51
|
Abstract
The P450 superfamily comprises some of the most powerful and versatile enzymes for the site-selective oxidation of small molecules. One of the main drawbacks for the applications of the P450s in biotechnology is that the majority of these enzymes is multicomponent in nature and requires the presence of suitable redox partners to support their functions. Nevertheless, the discovery of several self-sufficient P450s, namely those from Classes VII and VIII, has served as an inspiration for fusion approaches to generate chimeric P450 systems that are self-sufficient. In this Perspective, we highlight the domain organizations of the Class VII and Class VIII P450 systems, summarize recent case studies in the engineering of catalytically self-sufficient P450s based on these systems, and outline outstanding challenges in the field, along with several emerging technologies as potential solutions.
Collapse
Affiliation(s)
- Hans Renata
- Department of Chemistry, BioScience Research Collaborative, Rice University, Houston, TX, 77005
| |
Collapse
|
52
|
Huang W, Huang S, Sun Z, Zhang W, Zeng Z, Yuan B. Chemoenzymatic Synthesis of Sterically Hindered Biaryls by Suzuki Coupling and Vanadium Chloroperoxidase Catalyzed Halogenations. Chembiochem 2023; 24:e202200610. [PMID: 36325954 DOI: 10.1002/cbic.202200610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/02/2022] [Indexed: 11/06/2022]
Abstract
Halogenated biaryls are vital structural skeletons in bioactive products. In this study, an effective chemoenzymatic halogenation by vanadium-dependent chloroperoxidase from Camponotus inaequalis (CiVCPO) enabled the transformation of freely rotating biaryl bonds to sterically hindered axis. The yields were up to 84 % for the tribrominated biaryl products and up to 65 % when isolated. Furthermore, a one-pot, two-step chemoenzymatic strategy by incorporating transition metal catalyzed Suzuki coupling and the chemoenzymatic halogenation in aqueous phase were described. This strategy demonstrates a simplified one-pot reaction sequence with organometallic and biocatalytic procedures under economical and environmentally beneficial conditions that may inspire further research on synthesis of sterically hindered biaryls.
Collapse
Affiliation(s)
- Wansheng Huang
- School of Pharmacy, Hubei University of Science and Technology, 88 Xianning Avenue, Xianning, Hubei, 437100, P. R. China.,Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin, 300308, P. R. China
| | - Shengtang Huang
- School of Pharmacy, Hubei University of Science and Technology, 88 Xianning Avenue, Xianning, Hubei, 437100, P. R. China
| | - Zhoutong Sun
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin, 300308, P. R. China.,National Innovation Center for Synthetic Biotechnology, 32 West 7th Avenue, Tianjin, 300308, P. R. China
| | - Wuyuan Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin, 300308, P. R. China.,National Innovation Center for Synthetic Biotechnology, 32 West 7th Avenue, Tianjin, 300308, P. R. China
| | - Zhigang Zeng
- School of Nuclear Technology and Chemistry & Biology, Hubei Key Laboratory of Radiation Chemistry and Functional Materials, Hubei University of Science and Technology, 88 Xianning Avenue, Xianning, Hubei, 437100, P. R. China.,Hubei Industry Technology Research Institute of Intelligent Health, 88 Xianning Avenue, Xianning, Hubei, 437100, P. R. China
| | - Bo Yuan
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin, 300308, P. R. China.,National Innovation Center for Synthetic Biotechnology, 32 West 7th Avenue, Tianjin, 300308, P. R. China
| |
Collapse
|
53
|
Rodríguez-Salamanca P, de Gonzalo G, Carmona JA, López-Serrano J, Iglesias-Sigüenza J, Fernández R, Lassaletta JM, Hornillos V. Biocatalytic Atroposelective Synthesis of Axially Chiral N-Arylindoles via Dynamic Kinetic Resolution. ACS Catal 2022. [DOI: 10.1021/acscatal.2c06175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Patricia Rodríguez-Salamanca
- Instituto de Investigaciones Químicas (CSIC-US) and Centro de Innovación en Química Avanzada (ORFEO−CINQA), Avda. Américo Vespucio, 49, 41092 Sevilla, Spain
| | - Gonzalo de Gonzalo
- Departamento de Química Orgánica, Universidad de Sevilla and Centro de Innovación en Química Avanzada (ORFEO−CINQA), C/Prof. García González, 1, 41012 Sevilla, Spain
| | - José A. Carmona
- Instituto de Investigaciones Químicas (CSIC-US) and Centro de Innovación en Química Avanzada (ORFEO−CINQA), Avda. Américo Vespucio, 49, 41092 Sevilla, Spain
| | - Joaquín López-Serrano
- Departamento de Química Orgánica, Universidad de Sevilla and Centro de Innovación en Química Avanzada (ORFEO−CINQA), C/Prof. García González, 1, 41012 Sevilla, Spain
