51
|
Burström G, Amini M, El-Hajj VG, Arfan A, Gharios M, Buwaider A, Losch MS, Manni F, Edström E, Elmi-Terander A. Optical Methods for Brain Tumor Detection: A Systematic Review. J Clin Med 2024; 13:2676. [PMID: 38731204 PMCID: PMC11084501 DOI: 10.3390/jcm13092676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 04/28/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024] Open
Abstract
Background: In brain tumor surgery, maximal tumor resection is typically desired. This is complicated by infiltrative tumor cells which cannot be visually distinguished from healthy brain tissue. Optical methods are an emerging field that can potentially revolutionize brain tumor surgery through intraoperative differentiation between healthy and tumor tissues. Methods: This study aimed to systematically explore and summarize the existing literature on the use of Raman Spectroscopy (RS), Hyperspectral Imaging (HSI), Optical Coherence Tomography (OCT), and Diffuse Reflectance Spectroscopy (DRS) for brain tumor detection. MEDLINE, Embase, and Web of Science were searched for studies evaluating the accuracy of these systems for brain tumor detection. Outcome measures included accuracy, sensitivity, and specificity. Results: In total, 44 studies were included, covering a range of tumor types and technologies. Accuracy metrics in the studies ranged between 54 and 100% for RS, 69 and 99% for HSI, 82 and 99% for OCT, and 42 and 100% for DRS. Conclusions: This review provides insightful evidence on the use of optical methods in distinguishing tumor from healthy brain tissue.
Collapse
Affiliation(s)
- Gustav Burström
- Department of Clinical Neuroscience, Karolinska Institute, 171 77 Stockholm, Sweden; (G.B.); (M.A.); (A.A.); (M.G.); (A.B.); (E.E.)
| | - Misha Amini
- Department of Clinical Neuroscience, Karolinska Institute, 171 77 Stockholm, Sweden; (G.B.); (M.A.); (A.A.); (M.G.); (A.B.); (E.E.)
| | - Victor Gabriel El-Hajj
- Department of Clinical Neuroscience, Karolinska Institute, 171 77 Stockholm, Sweden; (G.B.); (M.A.); (A.A.); (M.G.); (A.B.); (E.E.)
| | - Arooj Arfan
- Department of Clinical Neuroscience, Karolinska Institute, 171 77 Stockholm, Sweden; (G.B.); (M.A.); (A.A.); (M.G.); (A.B.); (E.E.)
| | - Maria Gharios
- Department of Clinical Neuroscience, Karolinska Institute, 171 77 Stockholm, Sweden; (G.B.); (M.A.); (A.A.); (M.G.); (A.B.); (E.E.)
| | - Ali Buwaider
- Department of Clinical Neuroscience, Karolinska Institute, 171 77 Stockholm, Sweden; (G.B.); (M.A.); (A.A.); (M.G.); (A.B.); (E.E.)
| | - Merle S. Losch
- Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology, 2627 Delft, The Netherlands
| | - Francesca Manni
- Department of Electrical Engineering, Eindhoven University of Technology (TU/e), 5612 Eindhoven, The Netherlands;
| | - Erik Edström
- Department of Clinical Neuroscience, Karolinska Institute, 171 77 Stockholm, Sweden; (G.B.); (M.A.); (A.A.); (M.G.); (A.B.); (E.E.)
- Capio Spine Center Stockholm, Löwenströmska Hospital, 194 80 Upplands-Väsby, Sweden
- Department of Medical Sciences, Örebro University, 701 85 Örebro, Sweden
| | - Adrian Elmi-Terander
- Department of Clinical Neuroscience, Karolinska Institute, 171 77 Stockholm, Sweden; (G.B.); (M.A.); (A.A.); (M.G.); (A.B.); (E.E.)
- Capio Spine Center Stockholm, Löwenströmska Hospital, 194 80 Upplands-Väsby, Sweden
- Department of Medical Sciences, Örebro University, 701 85 Örebro, Sweden
- Department of Surgical Sciences, Uppsala University, 751 35 Uppsala, Sweden
| |
Collapse
|
52
|
Lotter W, Hassett MJ, Schultz N, Kehl KL, Van Allen EM, Cerami E. Artificial Intelligence in Oncology: Current Landscape, Challenges, and Future Directions. Cancer Discov 2024; 14:711-726. [PMID: 38597966 PMCID: PMC11131133 DOI: 10.1158/2159-8290.cd-23-1199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/29/2024] [Accepted: 02/28/2024] [Indexed: 04/11/2024]
Abstract
Artificial intelligence (AI) in oncology is advancing beyond algorithm development to integration into clinical practice. This review describes the current state of the field, with a specific focus on clinical integration. AI applications are structured according to cancer type and clinical domain, focusing on the four most common cancers and tasks of detection, diagnosis, and treatment. These applications encompass various data modalities, including imaging, genomics, and medical records. We conclude with a summary of existing challenges, evolving solutions, and potential future directions for the field. SIGNIFICANCE AI is increasingly being applied to all aspects of oncology, where several applications are maturing beyond research and development to direct clinical integration. This review summarizes the current state of the field through the lens of clinical translation along the clinical care continuum. Emerging areas are also highlighted, along with common challenges, evolving solutions, and potential future directions for the field.
