when, we observe coevolution between CRISPR-Cas systems and phages, and how this may be influenced by the mechanism of CRISPR-Cas immunity.
Collapse
|
67
|
Ecology and evolution of antimicrobial resistance in bacterial communities. THE ISME JOURNAL 2021; 15:939-948. [PMID: 33219299 PMCID: PMC8115348 DOI: 10.1038/s41396-020-00832-7] [Citation(s) in RCA: 139] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 10/29/2020] [Accepted: 11/03/2020] [Indexed: 02/07/2023]
Abstract
Accumulating evidence suggests that the response of bacteria to antibiotics is significantly affected by the presence of other interacting microbes. These interactions are not typically accounted for when determining pathogen sensitivity to antibiotics. In this perspective, we argue that resistance and evolutionary responses to antibiotic treatments should not be considered only a trait of an individual bacteria species but also an emergent property of the microbial community in which pathogens are embedded. We outline how interspecies interactions can affect the responses of individual species and communities to antibiotic treatment, and how these responses could affect the strength of selection, potentially changing the trajectory of resistance evolution. Finally, we identify key areas of future research which will allow for a more complete understanding of antibiotic resistance in bacterial communities. We emphasise that acknowledging the ecological context, i.e. the interactions that occur between pathogens and within communities, could help the development of more efficient and effective antibiotic treatments.
Collapse
|
68
|
Abstract
Oral bacteriophages (or phages), especially periodontal ones, constitute a growing area of interest, but research on oral phages is still in its infancy. Phages are bacterial viruses that may persist as intracellular parasitic deoxyribonucleic acid (DNA) or use bacterial metabolism to replicate and cause bacterial lysis. The microbiomes of saliva, oral mucosa, and dental plaque contain active phage virions, bacterial lysogens (ie, carrying dormant prophages), and bacterial strains containing short fragments of phage DNA. In excess of 2000 oral phages have been confirmed or predicted to infect species of the phyla Actinobacteria (>300 phages), Bacteroidetes (>300 phages), Firmicutes (>1000 phages), Fusobacteria (>200 phages), and Proteobacteria (>700 phages) and three additional phyla (few phages only). This article assesses the current knowledge of the diversity of the oral phage population and the mechanisms by which phages may impact the ecology of oral biofilms. The potential use of phage-based therapy to control major periodontal pathogens is also discussed.
Collapse
Affiliation(s)
- Szymon P Szafrański
- Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Hannover, Germany
| | - Jørgen Slots
- Division of Periodontology, Diagnostic Sciences and Dental Hygiene, Ostrow School of Dentistry of USC, University of Southern California, Los Angeles, California, USA
| | - Meike Stiesch
- Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Hannover, Germany
| |
Collapse
|
69
|
Guerrero LD, Pérez MV, Orellana E, Piuri M, Quiroga C, Erijman L. Long-run bacteria-phage coexistence dynamics under natural habitat conditions in an environmental biotechnology system. THE ISME JOURNAL 2021; 15:636-648. [PMID: 33067586 PMCID: PMC8027832 DOI: 10.1038/s41396-020-00802-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 09/21/2020] [Accepted: 10/01/2020] [Indexed: 01/30/2023]
Abstract
Bacterial viruses are widespread and abundant across natural and engineered habitats. They influence ecosystem functioning through interactions with their hosts. Laboratory studies of phage-host pairs have advanced our understanding of phenotypic and genetic diversification in bacteria and phages. However, the dynamics of phage-host interactions have been seldom recorded in complex natural environments. We conducted an observational metagenomic study of the dynamics of interaction between Gordonia and their phages using a three-year data series of samples collected from a full-scale wastewater treatment plant. The aim was to obtain a comprehensive picture of the coevolution dynamics in naturally evolving populations at relatively high time resolution. Coevolution was followed by monitoring changes over time in the CRISPR loci of Gordonia metagenome-assembled genome, and reciprocal changes in the viral genome. Genome-wide analysis indicated low strain variability of Gordonia, and almost clonal conservation of the trailer end of the CRISPR loci. Incorporation of newer spacers gave rise to multiple coexisting bacterial populations. The host population carrying a shorter CRISPR locus that contain only ancestral spacers, which has not acquired newer spacers against the coexisting phages, accounted for more than half of the total host abundance in the majority of samples. Phages genome co-evolved by introducing directional changes, with no preference for mutations within the protospacer and PAM regions. Metagenomic reconstruction of time-resolved variants of host and viral genomes revealed how the complexity at the population level has important consequences for bacteria-phage coexistence.