| | - Javier Iglesias-Sigüenza
- Departamento de Química Orgánica, Universidad de Sevilla and Centro de Innovación en Química Avanzada (ORFEO−CINQA), C/Prof. García González, 1, 41012 Sevilla, Spain
| | - Rosario Fernández
- Departamento de Química Orgánica, Universidad de Sevilla and Centro de Innovación en Química Avanzada (ORFEO−CINQA), C/Prof. García González, 1, 41012 Sevilla, Spain
| | - José M. Lassaletta
- Instituto de Investigaciones Químicas (CSIC-US) and Centro de Innovación en Química Avanzada (ORFEO−CINQA), Avda. Américo Vespucio, 49, 41092 Sevilla, Spain
| | - Valentín Hornillos
- Instituto de Investigaciones Químicas (CSIC-US) and Centro de Innovación en Química Avanzada (ORFEO−CINQA), Avda. Américo Vespucio, 49, 41092 Sevilla, Spain
- Departamento de Química Orgánica, Universidad de Sevilla and Centro de Innovación en Química Avanzada (ORFEO−CINQA), C/Prof. García González, 1, 41012 Sevilla, Spain
| |
Collapse
|
54
|
Watts OB, Berreur J, Collins BSL, Clayden J. Biocatalytic Enantioselective Synthesis of Atropisomers. Acc Chem Res 2022; 55:3362-3375. [PMID: 36343339 PMCID: PMC9730853 DOI: 10.1021/acs.accounts.2c00572] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Atropisomeric compounds are found extensively as natural products, as ligands for asymmetric transition-metal catalysis, and increasingly as bioactive and pharmaceutically relevant targets. Their enantioselective synthesis is therefore an important ongoing research target. While a vast majority of known atropisomeric structures are (hetero)biaryls, which display hindered rotation around a C-C single bond, our group's long-standing interest in the control of molecular conformation has led to the identification and stereoselective preparation of a variety of other classes of "nonbiaryl" atropisomeric compounds displaying restricted rotation around C-C, C-N, C-O, and C-S single bonds.Biocatalytic transformations are finding increasing application in both academic and industrial contexts as a result of a significant broadening of the range of biocatalytic reactions and sources of enzymes available to the synthetic chemist. In this Account, we summarize the main biocatalytic strategies currently available for the asymmetric synthesis of biaryl, heterobiaryl, and nonbiaryl atropisomers. As is the case with more traditional synthetic approaches to these compounds, most biocatalytic methodologies for the construction of enantioenriched atropisomers follow one of two distinct strategies. The first of these is the direct asymmetric construction of atropisomeric bonds. Synthetically applicable biocatalytic methodologies for this type of transformation are limited, despite the extensive research into the biosynthesis of (hetero)biaryls by oxidative homocoupling or cross-coupling of electron-rich arenes. The second of these is the asymmetric transformation of a molecule in which the bond that will form the axis already exists, and this approach represents the majority of biocatalytic strategies available to the synthetic organic chemist. This strategy encompasses a variety of stereoselective techniques including kinetic resolution (KR), desymmetrization, dynamic kinetic resolution (DKR), and dynamic kinetic asymmetric transformation (DYKAT).Nondynamic kinetic resolution (KR) of conformationally stable biaryl derivatives has provided the earliest and most numerous examples of synthetically useful methodologies for the enantioselective preparation of atropisomeric compounds. Lipases (i.e., enzymes that mediate the formation or hydrolysis of esters) are particularly effective and have attracted broad attention. This success has led researchers to broaden the scope of lipase-mediated transformations to desymmetrization reactions, in addition to a limited number of DKR and DYKAT examples. By contrast, our group has used redox enzymes, including an engineered galactose oxidase (GOase) and commercially available ketoreductases (KREDs), to desymmetrize prochiral atropisomeric diaryl ether and biaryl derivatives. Building on this experience and our long-standing interest in dynamic conformational processes, we later harnessed intramolecular noncovalent interactions to facilitate bond rotation at ambient temperatures, which allowed the development of the efficient DKR of heterobiaryl aldehydes using KREDs. With this Account we provide an overview of the current and prospective biocatalytic strategies available to the synthetic organic chemist for the enantioselective preparation of atropisomeric molecules.