Collapse
Affiliation(s)
- William Lotter
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Michael J. Hassett
- Harvard Medical School, Boston, MA, USA
- Division of Population Sciences, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Nikolaus Schultz
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center; New York, NY, USA
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kenneth L. Kehl
- Harvard Medical School, Boston, MA, USA
- Division of Population Sciences, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Eliezer M. Van Allen
- Harvard Medical School, Boston, MA, USA
- Division of Population Sciences, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ethan Cerami
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
53
|
Pillar N, Li Y, Zhang Y, Ozcan A. Virtual Staining of Nonfixed Tissue Histology. Mod Pathol 2024; 37:100444. [PMID: 38325706 DOI: 10.1016/j.modpat.2024.100444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/19/2024] [Accepted: 01/29/2024] [Indexed: 02/09/2024]
Abstract
Surgical pathology workflow involves multiple labor-intensive steps, such as tissue removal, fixation, embedding, sectioning, staining, and microscopic examination. This process is time-consuming and costly and requires skilled technicians. In certain clinical scenarios, such as intraoperative consultations, there is a need for faster histologic evaluation to provide real-time surgical guidance. Currently, frozen section techniques involving hematoxylin and eosin (H&E) staining are used for intraoperative pathology consultations. However, these techniques have limitations, including a turnaround time of 20 to 30 minutes, staining artifacts, and potential tissue loss, negatively impacting accurate diagnosis. To address these challenges, researchers are exploring alternative optical imaging modalities for rapid microscopic tissue imaging. These modalities differ in optical characteristics, tissue preparation requirements, imaging equipment, and output image quality and format. Some of these imaging methods have been combined with computational algorithms to generate H&E-like images, which could greatly facilitate their adoption by pathologists. Here, we provide a comprehensive, organ-specific review of the latest advancements in emerging imaging modalities applied to nonfixed human tissue. We focused on studies that generated H&E-like images evaluated by pathologists. By presenting up-to-date research progress and clinical utility, this review serves as a valuable resource for scholars and clinicians, covering some of the major technical developments in this rapidly evolving field. It also offers insights into the potential benefits and drawbacks of alternative imaging modalities and their implications for improving patient care.
Collapse
Affiliation(s)
- Nir Pillar
- Electrical and Computer Engineering Department, University of California, Los Angeles, California; Bioengineering Department, University of California, Los Angeles, California; California NanoSystems Institute (CNSI), University of California, Los Angeles, California
| | - Yuzhu Li
- Electrical and Computer Engineering Department, University of California, Los Angeles, California; Bioengineering Department, University of California, Los Angeles, California; California NanoSystems Institute (CNSI), University of California, Los Angeles, California
| | - Yijie Zhang
- Electrical and Computer Engineering Department, University of California, Los Angeles, California; Bioengineering Department, University of California, Los Angeles, California; California NanoSystems Institute (CNSI), University of California, Los Angeles, California
| | - Aydogan Ozcan
- Electrical and Computer Engineering Department, University of California, Los Angeles, California; Bioengineering Department, University of California, Los Angeles, California; California NanoSystems Institute (CNSI), University of California, Los Angeles, California.