Collapse
Affiliation(s)
- Leandro D. Guerrero
- grid.423606.50000 0001 1945 2152Instituto de Investigaciones en Ingeniería Genética y Biología Molecular “Dr Héctor N. Torres” (INGEBI-CONICET), Vuelta de Obligado 2490, C1428ADN Buenos Aires, Argentina
| | - María V. Pérez
- grid.423606.50000 0001 1945 2152Instituto de Investigaciones en Ingeniería Genética y Biología Molecular “Dr Héctor N. Torres” (INGEBI-CONICET), Vuelta de Obligado 2490, C1428ADN Buenos Aires, Argentina ,Agua y Saneamientos Argentinos S.A., Tucumán 752, C1049APP Buenos Aires, Argentina
| | - Esteban Orellana
- grid.423606.50000 0001 1945 2152Instituto de Investigaciones en Ingeniería Genética y Biología Molecular “Dr Héctor N. Torres” (INGEBI-CONICET), Vuelta de Obligado 2490, C1428ADN Buenos Aires, Argentina
| | - Mariana Piuri
- Departamento de Química Biológica, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, CONICET, Intendente Güiraldes 2160, C1428EGA Buenos Aires, Argentina
| | - Cecilia Quiroga
- Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM), Facultad de Medicina, Universidad de Buenos Aires, CONICET, Paraguay 2155, C1121ABG Buenos Aires, Argentina
| | - Leonardo Erijman
- grid.423606.50000 0001 1945 2152Instituto de Investigaciones en Ingeniería Genética y Biología Molecular “Dr Héctor N. Torres” (INGEBI-CONICET), Vuelta de Obligado 2490, C1428ADN Buenos Aires, Argentina ,grid.7345.50000 0001 0056 1981Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires, Intendente Güiraldes 2160s, C1428EGA Buenos Aires, Argentina
| |
Collapse
|
70
|
田 而, 王 玥, 吴 卓, 万 紫, 程 伟. [Bacteriophage Therapy: Retrospective Review and Future Prospects]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2021; 52:170-175. [PMID: 33829687 PMCID: PMC10408932 DOI: 10.12182/20210360207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Indexed: 02/05/2023]
Abstract
At present, bacterial infections are mainly treated with antibiotics, but new treatment methods are urgently needed because of growing problems with antibiotic resistance. Therefore, phage therapy will be a potential solution to the problem of bacterial drug resistance, and the combined use of bacteriophage and antibiotics is also considered a potential treatment option. However, there has not been any well-designed clinical controlled trials on phage therapy. More future research needs to be done to solve the problems of phage therapy, for example, its narrow antibacterial spectrum, the uncertainty regarding treatment safety, and the bacterial resistance. Some refractory diseases such as breast cancer and alcoholic hepatitis are difficult to treat clinically. The successful experimental research on bacteriophages reported in these fields provides new ideas of treatment for more refractory diseases in the future. In addition, bacteriophages also showed promising performance in vaccine applications and osteanagenesis. We herein summarize the existing weaknesses of phage therapy and its application prospects in treating systemic diseases, hoping to promote further clinical application research of phage therapy.
Collapse
Affiliation(s)
- 而慷 田
- 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院 (成都 610041)State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - 玥 王
- 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院 (成都 610041)State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - 卓轩 吴
- 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院 (成都 610041)State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - 紫千红 万
- 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院 (成都 610041)State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - 伟 程
- 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院 (成都 610041)State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
71
|
A Novel N4-Like Bacteriophage Isolated from a Wastewater Source in South India with Activity against Several Multidrug-Resistant Clinical Pseudomonas aeruginosa Isolates. mSphere 2021; 6:6/1/e01215-20. [PMID: 33441405 PMCID: PMC7845610 DOI: 10.1128/msphere.01215-20] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In India, multidrug resistance determinants are much more abundant in community-associated bacterial pathogens due to the improper treatment of domestic and industrial effluents. In particular, a high bacterial load of the opportunistic pathogen P. aeruginosa in sewage and water bodies in India is well documented. Multidrug-resistant community-acquired infections caused by the opportunistic human pathogen Pseudomonas aeruginosa are increasingly reported in India and other locations globally. Since this organism is ubiquitous in the environment, samples such as sewage and wastewater are rich reservoirs of P. aeruginosa bacteriophages. In this study, we report the isolation and characterization of a novel P. aeruginosa N4-like lytic bacteriophage, vB_Pae_AM.P2 (AM.P2), from wastewater in Kerala, India. AM.P2 is a double-stranded DNA podovirus that efficiently lyses the model strain, PAO1, at a multiplicity of infection as low as 0.1 phage per bacterium and resistance frequency of 6.59 × 10−4. Synergy in bactericidal activity was observed between AM.P2 and subinhibitory concentrations of the antibiotic ciprofloxacin. Genome sequencing of AM.P2 revealed features similar to those of the N4-like P. aeruginosa phages LUZ7 and KPP21. As judged by two independent assay methods, spot tests and growth inhibition, AM.P2 successfully inhibited the growth of almost 30% of strains from a contemporary collection of multidrug-resistant P. aeruginosa clinical isolates from South India. Thus, AM.P2 may represent an intriguing candidate for inclusion in bacteriophage cocktails developed for various applications, including water decontamination and clinical bacteriophage therapy. IMPORTANCE In India, multidrug resistance determinants are much more abundant in community-associated bacterial pathogens due to the improper treatment of domestic and industrial effluents. In particular, a high bacterial load of the opportunistic pathogen P. aeruginosa in sewage and water bodies in India is well documented. The isolation and characterization of bacteriophages that could target emerging P. aeruginosa strains, representing possible epicenters for community-acquired infections, could serve as a useful alternative tool for various applications, such as phage therapy and environmental treatment. Continuing to supplement the repertoire of broad-spectrum bacteriophages is an essential tool in confronting this problem.