Collapse
|
55
|
Zetzsche LE, Chakrabarty S, Narayan ARH. Development of a P450 Fusion Enzyme for Biaryl Coupling in Yeast. ACS Chem Biol 2022; 17:2986-2992. [PMID: 36315613 PMCID: PMC10082971 DOI: 10.1021/acschembio.2c00690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Despite the diverse and potent bioactivities displayed by axially chiral biaryl natural products, their application in drug discovery is limited by restricted access to these complex molecular scaffolds. In particular, fundamental challenges remain in controlling the site- and atroposelectivity in biaryl coupling reactions. In contrast, Nature has a wealth of biosynthetic enzymes that catalyze biaryl coupling reactions with catalyst-controlled selectivity. In particular, a growing subset of fungal P450s have been identified to catalyze site- and atroposelective biaryl couplings. Herein, we optimize a whole-cell biocatalytic platform in Pichia pastoris to synthesize biaryl molecules through the recombinant production of the fungal P450 KtnC. Moreover, engineering redox self-sufficient fusion enzymes further improves the efficiency of the system. Altogether, this work provides a platform for biaryl coupling reactions in yeast that can be applied to engineering a currently underexplored pool of fungal P450s into selective biocatalysts for the synthesis of complex biaryl compounds.
Collapse
Affiliation(s)
- Lara E. Zetzsche
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Suman Chakrabarty
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Alison R. H. Narayan
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
56
|
Demehin AA, Thamnarak W, Lamtha T, Chatwichien J, Eurtivong C, Choowongkomon K, Chainok K, Ruchirawat S, Thasana N. Siamenflavones A-C, three undescribed biflavonoids from Selaginella siamensis Hieron. and biflavonoids from spike mosses as EGFR inhibitor. PHYTOCHEMISTRY 2022; 203:113374. [PMID: 35964804 DOI: 10.1016/j.phytochem.2022.113374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 08/05/2022] [Accepted: 08/06/2022] [Indexed: 06/15/2023]
Abstract
Three undescribed biflavonoids (BFVs), siamenflavones A-C along with twelve BFVs were isolated from Selaginella siamensis Hieron. and Selaginella bryopteris (L.) Baker (Selaginellaceae). The chemical structures of undescribed compounds were established through comprehensive spectroscopic techniques, chemical correlations, and X-ray crystallography. The ten isolated BFVs, siamenflavones A-C, delicaflavone, chrysocauflavone, robustaflavone, robustaflavone-4-methylether, amentoflavone, tetrahydro-amentoflavone, and sciadopitysin were evaluated for the antiproliferative effects against four human cancer cell lines A549, H1975, HepG2 and T47D. Delicaflavone and robustaflavone 4'-methylether exerted strong effects on the four human cancer cell lines. Siamenflavone B, delicaflavone and robustaflavone 4'-methylether showed potent inhibitory activities against wild-type EGFR. The inhibition of the compounds was further supported by molecular docking and predictive intermolecular interactions. Molecular dynamics simulation studies of siamenflavone B and robustaflavone-4'-methylether complexed to EGFR-TK further supported inhibition of the compounds to the ATP binding site. Finally, analysis of pharmacokinetic and electronic properties using density-functional theory and known drug index calculations suggest that the compounds are pharmaceutically compatible for drug administration.