| |
Collapse
|
54
|
Manciu FS, Guerrero J, Pence BC, Martinez Lopez LV, Das S. Assessment of Drug Activities against Giardia Using Hyperspectral Raman Microscopy. Pathogens 2024; 13:358. [PMID: 38787210 PMCID: PMC11124377 DOI: 10.3390/pathogens13050358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/19/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024] Open
Abstract
This study demonstrates the capability of Raman microscopy for detecting structural differences in Giardia cells exposed to different drugs and incubation times. While metronidazole (MTZ) visibly affects the cells by inducing extracellular vesicle releases of toxic iron intermediates and modified triple-bond moieties, oseltamivir (OSM) alters the phenylalanine and lipid structures. Modifications in the heme protein environment and the transformation of iron from ferric to ferrous observed for both drug treatments are more notable for MTZ. Different contents and amounts of vesicle excretion are detected for 24 h or 48 h with MTZ incubation. At a shorter drug exposure, releases of altered proteins, glycogen, and phospholipids dominate. Agglomerates of transformed iron complexes from heme proteins and multiple-bond moieties prevail at 48 h of treatment. No such vesicle releases are present in the case of OSM usage. Drug incorporations into the cells and their impact on the plasma membrane and the dynamics of lipid raft confirmed by confocal fluorescence microscopy reveal a more destructive extent by OSM, corroborating the Raman results. Raman microscopy provides a broader understanding of the multifaceted factors and mechanisms responsible for giardiasis treatment or drug resistance by enabling a label-free, simultaneous monitoring of structural changes at the cellular and molecular levels.
Collapse
Affiliation(s)
- Felicia S. Manciu
- Department of Physics, University of Texas at El Paso, El Paso, TX 79968, USA; (J.G.); (L.V.M.L.)
- Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Jose Guerrero
- Department of Physics, University of Texas at El Paso, El Paso, TX 79968, USA; (J.G.); (L.V.M.L.)
| | - Breanna C. Pence
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968, USA;
| | | | - Siddhartha Das
- Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79968, USA
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968, USA;
| |
Collapse
|
55
|
Matthies L, Amir-Kabirian H, Gebrekidan MT, Braeuer AS, Speth US, Smeets R, Hagel C, Gosau M, Knipfer C, Friedrich RE. Raman difference spectroscopy and U-Net convolutional neural network for molecular analysis of cutaneous neurofibroma. PLoS One 2024; 19:e0302017. [PMID: 38603731 PMCID: PMC11008861 DOI: 10.1371/journal.pone.0302017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 03/26/2024] [Indexed: 04/13/2024] Open
Abstract
In Neurofibromatosis type 1 (NF1), peripheral nerve sheaths tumors are common, with cutaneous neurofibromas resulting in significant aesthetic, painful and functional problems requiring surgical removal. To date, determination of adequate surgical resection margins-complete tumor removal while attempting to preserve viable tissue-remains largely subjective. Thus, residual tumor extension beyond surgical margins or recurrence of the disease may frequently be observed. Here, we introduce Shifted-Excitation Raman Spectroscopy in combination with deep neural networks for the future perspective of objective, real-time diagnosis, and guided surgical ablation. The obtained results are validated through established histological methods. In this study, we evaluated the discrimination between cutaneous neurofibroma (n = 9) and adjacent physiological tissues (n = 25) in 34 surgical pathological specimens ex vivo at a total of 82 distinct measurement loci. Based on a convolutional neural network (U-Net), the mean raw Raman spectra (n = 8,200) were processed and refined, and afterwards the spectral peaks were assigned to their respective molecular origin. Principal component and linear discriminant analysis was used to discriminate cutaneous neurofibromas from physiological tissues with a sensitivity of 100%, specificity of 97.3%, and overall classification accuracy of 97.6%. The results enable the presented optical, non-invasive technique in combination with artificial intelligence as a promising candidate to ameliorate both, diagnosis and treatment of patients affected by cutaneous neurofibroma and NF1.
Collapse
Affiliation(s)
- Levi Matthies
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hendrik Amir-Kabirian
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Medhanie T. Gebrekidan
- Institute of Thermal-, Environmental- and Resources‘ Process Engineering, Technische Universität Bergakademie Freiberg, Freiberg, Germany
| | - Andreas S. Braeuer
- Institute of Thermal-, Environmental- and Resources‘ Process Engineering, Technische Universität Bergakademie Freiberg, Freiberg, Germany
| | - Ulrike S. Speth
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ralf Smeets
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Division of “Regenerative Orofacial Medicine”, Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Hagel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martin Gosau
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Knipfer
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Reinhard E. Friedrich
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
56
|
Abraham TM, Levenson R. Current Landscape of Advanced Imaging Tools for Pathology Diagnostics. Mod Pathol 2024; 37:100443. [PMID: 38311312 DOI: 10.1016/j.modpat.2024.100443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 12/13/2023] [Accepted: 01/26/2024] [Indexed: 02/10/2024]
Abstract
Histopathology relies on century-old workflows of formalin fixation, paraffin embedding, sectioning, and staining tissue specimens on glass slides. Despite being robust, this conventional process is slow, labor-intensive, and limited to providing two-dimensional views. Emerging technologies promise to enhance and accelerate histopathology. Slide-free microscopy allows rapid imaging of fresh, unsectioned specimens, overcoming slide preparation delays. Methods such as fluorescence confocal microscopy, multiphoton microscopy, along with more recent innovations including microscopy with UV surface excitation and fluorescence-imitating brightfield imaging can generate images resembling conventional histology directly from the surface of tissue specimens. Slide-free microscopy enable applications such as rapid intraoperative margin assessment and, with appropriate technology, three-dimensional histopathology. Multiomics profiling techniques, including imaging mass spectrometry and Raman spectroscopy, provide highly multiplexed molecular maps of tissues, although clinical translation remains challenging. Artificial intelligence is aiding the adoption of new imaging modalities via virtual staining, which converts methods such as slide-free microscopy into synthetic brightfield-like or even molecularly informed images. Although not yet commonplace, these emerging technologies collectively demonstrate the potential to modernize histopathology. Artificial intelligence-assisted workflows will ease the transition to new imaging modalities. With further validation, these advances may transform the century-old conventional histopathology pipeline to better serve 21st-century medicine. This review provides an overview of these enabling technology platforms and discusses their potential impact.