Collapse
|
72
|
Pollock J, Low AS, McHugh RE, Muwonge A, Stevens MP, Corbishley A, Gally DL. Alternatives to antibiotics in a One Health context and the role genomics can play in reducing antimicrobial use. Clin Microbiol Infect 2020; 26:1617-1621. [PMID: 32220638 DOI: 10.1016/j.cmi.2020.02.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/19/2020] [Accepted: 02/22/2020] [Indexed: 01/16/2023]
Abstract
BACKGROUND This review follows on from the International Conference on One Health Antimicrobial Resistance (ICOHAR 2019), where strategies to improve the fundamental understanding and management of antimicrobial resistance at the interface between humans, animals and the environment were discussed. OBJECTIVE This review identifies alternatives to antimicrobials in a One Health context, noting how advances in genomic technologies are assisting their development and enabling more targeted use of antimicrobials. SOURCES Key articles on the use of microbiota modulation, livestock breeding and gene editing, vaccination, antivirulence strategies and bacteriophage therapy are discussed. CONTENT Antimicrobials are central for disease control, but reducing their use is paramount as a result of the rise of transmissible antimicrobial resistance. This review discusses antimicrobial alternatives in the context of improved understanding of fundamental host-pathogen and microbiota interactions using genomic tools. IMPLICATIONS Host and microbial genomics and other novel technologies play an important role in devising disease control strategies for healthier animals and humans that in turn reduce our reliance on antimicrobials.
Collapse
Affiliation(s)
- J Pollock
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, Edinburgh, UK
| | - A S Low
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, Edinburgh, UK
| | - R E McHugh
- Institute of Infection, Immunity & Inflammation, University of Glasgow, Glasgow, Scotland, UK; Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, Scotland, UK
| | - A Muwonge
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, Edinburgh, UK
| | - M P Stevens
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, Edinburgh, UK
| | - A Corbishley
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, Edinburgh, UK
| | - D L Gally
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, Edinburgh, UK.
| |
Collapse
|
73
|
North OI, Brown ED. Phage-antibiotic combinations: a promising approach to constrain resistance evolution in bacteria. Ann N Y Acad Sci 2020; 1496:23-34. [PMID: 33175408 DOI: 10.1111/nyas.14533] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/15/2020] [Accepted: 10/26/2020] [Indexed: 12/18/2022]
Abstract
Antibiotic resistance has reached dangerously high levels throughout the world. A growing number of bacteria pose an urgent, serious, and concerning threat to public health. Few new antibiotics are available to clinicians and only few are in development, highlighting the need for new strategies to overcome the antibiotic resistance crisis. Combining existing antibiotics with phages, viruses the infect bacteria, is an attractive and promising alternative to standalone therapies. Phage-antibiotic combinations have been shown to suppress the emergence of resistance in bacteria, and sometimes even reverse it. Here, we discuss the mechanisms by which phage-antibiotic combinations reduce resistance evolution, and the potential limitations these mechanisms have in steering microbial resistance evolution in a desirable direction. We also emphasize the importance of gaining a better understanding of mechanisms behind physiological and evolutionary phage-antibiotic interactions in complex in-patient environments.
Collapse
Affiliation(s)
- Olesia I North
- Department of Biochemistry and Biomedical Sciences and M.G. DeGroote Institute for Infectious Disease Research, McMaster University, Ontario, Canada
| | - Eric D Brown
- Department of Biochemistry and Biomedical Sciences and M.G. DeGroote Institute for Infectious Disease Research, McMaster University, Ontario, Canada
| |
Collapse
|
74
|
Westra ER, Levin BR. It is unclear how important CRISPR-Cas systems are for protecting natural populations of bacteria against infections by mobile genetic elements. Proc Natl Acad Sci U S A 2020; 117:27777-27785. [PMID: 33122438 PMCID: PMC7668106 DOI: 10.1073/pnas.1915966117] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Articles on CRISPR commonly open with some variant of the phrase "these short palindromic repeats and their associated endonucleases (Cas) are an adaptive immune system that exists to protect bacteria and archaea from viruses and infections with other mobile genetic elements." There is an abundance of genomic data consistent with the hypothesis that CRISPR plays this role in natural populations of bacteria and archaea, and experimental demonstrations with a few species of bacteria and their phage and plasmids show that CRISPR-Cas systems can play this role in vitro. Not at all clear are the ubiquity, magnitude, and nature of the contribution of CRISPR-Cas systems to the ecology and evolution of natural populations of microbes and the strength of selection mediated by different types of phage and plasmids to the evolution and maintenance of CRISPR-Cas systems. In this perspective, with the aid of heuristic mathematical-computer simulation models, we explore the a priori conditions under which exposure to lytic and temperate phage and conjugative plasmids will select for and maintain CRISPR-Cas systems in populations of bacteria and archaea. We review the existing literature addressing these ecological and evolutionary questions and highlight the experimental and other evidence needed to fully understand the conditions responsible for the evolution and maintenance of CRISPR-Cas systems and the contribution of these systems to the ecology and evolution of bacteria, archaea, and the mobile genetic elements that infect them.