Collapse
Affiliation(s)
- Adebisi Adunola Demehin
- Program in Chemical Sciences, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok, 10210, Thailand
| | - Wanlaya Thamnarak
- Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, Bangkok, 10210, Thailand
| | - Thomanai Lamtha
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
| | - Jaruwan Chatwichien
- Program in Chemical Sciences, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok, 10210, Thailand
| | - Chatchakorn Eurtivong
- Program in Chemical Sciences, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok, 10210, Thailand
| | - Kiattawee Choowongkomon
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
| | - Kittipong Chainok
- Thammasat University Research Unit in Multifunctional Crystalline Materials and Applications (TU-McMa), Faculty of Science and Technology, Thammasat University, Pathum Thani, 12121, Thailand
| | - Somsak Ruchirawat
- Program in Chemical Sciences, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok, 10210, Thailand; Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, Bangkok, 10210, Thailand; Center of Excellence on Environmental Health and Toxicology (EHT), OPS, Ministry of Higher Education, Science, Research and Innovation, Bangkok, 10400, Thailand
| | - Nopporn Thasana
- Program in Chemical Sciences, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok, 10210, Thailand; Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, Bangkok, 10210, Thailand; Center of Excellence on Environmental Health and Toxicology (EHT), OPS, Ministry of Higher Education, Science, Research and Innovation, Bangkok, 10400, Thailand.
| |
Collapse
|
57
|
Abstract
Many enzymes possess high catalytic efficiency and selectivity that far surpass classical organic or organometallic catalysts. However, the initial starting enzyme for a given transformation does not always possess the right properties needed for broad utilization. Searching in genome/protein sequence libraries for homologs, aided with powerful bioinformatic tools developed in recent years, provides an avenue to identify superior biocatalysts. Herein, we highlight several case studies to illustrate the power of this concept. A brief discussion on its complementarity with contemporary approaches in protein engineering (such as directed evolution) and possible future developments is also provided.
Collapse
Affiliation(s)
- Yanlong Jiang
- Department of Chemistry, BioScience Research Collaborative, Rice University, Houston, TX,77005, USA
| | - Hans Renata
- Department of Chemistry, BioScience Research Collaborative, Rice University, Houston, TX,77005, USA
- Lead Contact
| |
Collapse
|
58
|
Zhao Y, Marschall E, Treisman M, McKay A, Padva L, Crüsemann M, Nelson DR, Steer DL, Schittenhelm RB, Tailhades J, Cryle MJ. Cytochrome P450 Blt Enables Versatile Peptide Cyclisation to Generate Histidine- and Tyrosine-Containing Crosslinked Tripeptide Building Blocks. Angew Chem Int Ed Engl 2022; 61:e202204957. [PMID: 35851739 PMCID: PMC9542247 DOI: 10.1002/anie.202204957] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Indexed: 12/05/2022]
Abstract
We report our investigation of the utility of peptide crosslinking cytochrome P450 enzymes from biarylitide biosynthesis to generate a range of cyclic tripeptides from simple synthons. The crosslinked tripeptides produced by this P450 include both tyrosine-histidine (A-N-B) and tyrosine-tryptophan (A-O-B) crosslinked tripeptides, the latter a rare example of a phenolic crosslink to an indole moiety. Tripeptides are easily isolated following proteolytic removal of the leader peptide and can incorporate a wide range of amino acids in the residue inside the crosslinked tripeptide. Given the utility of peptide crosslinks in important natural products and the synthetic challenge that these can represent, P450 enzymes have the potential to play roles as important tools in the generation of high-value cyclic tripeptides for incorporation in synthesis, which can be yet further diversified using selective chemical techniques through specific handles contained within these tripeptides.
Collapse
Affiliation(s)
- Yongwei Zhao
- Department of Biochemistry and Molecular BiologyThe Monash Biomedicine Discovery InstituteMonash UniversityClaytonVIC 3800Australia
- EMBL AustraliaMonash UniversityClaytonVIC 3800Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein ScienceClaytonVIC 3800Australia
| | - Edward Marschall
- Department of Biochemistry and Molecular BiologyThe Monash Biomedicine Discovery InstituteMonash UniversityClaytonVIC 3800Australia
- EMBL AustraliaMonash UniversityClaytonVIC 3800Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein ScienceClaytonVIC 3800Australia
| | - Maxine Treisman
- Department of Biochemistry and Molecular BiologyThe Monash Biomedicine Discovery InstituteMonash UniversityClaytonVIC 3800Australia
- EMBL AustraliaMonash UniversityClaytonVIC 3800Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein ScienceClaytonVIC 3800Australia
| | - Alasdair McKay
- Department of ChemistryMonash UniversityClaytonVIC 3800Australia
| | - Leo Padva
- Institute of Pharmaceutical BiologyUniversity of Bonn53115BonnGermany
| | - Max Crüsemann
- Institute of Pharmaceutical BiologyUniversity of Bonn53115BonnGermany
| | - David R. Nelson
- Department of Microbiology, Immunology and BiochemistryUniversity of TennesseeMemphisTN 38163USA
| | - David L. Steer
- Monash Proteomics and Metabolomics FacilityMonash UniversityClaytonVIC 3800Australia
| | - Ralf B. Schittenhelm
- Monash Proteomics and Metabolomics FacilityMonash UniversityClaytonVIC 3800Australia
| | - Julien Tailhades
- Department of Biochemistry and Molecular BiologyThe Monash Biomedicine Discovery InstituteMonash UniversityClaytonVIC 3800Australia
- EMBL AustraliaMonash UniversityClaytonVIC 3800Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein ScienceClaytonVIC 3800Australia
| | - Max J. Cryle
- Department of Biochemistry and Molecular BiologyThe Monash Biomedicine Discovery InstituteMonash UniversityClaytonVIC 3800Australia
- EMBL AustraliaMonash UniversityClaytonVIC 3800Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein ScienceClaytonVIC 3800Australia
| |
Collapse
|
59
|
Snodgrass HM, Mondal D, Lewis JC. Directed Evolution of Flavin-Dependent Halogenases for Site- and Atroposelective Halogenation of 3-Aryl-4(3 H)-Quinazolinones via Kinetic or Dynamic Kinetic Resolution. J Am Chem Soc 2022; 144:16676-16682. [PMID: 36044712 DOI: 10.1021/jacs.2c07422] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In this study, we engineer a variant of the flavin-dependent halogenase RebH that catalyzes site- and atroposelective halogenation of 3-aryl-4(3H)-quinazolinones via kinetic or dynamic kinetic resolution. The required directed evolution uses a combination of random and site-saturation mutagenesis, substrate walking using two probe substrates, and a two-tiered screening approach involving the analysis of variant conversion and then enantioselectivity of improved variants. The resulting variant, 3-T, provides >99:1 e.r. for the (M)-atropisomer of the major brominated product, 25-fold improved conversion, and 91-fold improved site selectivity relative to the parent enzyme on the probe substrate used in the final rounds of evolution. This high activity and selectivity translate well to several additional substrates with varied steric and electronic properties. Computational modeling and docking simulations are used to rationalize the effects of key mutations on substrate binding. Given the range of substrates that have been used for atroposelective synthesis via electrophilic halogenation in the literature, these results suggest that flavin-dependent halogenases (FDHs) could find many additional applications for atroposelective catalysis. More broadly, this study highlights how RebH can be engineered to accept structurally diverse substrates that enable its use for enantioselective catalysis.
Collapse
Affiliation(s)
- Harrison M Snodgrass
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Dibyendu Mondal
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Jared C Lewis
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
60
|
Liu RZ, Chen S, Zhang L. A Streptomyces P450 enzyme dimerizes isoflavones from plants. Beilstein J Org Chem 2022; 18:1107-1115. [PMID: 36105730 PMCID: PMC9443421 DOI: 10.3762/bjoc.18.113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/11/2022] [Indexed: 11/23/2022] Open
Abstract
Dimerization is a widespread natural strategy that enables rapid structural diversification of natural products. However, our understanding of the dimerization enzymes involved in this biotransformation is still limited compared to the numerous reported dimeric natural products. Here, we report the characterization of three new isoflavone dimers from Streptomyces cattleya cultured on an isoflavone-containing agar plate. We further identified a cytochrome P450 monooxygenase, CYP158C1, which is able to catalyze the dimerization of isoflavones. CYP158C1 can also dimerize plant-derived polyketides, such as flavonoids and stilbenes. Our work represents a unique bacterial P450 that can dimerize plant polyphenols, which extends the insights into P450-mediated biaryl coupling reactions in biosynthesis.