Collapse
Affiliation(s)
- Edze R Westra
- Environment and Sustainability Institute, Biosciences, University of Exeter, Penryn, TR10 9FE Cornwall, United Kingdom;
| | - Bruce R Levin
- Department of Biology, Emory University, Atlanta, GA 30307
| |
Collapse
|
75
|
Phage gene expression and host responses lead to infection-dependent costs of CRISPR immunity. ISME JOURNAL 2020; 15:534-544. [PMID: 33011743 PMCID: PMC8027618 DOI: 10.1038/s41396-020-00794-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 09/20/2020] [Accepted: 09/24/2020] [Indexed: 12/14/2022]
Abstract
CRISPR-Cas immune systems are widespread in bacteria and archaea, but not ubiquitous. Previous work has demonstrated that CRISPR immunity is associated with an infection-induced fitness cost, which may help explain the patchy distribution observed. However, the mechanistic basis of this cost has remained unclear. Using Pseudomonas aeruginosa PA14 and its phage DMS3vir as a model, we perform a 30-day evolution experiment under phage mediated selection. We demonstrate that although CRISPR is initially selected for, bacteria carrying mutations in the phage receptor rapidly invade the population following subsequent reinfections. We then test three potential mechanisms for the observed cost of CRISPR: (1) autoimmunity from the acquisition of self-targeting spacers, (2) immunopathology or energetic costs from increased cas gene expression and (3) toxicity caused by phage gene expression prior to CRISPR-mediated cleavage. We find that phages can express genes before the immune system clears the infection and that expression of these genes can have a negative effect on host fitness. While infection does not lead to increased expression of cas genes, it does cause differential expression of multiple other host processes that may further contribute to the cost of CRISPR immunity. In contrast, we found little support for infection-induced autoimmunological and immunopathological effects. Phage gene expression prior to cleavage of the genome by the CRISPR-Cas immune system is therefore the most parsimonious explanation for the observed phage-induced fitness cost.
Collapse
|
76
|
Mutalik VK, Adler BA, Rishi HS, Piya D, Zhong C, Koskella B, Kutter EM, Calendar R, Novichkov PS, Price MN, Deutschbauer AM, Arkin AP. High-throughput mapping of the phage resistance landscape in E. coli. PLoS Biol 2020; 18:e3000877. [PMID: 33048924 PMCID: PMC7553319 DOI: 10.1371/journal.pbio.3000877] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 09/08/2020] [Indexed: 12/18/2022] Open
Abstract
Bacteriophages (phages) are critical players in the dynamics and function of microbial communities and drive processes as diverse as global biogeochemical cycles and human health. Phages tend to be predators finely tuned to attack specific hosts, even down to the strain level, which in turn defend themselves using an array of mechanisms. However, to date, efforts to rapidly and comprehensively identify bacterial host factors important in phage infection and resistance have yet to be fully realized. Here, we globally map the host genetic determinants involved in resistance to 14 phylogenetically diverse double-stranded DNA phages using two model Escherichia coli strains (K-12 and BL21) with known sequence divergence to demonstrate strain-specific differences. Using genome-wide loss-of-function and gain-of-function genetic technologies, we are able to confirm previously described phage receptors as well as uncover a number of previously unknown host factors that confer resistance to one or more of these phages. We uncover differences in resistance factors that strongly align with the susceptibility of K-12 and BL21 to specific phage. We also identify both phage-specific mechanisms, such as the unexpected role of cyclic-di-GMP in host sensitivity to phage N4, and more generic defenses, such as the overproduction of colanic acid capsular polysaccharide that defends against a wide array of phages. Our results indicate that host responses to phages can occur via diverse cellular mechanisms. Our systematic and high-throughput genetic workflow to characterize phage-host interaction determinants can be extended to diverse bacteria to generate datasets that allow predictive models of how phage-mediated selection will shape bacterial phenotype and evolution. The results of this study and future efforts to map the phage resistance landscape will lead to new insights into the coevolution of hosts and their phage, which can ultimately be used to design better phage therapeutic treatments and tools for precision microbiome engineering.
Collapse
Affiliation(s)
- Vivek K. Mutalik
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- Innovative Genomics Institute, Berkeley, California, United States of America
| | - Benjamin A. Adler
- Innovative Genomics Institute, Berkeley, California, United States of America
- Department of Bioengineering, University of California – Berkeley, Berkeley, California, United States of America
| | - Harneet S. Rishi
- Biophysics Graduate Group, University of California – Berkeley, Berkeley, California, United States of America
- Designated Emphasis Program in Computational and Genomic Biology, University of California – Berkeley, Berkeley, California, United States of America
| | - Denish Piya
- Innovative Genomics Institute, Berkeley, California, United States of America
- Department of Bioengineering, University of California – Berkeley, Berkeley, California, United States of America
| | - Crystal Zhong
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Britt Koskella
- Department of Integrative Biology, University of California – Berkeley, Berkeley, California, United States of America
| | | | - Richard Calendar
- Department of Molecular and Cell Biology, University of California – Berkeley, Berkeley, California, United States of America
| | - Pavel S. Novichkov
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Morgan N. Price
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Adam M. Deutschbauer
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- Innovative Genomics Institute, Berkeley, California, United States of America
- Department of Plant and Microbial Biology, University of California – Berkeley, Berkeley, California, United States of America
| | - Adam P. Arkin
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- Innovative Genomics Institute, Berkeley, California, United States of America
- Department of Bioengineering, University of California – Berkeley, Berkeley, California, United States of America
- Biophysics Graduate Group, University of California – Berkeley, Berkeley, California, United States of America
- Designated Emphasis Program in Computational and Genomic Biology, University of California – Berkeley, Berkeley, California, United States of America
| |
Collapse
|
77
|
Federici S, Nobs SP, Elinav E. Phages and their potential to modulate the microbiome and immunity. Cell Mol Immunol 2020; 18:889-904. [PMID: 32901128 DOI: 10.1038/s41423-020-00532-4] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/06/2020] [Indexed: 02/07/2023] Open
Abstract
Bacteriophages (hence termed phages) are viruses that target bacteria and have long been considered as potential future treatments against antibiotic-resistant bacterial infection. However, the molecular nature of phage interactions with bacteria and the human host has remained elusive for decades, limiting their therapeutic application. While many phages and their functional repertoires remain unknown, the advent of next-generation sequencing has increasingly enabled researchers to decode new lytic and lysogenic mechanisms by which they attack and destroy bacteria. Furthermore, the last decade has witnessed a renewed interest in the utilization of phages as therapeutic vectors and as a means of targeting pathogenic or commensal bacteria or inducing immunomodulation. Importantly, the narrow host range, immense antibacterial repertoire, and ease of manipulating phages may potentially allow for their use as targeted modulators of pathogenic, commensal and pathobiont members of the microbiome, thereby impacting mammalian physiology and immunity along mucosal surfaces in health and in microbiome-associated diseases. In this review, we aim to highlight recent advances in phage biology and how a mechanistic understanding of phage-bacteria-host interactions may facilitate the development of novel phage-based therapeutics. We provide an overview of the challenges of the therapeutic use of phages and how these could be addressed for future use of phages as specific modulators of the human microbiome in a variety of infectious and noncommunicable human diseases.
Collapse
Affiliation(s)
- Sara Federici
- Immunology Department, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Samuel P Nobs
- Immunology Department, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Eran Elinav
- Immunology Department, Weizmann Institute of Science, Rehovot, 7610001, Israel. .,Cancer-Microbiome Division Deutsches Krebsforschungszentrum (DKFZ), Neuenheimer Feld 280, 69120, Heidelberg, Germany.
| |
Collapse
|
78
|
Gurney J, Pradier L, Griffin JS, Gougat-Barbera C, Chan BK, Turner PE, Kaltz O, Hochberg ME. Phage steering of antibiotic-resistance evolution in the bacterial pathogen, Pseudomonas aeruginosa. EVOLUTION MEDICINE AND PUBLIC HEALTH 2020; 2020:148-157. [PMID: 34254028 DOI: 10.1093/emph/eoaa026] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 06/18/2020] [Indexed: 12/13/2022]
Abstract
Background and objectives Antimicrobial resistance is a growing global concern and has spurred increasing efforts to find alternative therapeutics. Bacteriophage therapy has seen near constant use in Eastern Europe since its discovery over a century ago. One promising approach is to use phages that not only reduce bacterial pathogen loads but also select for phage resistance mechanisms that trade-off with antibiotic resistance-so called 'phage steering'. Methodology Recent work has shown that the phage OMKO1 can interact with efflux pumps and in so doing select for both phage resistance and antibiotic sensitivity of the pathogenic bacterium Pseudomonas aeruginosa. We tested the robustness of this approach to three different antibiotics in vitro (tetracycline, erythromycin and ciprofloxacin) and one in vivo (erythromycin). Results We show that in vitro OMKO1 can reduce antibiotic resistance of P. aeruginosa (Washington PAO1) even in the presence of antibiotics, an effect still detectable after ca.70 bacterial generations in continuous culture with phage. Our in vivo experiment showed that phage both increased the survival times of wax moth larvae (Galleria mellonella) and increased bacterial sensitivity to erythromycin. This increased antibiotic sensitivity occurred both in lines with and without the antibiotic. Conclusions and implications Our study supports a trade-off between antibiotic resistance and phage sensitivity. This trade-off was maintained over co-evolutionary time scales even