Collapse
Affiliation(s)
- Run-Zhou Liu
- Department of Chemistry, Fudan University, Shanghai 200433, China
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Shanchong Chen
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Lihan Zhang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| |
Collapse
|
61
|
Pearce-Higgins R, Hogenhout LN, Docherty PJ, Whalley DM, Chuentragool P, Lee N, Lam NYS, McGuire TM, Valette D, Phipps RJ. An Enantioselective Suzuki-Miyaura Coupling To Form Axially Chiral Biphenols. J Am Chem Soc 2022; 144:15026-15032. [PMID: 35969692 PMCID: PMC9434994 DOI: 10.1021/jacs.2c06529] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
![]()
Axial chirality features prominently in molecules of
biological
interest as well as chiral catalyst designs, and atropisomeric 2,2′-biphenols
are particularly prevalent. Atroposelective metal-catalyzed cross-coupling
is an attractive and modular approach to access enantioenriched biphenols,
and yet existing protocols cannot achieve this directly. We address
this challenge through the use of enantiopure, sulfonated SPhos (sSPhos), an existing ligand that has until now been
used only in racemic form and that derives its chirality from an atropisomeric
axis that is introduced through sulfonation. We believe that attractive
noncovalent interactions involving the ligand sulfonate group are
responsible for the high levels of asymmetric induction that we obtain
in the 2,2′-biphenol products of Suzuki–Miyaura coupling,
and we have developed a highly practical resolution of sSPhos via diastereomeric salt recrystallization.
Collapse
Affiliation(s)
- Robert Pearce-Higgins
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Larissa N Hogenhout
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Philip J Docherty
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - David M Whalley
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Padon Chuentragool
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Najung Lee
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Nelson Y S Lam
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | | | - Damien Valette
- GlaxoSmithKline Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - Robert J Phipps
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
62
|
Molinaro C, Kawasaki Y, Wanyoike G, Nishioka T, Yamamoto T, Snedecor B, Robinson SJ, Gosselin F. Engineered Cytochrome P450-Catalyzed Oxidative Biaryl Coupling Reaction Provides a Scalable Entry into Arylomycin Antibiotics. J Am Chem Soc 2022; 144:14838-14845. [PMID: 35905381 DOI: 10.1021/jacs.2c06019] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We report herein the first example of a cytochrome P450-catalyzed oxidative carbon-carbon coupling process for a scalable entry into arylomycin antibiotic cores. Starting from wild-type hydroxylating cytochrome P450 enzymes and engineered Escherichia coli, a combination of enzyme engineering, random mutagenesis, and optimization of reaction conditions generated a P450 variant that affords the desired arylomycin core 2d in 84% assay yield. Furthermore, this process was demonstrated as a viable route for the production of the arylomycin antibiotic core on the gram scale. Finally, this new entry affords a viable, scalable, and practical route for the synthesis of novel Gram-negative antibiotics.