under combined phage and antibiotic pressure. Similarly, OMKO1 maintained this trade-off in vivo, again under dual phage/antibiotic pressure. Our findings have implications for the future clinical use of steering in phage therapies. Lay Summary: Given the rise of antibiotic-resistant bacterial infection, new approaches to treatment are urgently needed. Bacteriophages (phages) are bacterial viruses. The use of such viruses to treat infections has been in near-continuous use in several countries since the early 1900s. Recent developments have shown that these viruses are not only effective against routine infections but can also target antibiotic resistant bacteria in a novel, unexpected way. Similar to other lytic phages, these so-called 'steering phages' kill the majority of bacteria directly. However, steering phages also leave behind bacterial variants that resist the phages, but are now sensitive to antibiotics. Treatment combinations of these phages and antibiotics can now be used to greater effect than either one independently. We evaluated the impact of steering using phage OMKO1 and a panel of three antibiotics on Pseudomonas aeruginosa, an important pathogen in hospital settings and in people with cystic fibrosis. Our findings indicate that OMKO1, either alone or in combination with antibiotics, maintains antibiotic sensitivity both in vitro and in vivo, giving hope that phage steering will be an effective treatment option against antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- James Gurney
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA.,Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Léa Pradier
- CEFE/CNRS, Université de Montpellier Campus du CNRS, 1919, route de Mende, Montpellier 34293, France
| | - Joanne S Griffin
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 7ZB, UK
| | - Claire Gougat-Barbera
- Institute of Evolution Sciences of Montpellier, Université de Montpellier, CNRS, IRD EPHE, Montpellier, France
| | - Benjamin K Chan
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06511, USA
| | - Paul E Turner
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06511, USA.,Department is Program in Microbiology, Program in Microbiology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Oliver Kaltz
- Institute of Evolution Sciences of Montpellier, Université de Montpellier, CNRS, IRD EPHE, Montpellier, France
| | - Michael E Hochberg
- Institute of Evolution Sciences of Montpellier, Université de Montpellier, CNRS, IRD EPHE, Montpellier, France.,Santa Fe Institute, Santa Fe, NM 87501, USA
| |
Collapse
|
79
|
Cohan FM, Zandi M, Turner PE. Broadscale phage therapy is unlikely to select for widespread evolution of bacterial resistance to virus infection. Virus Evol 2020; 6:veaa060. [PMID: 33365149 PMCID: PMC7744382 DOI: 10.1093/ve/veaa060] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Multi-drug resistant bacterial pathogens are alarmingly on the rise, signaling that the golden age of antibiotics may be over. Phage therapy is a classic approach that often employs strictly lytic bacteriophages (bacteria-specific viruses that kill cells) to combat infections. Recent success in using phages in patient treatment stimulates greater interest in phage therapy among Western physicians. But there is concern that widespread use of phage therapy would eventually lead to global spread of phage-resistant bacteria and widespread failure of the approach. Here, we argue that various mechanisms of horizontal genetic transfer (HGT) have largely contributed to broad acquisition of antibiotic resistance in bacterial populations and species, whereas similar evolution of broad resistance to therapeutic phages is unlikely. The tendency for phages to infect only particular bacterial genotypes limits their broad use in therapy, in turn reducing the likelihood that bacteria could acquire beneficial resistance genes from distant relatives via HGT. We additionally consider whether HGT of clustered regularly interspaced short palindromic repeats (CRISPR) immunity would thwart generalized use of phages in therapy, and argue that phage-specific CRISPR spacer regions from one taxon are unlikely to provide adaptive value if horizontally-transferred to other taxa. For these reasons, we conclude that broadscale phage therapy efforts are unlikely to produce widespread selection for evolution of bacterial resistance.
Collapse
Affiliation(s)
- Frederick M Cohan
- Department of Biology, Wesleyan University, Middletown, CT 06459, USA
| | - Matthew Zandi
- Department of Biology, Wesleyan University, Middletown, CT 06459, USA
| | - Paul E Turner
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA
- Program in Microbiology, Yale School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
80
|
Mangalea MR, Duerkop BA. Fitness Trade-Offs Resulting from Bacteriophage Resistance Potentiate Synergistic Antibacterial Strategies. Infect Immun 2020; 88:e00926-19. [PMID: 32094257 PMCID: PMC7309606 DOI: 10.1128/iai.00926-19] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Bacteria that cause life-threatening infections in humans are becoming increasingly difficult to treat. In some instances, this is due to intrinsic and acquired antibiotic resistance, indicating that new therapeutic approaches are needed to combat bacterial pathogens. There is renewed interest in utilizing viruses of bacteria known as bacteriophages (phages) as potential antibacterial therapeutics. However, critics suggest that similar to antibiotics, the development of phage-resistant bacteria will halt clinical phage therapy. Although the emergence of phage-resistant bacteria is likely inevitable, there is a growing body of literature showing that phage selective pressure promotes mutations in bacteria that allow them to subvert phage infection, but with a cost to their fitness. Such fitness trade-offs include reduced virulence, resensitization to antibiotics, and colonization defects. Resistance to phage nucleic acid entry, primarily via cell surface modifications, compromises bacterial fitness during antibiotic and host immune system pressure. In this minireview, we explore the mechanisms behind phage resistance in bacterial pathogens and the physiological consequences of acquiring phage resistance phenotypes. With this knowledge, it may be possible to use phages to alter bacterial populations, making them more tractable to current therapeutic strategies.