Collapse
Affiliation(s)
- Carmela Molinaro
- Department of Small Molecule Process Chemistry, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Yukie Kawasaki
- Applied Microbiotechnology Department, MicroBiopharm Japan Co. Ltd., 156 Nakagawara, Kiyosu, Aichi 452-0915, Japan
| | - George Wanyoike
- Production Technology Department, MicroBiopharm Japan Co. Ltd., 1808 Nakaizumi, Iwata, Shizuoka 438-0078, Japan
| | - Taiki Nishioka
- Applied Microbiotechnology Department, MicroBiopharm Japan Co. Ltd., 156 Nakagawara, Kiyosu, Aichi 452-0915, Japan
| | - Tsuyoshi Yamamoto
- Applied Microbiotechnology Department, MicroBiopharm Japan Co. Ltd., 156 Nakagawara, Kiyosu, Aichi 452-0915, Japan
| | - Brad Snedecor
- Department of Cell Culture and Bioprocess Operations, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Sarah J Robinson
- Department of Discovery Chemistry, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Francis Gosselin
- Department of Small Molecule Process Chemistry, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|
63
|
Chemo-enzymatic synthesis of natural products and their analogs. Curr Opin Biotechnol 2022; 77:102759. [PMID: 35908314 DOI: 10.1016/j.copbio.2022.102759] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/21/2022] [Accepted: 06/24/2022] [Indexed: 11/20/2022]
Abstract
Enzymes continue to gain recognition as valuable tools in synthetic chemistry as they enable transformations, which elude conventional organochemical approaches. As such, the progressing expansion of the biocatalytic arsenal has introduced unprecedented opportunities for new synthetic strategies and retrosynthetic disconnections. As a result, enzymes have found a solid foothold in modern natural product synthesis for applications ranging from the generation of early chiral synthons to endgame transformations, convergent synthesis, and cascade reactions for the rapid construction of molecular complexity. As a primer to the state-of-the-art concerning strategic uses of enzymes in natural product synthesis and the underlying concepts, this review highlights selected recent literature examples, which make a strong case for the admission of enzymatic methodologies into the standard repertoire for complex small-molecule synthesis.
Collapse
|
64
|
Zhao Y, Marschall E, Treisman M, McKay A, Padva L, Crüsemann M, Nelson DR, Steer DL, Schittenhelm RB, Tailhades J, Cryle MJ. Cytochrome P450Blt Enables Versatile Peptide Cyclisation to Generate Histidine and Tyrosine Containing Crosslinked Tripeptide Building Blocks. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
| | | | | | | | - Leo Padva
- University of Bonn: Rheinische Friedrich-Wilhelms-Universitat Bonn Institute of Pharmaceutical Biology GERMANY
| | - Max Crüsemann
- University of Bonn: Rheinische Friedrich-Wilhelms-Universitat Bonn Pharmaceutical Biology GERMANY
| | - David R Nelson
- University of Tennessee College of Medicine: The University of Tennessee Health Science Center College of Medicine Microbiology UNITED STATES
| | - David L Steer
- Monash University Biochemistry and Molecular Biology AUSTRALIA
| | | | | | - Max J. Cryle
- Monash University Department of Biochemistry and Molecular Biology 15 Innovation WalkMonash University 3800 Melbourne AUSTRALIA
| |
Collapse
|
65
|
Abstract
Phenols and their derivatives are the elementary building blocks for several classes of complex molecules that play essential roles in biological systems. Nature has devised methods to selectively couple phenolic compounds, and many efforts have been undertaken by chemists to mimic such coupling processes. A range of mechanisms can be involved and with well-studied catalysts, reaction outcomes in phenol-phenol oxidative coupling reactions can be predicted with a good level of fidelity. However, reactions with catalysts that have not been studied or that do not behave similarly to known catalysts can be hard to predict and control. This Perspective provides an overview of catalytic methods for the oxidative coupling of phenols, focusing on the last 10 years, and summarizes current challenges.
Collapse
Affiliation(s)
- Jingze Wu
- Department of Chemistry, Roy and Diana Vagelos Laboratories, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Marisa C Kozlowski
- Department of Chemistry, Roy and Diana Vagelos Laboratories, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
66
|
Yuan SW, Chen SH, Guo H, Chen LT, Shen HJ, Liu L, Gao ZZ. Elucidation of the Complete Biosynthetic Pathway of Phomoxanthone A and Identification of a Para-Para Selective Phenol Coupling Dimerase. Org Lett 2022; 24:3069-3074. [PMID: 35442692 DOI: 10.1021/acs.orglett.2c01050] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Fungal cytochrome P450 enzymes have been shown to catalyze regio- and stereoselective oxidative intermolecular phenol coupling. However, an enzyme capable of catalyzing undirected para-para (C4-4') coupling has not been reported. Here, we revealed the biosynthetic gene cluster (BGC) of phomoxanthone A from the marine fungus Diaporthe sp. SYSU-MS4722. We heterologously expressed 14 biosynthetic genes in Aspergillus oryzae NSAR1 and found that PhoCDEFGHK is involved in the early stage of phomoxanthone A biosynthesis to give chrysophanol and that chrysophanol is then processed by PhoBJKLMNP to yield penexanthone B. A feeding experiment suggested that PhoO, a cytochrome P450 enzyme, catalyzed the regioselective oxidative para-para coupling of penexanthone B to give phomoxanthone A. The mechanism of PhoO represents a novel enzymatic 4,4'-linkage dimerization method for tetrahydroxanthone formations, which would facilitate biosynthetic engineering of structurally diverse 4,4'-linked dimeric tetrahydroxanthones.