Collapse
Affiliation(s)
- Mihnea R Mangalea
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Breck A Duerkop
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| |
Collapse
|
81
|
Abstract
CRISPR research began over 30 years ago with the incidental discovery of an unusual nucleotide arrangement in the Escherichia coli genome. It took 20 years to find the main function of CRISPR-Cas systems as an adaptive defence mechanism against invading nucleic acids, and our knowledge of their biology has steadily increased ever since. In parallel, the number of applications derived from CRISPR-Cas systems has risen spectacularly. The CRISPR-based genome editing tool is arguably the most exciting application in both basic and applied research. Lately, CRISPR-Cas research has partially shifted to the least understood aspect of its biology: the ability of CRISPR-Cas systems to acquire new immunities during the so-called adaptation step. To date, the most efficient natural system to readily acquire new spacers is the type II-A system of the gram-positive dairy bacterium Streptococcus thermophilus. The discovery of additional systems able to acquire new spacers will hopefully draw more attention to this step of CRISPR-Cas biology. This review focuses on the breakthroughs that have helped to unravel the adaptation phase and on questions that remain to be answered.
Collapse
Affiliation(s)
- Cas Mosterd
- Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, QC G1V 0A6, Canada.,Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, QC G1V 0A6, Canada
| | - Geneviève M Rousseau
- Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, QC G1V 0A6, Canada.,Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, QC G1V 0A6, Canada
| | - Sylvain Moineau
- Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, QC G1V 0A6, Canada.,Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, QC G1V 0A6, Canada.,Félix d'Hérelle Reference Center for Bacterial Viruses, Faculté de médecine dentaire, Université Laval, QC G1V 0A6, Canada
| |
Collapse
|
82
|
Pleiotropy complicates a trade-off between phage resistance and antibiotic resistance. Proc Natl Acad Sci U S A 2020; 117:11207-11216. [PMID: 32424102 PMCID: PMC7260982 DOI: 10.1073/pnas.1919888117] [Citation(s) in RCA: 158] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Bacteriophages (“phages,” viruses that infect bacteria) are an important source of selection for bacterial populations. Phages use various structures to infect bacterial cells, and bacteria often evolve phage resistance by losing or modifying these structures. We examine a phage that uses two structures that also provide Escherichia coli cells with antibiotic resistance. We show that phage selection can result in bacteria evolving phage resistance by losing or modifying the structures. When phage resistance evolves, the bacteria sometimes also show increased antibiotic sensitivity. This result indicates an evolutionary trade-off between phage resistance and antibiotic resistance. However, we also discovered bacterial mutations that avoid the trade-off. We discuss the potential use of phage selection and evolutionary trade-offs in treating bacterial infections. Bacteria frequently encounter selection by both antibiotics and lytic bacteriophages. However, the evolutionary interactions between antibiotics and phages remain unclear, in particular, whether and when phages can drive evolutionary trade-offs with antibiotic resistance. Here, we describe Escherichia coli phage U136B, showing it relies on two host factors involved in different antibiotic resistance mechanisms: 1) the efflux pump protein TolC and 2) the structural barrier molecule lipopolysaccharide (LPS). Since TolC and LPS contribute to antibiotic resistance, phage U136B should select for their loss or modification, thereby driving a trade-off between phage resistance and either of the antibiotic resistance mechanisms. To test this hypothesis, we used fluctuation experiments and experimental evolution to obtain phage-resistant mutants. Using these mutants, we compared the accessibility of specific mutations (revealed in the fluctuation experiments) to their actual success during ecological competition and coevolution (revealed in the evolution experiments). Both tolC and LPS-related mutants arise readily during fluctuation assays, with tolC mutations becoming more common during the evolution experiments. In support of the trade-off hypothesis, phage resistance via tolC mutations occurs with a corresponding reduction in antibiotic resistance in many cases. However, contrary to the hypothesis, some phage resistance mutations pleiotropically confer increased antibiotic resistance. We discuss the molecular mechanisms underlying this surprising pleiotropic result, consideration for applied phage biology, and the importance of ecology in evolution of phage resistance. We envision that phages may be useful for the reversal of antibiotic resistance, but such applications will need to account for unexpected pleiotropy and evolutionary context.