Collapse
Affiliation(s)
- Si-Wen Yuan
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Sen-Hua Chen
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Heng Guo
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Li-Tong Chen
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Hong-Jie Shen
- Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai 519000, China
| | - Lan Liu
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China.,Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai 519000, China
| | - Zhi-Zeng Gao
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China.,Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai 519000, China
| |
Collapse
|
67
|
Abstract
A personal selection of 32 recent papers is presented, covering various aspects of current developments in bioorganic chemistry and novel natural products, such as daphnepapytone A from Daphne papyracea.
Collapse
Affiliation(s)
- Robert A Hill
- School of Chemistry, Glasgow University, Glasgow, G12 8QQ, UK.
| | | |
Collapse
|
68
|
Zetzsche LE, Chakrabarty S, Narayan ARH. The Transformative Power of Biocatalysis in Convergent Synthesis. J Am Chem Soc 2022; 144:5214-5225. [PMID: 35290055 PMCID: PMC10082969 DOI: 10.1021/jacs.2c00224] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Achieving convergent synthetic strategies has long been a gold standard in constructing complex molecular skeletons, allowing for the rapid generation of complexity in comparatively streamlined synthetic routes. Traditionally, biocatalysis has not played a prominent role in convergent laboratory synthesis, with the application of biocatalysts in convergent strategies primarily limited to the synthesis of chiral fragments. Although the use of enzymes to enable convergent synthetic approaches is relatively new and emerging, combining the efficiency of convergent transformations with the selectivity achievable through biocatalysis creates new opportunities for efficient synthetic strategies. This Perspective provides an overview of recent developments in biocatalytic strategies for convergent transformations and offers insights into the advantages of these methods compared to their small molecule-based counterparts.
Collapse
Affiliation(s)
- Lara E. Zetzsche
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Suman Chakrabarty
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Alison R. H. Narayan
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
69
|
WANG W, Zou PS, PANG L, Pan C, Mo DL, SU GF. Recent Advances on the Synthesis of 2,3-Fused Quinazolinones. Org Biomol Chem 2022; 20:6293-6313. [DOI: 10.1039/d2ob00778a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
As one of the most important structural units in pharmaceuticals and medicinal chemistry, quinazolinone and its derivatives exhibit a wide range of biological and pharmacological activities, including anti-inflammatory, antitubercular, antiviral,...
Collapse
|
70
|
Bashir MA, Wei J, Wang H, Zhong F, Zhai H. Recent advances in catalytic oxidative reactions of phenols and naphthalenols. Org Chem Front 2022. [DOI: 10.1039/d2qo00758d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This critical review aims to provide an overview of oxidative phenol and naphthalenol transformations in nature and synthetic chemistry.
Collapse
Affiliation(s)
- Muhammad Adnan Bashir
- The State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Nano-Micro Materials Research, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
- Institute of Marine Biomedicine, Shenzhen Polytechnic, Shenzhen 518055, China
| | - Jian Wei
- The State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Nano-Micro Materials Research, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
- Institute of Marine Biomedicine, Shenzhen Polytechnic, Shenzhen 518055, China
| | - Huifei Wang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Fangrui Zhong
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan 430074, China
| | - Hongbin Zhai
- The State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Nano-Micro Materials Research, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
- Institute of Marine Biomedicine, Shenzhen Polytechnic, Shenzhen 518055, China
- Shenzhen Bay Laboratory, Shenzhen 518055, China
| |
Collapse
|