Collapse
|
83
|
Baumgartner M, Bayer F, Pfrunder-Cardozo KR, Buckling A, Hall AR. Resident microbial communities inhibit growth and antibiotic-resistance evolution of Escherichia coli in human gut microbiome samples. PLoS Biol 2020; 18:e3000465. [PMID: 32310938 PMCID: PMC7192512 DOI: 10.1371/journal.pbio.3000465] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 04/30/2020] [Accepted: 04/02/2020] [Indexed: 01/05/2023] Open
Abstract
Countering the rise of antibiotic-resistant pathogens requires improved understanding of how resistance emerges and spreads in individual species, which are often embedded in complex microbial communities such as the human gut microbiome. Interactions with other microorganisms in such communities might suppress growth and resistance evolution of individual species (e.g., via resource competition) but could also potentially accelerate resistance evolution via horizontal transfer of resistance genes. It remains unclear how these different effects balance out, partly because it is difficult to observe them directly. Here, we used a gut microcosm approach to quantify the effect of three human gut microbiome communities on growth and resistance evolution of a focal strain of Escherichia coli. We found the resident microbial communities not only suppressed growth and colonisation by focal E. coli but also prevented it from evolving antibiotic resistance upon exposure to a beta-lactam antibiotic. With samples from all three human donors, our focal E. coli strain only evolved antibiotic resistance in the absence of the resident microbial community, even though we found resistance genes, including a highly effective resistance plasmid, in resident microbial communities. We identified physical constraints on plasmid transfer that can explain why our focal strain failed to acquire some of these beneficial resistance genes, and we found some chromosomal resistance mutations were only beneficial in the absence of the resident microbiota. This suggests, depending on in situ gene transfer dynamics, interactions with resident microbiota can inhibit antibiotic-resistance evolution of individual species.
Collapse
Affiliation(s)
- Michael Baumgartner
- Institute of Integrative Biology, Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
| | - Florian Bayer
- Biosciences, University of Exeter, Penryn, Cornwall, United Kingdom
| | - Katia R. Pfrunder-Cardozo
- Institute of Integrative Biology, Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
| | - Angus Buckling
- Biosciences, University of Exeter, Penryn, Cornwall, United Kingdom
| | - Alex R. Hall
- Institute of Integrative Biology, Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
84
|
Broniewski JM, Meaden S, Paterson S, Buckling A, Westra ER. The effect of phage genetic diversity on bacterial resistance evolution. ISME JOURNAL 2020; 14:828-836. [PMID: 31896785 PMCID: PMC7031251 DOI: 10.1038/s41396-019-0577-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 12/05/2019] [Accepted: 12/17/2019] [Indexed: 12/20/2022]
Abstract
CRISPR-Cas adaptive immune systems are found in bacteria and archaea and provide defence against phage by inserting phage-derived sequences into CRISPR loci on the host genome to provide sequence specific immunological memory against re-infection. Under laboratory conditions the bacterium Pseudomonas aeruginosa readily evolves the high levels of CRISPR-based immunity against clonal populations of its phage DMS3vir, which in turn causes rapid extinction of the phage. However, in nature phage populations are likely to be more genetically diverse, which could theoretically impact the frequency at which CRISPR-based immunity evolves which in turn can alter phage persistence over time. Here we experimentally test these ideas and found that a smaller proportion of infected bacterial populations evolved CRISPR-based immunity against more genetically diverse phage populations, with the majority of the population evolving a sm preventing phage adsorption and providing generalised defence against a broader range of phage genotypes. However, those cells that do evolve CRISPR-based immunity in response to infection with more genetically diverse phage acquire greater numbers of CRISPR memory sequences in order to resist a wider range of phage genotypes. Despite differences in bacterial resistance evolution, the rates of phage extinction were similar in the context of clonal and diverse phage infections suggesting selection for CRISPR-based immunity or sm-based resistance plays a relatively minor role in the ecological dynamics in this study. Collectively, these data help to understand the drivers of CRISPR-based immunity and their consequences for bacteria-phage coexistence, and, more broadly, when generalised defences will be favoured over more specific defences.
Collapse
Affiliation(s)
- Jenny M Broniewski
- Biosciences, Environment and Sustainability Institute, University of Exeter, Penryn, TR10 9FE, UK
| | - Sean Meaden
- Biosciences, Environment and Sustainability Institute, University of Exeter, Penryn, TR10 9FE, UK
| | - Steve Paterson
- Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Angus Buckling
- Biosciences, Environment and Sustainability Institute, University of Exeter, Penryn, TR10 9FE, UK
| | - Edze R Westra
- Biosciences, Environment and Sustainability Institute, University of Exeter, Penryn, TR10 9FE, UK.
| |
Collapse
|
85
|
Maier LK, Marchfelder A, Randau L. Meeting Report: German Genetics Society-Genome Editing with CRISPR. Bioessays 2019; 42:e1900223. [PMID: 31853989 DOI: 10.1002/bies.201900223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Indexed: 11/08/2022]
Affiliation(s)
| | | | - Lennart Randau
- Prokaryotic RNA Biology, Philipps-Universität Marburg, 35043, Marburg, Germany
| |
Collapse
|
86
|
Steering Phages to Combat Bacterial Pathogens. Trends Microbiol 2019; 28:85-94. [PMID: 31744662 DOI: 10.1016/j.tim.2019.10.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 10/10/2019] [Accepted: 10/17/2019] [Indexed: 12/21/2022]
|