Collapse
Affiliation(s)
- Tanishq Mathew Abraham
- Department of Biomedical Engineering, University of California, Davis, Davis, California
| | - Richard Levenson
- Department of Pathology and Laboratory Medicine, UC Davis Health, Sacramento, California.
| |
Collapse
|
57
|
Meißner AK, Goldbrunner R, Neuschmelting V. [Intraoperative stimulated Raman histology for personalized brain tumor surgery]. CHIRURGIE (HEIDELBERG, GERMANY) 2024; 95:274-279. [PMID: 38334774 DOI: 10.1007/s00104-024-02038-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/11/2024] [Indexed: 02/10/2024]
Abstract
BACKGROUND In brain tumor surgery a personalized surgical approach is crucial to achieve a maximum safe tumor resection. The extent of resection decisively depends on the histological diagnosis. Stimulated Raman histology (SRH), a fiber laser-based optical imaging method, offers the possibility for evaluation of an intraoperative diagnosis in a few minutes. OBJECTIVE To provide an overview on the applications of SRH in neurosurgery and transference of the technique to other surgical disciplines. METHODS Description of the technique and review of the current literature on SRH. RESULTS The SRH technique was successfully used in multiple neuro-oncological tumor entities. Initial pilot projects showed the potential for analysis of extracranial tumors. CONCLUSION The use of SRH provides a near real-time diagnosis with high diagnostic accuracy and provides further developmental potential to improve personalized tumor surgery.
Collapse
Affiliation(s)
- Anna-Katharina Meißner
- Klinik für allgemeine Neurochirurgie, Zentrum für Neurochirurgie, Medizinische Fakultät und Universitätsklinik Köln, Universität zu Köln, Kerpener Str. 62, 50937, Köln, Deutschland
| | - Roland Goldbrunner
- Klinik für allgemeine Neurochirurgie, Zentrum für Neurochirurgie, Medizinische Fakultät und Universitätsklinik Köln, Universität zu Köln, Kerpener Str. 62, 50937, Köln, Deutschland
| | - Volker Neuschmelting
- Klinik für allgemeine Neurochirurgie, Zentrum für Neurochirurgie, Medizinische Fakultät und Universitätsklinik Köln, Universität zu Köln, Kerpener Str. 62, 50937, Köln, Deutschland.
| |
Collapse
|
58
|
Klamminger GG, Mombaerts L, Kemp F, Jelke F, Klein K, Slimani R, Mirizzi G, Husch A, Hertel F, Mittelbronn M, Kleine Borgmann FB. Machine Learning-Assisted Classification of Paraffin-Embedded Brain Tumors with Raman Spectroscopy. Brain Sci 2024; 14:301. [PMID: 38671953 PMCID: PMC11048578 DOI: 10.3390/brainsci14040301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/15/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
Raman spectroscopy (RS) has demonstrated its utility in neurooncological diagnostics, spanning from intraoperative tumor detection to the analysis of tissue samples peri- and postoperatively. In this study, we employed Raman spectroscopy (RS) to monitor alterations in the molecular vibrational characteristics of a broad range of formalin-fixed, paraffin-embedded (FFPE) intracranial neoplasms (including primary brain tumors and meningiomas, as well as brain metastases) and considered specific challenges when employing RS on FFPE tissue during the routine neuropathological workflow. We spectroscopically measured 82 intracranial neoplasms on CaF2 slides (in total, 679 individual measurements) and set up a machine learning framework to classify spectral characteristics by splitting our data into training cohorts and external validation cohorts. The effectiveness of our machine learning algorithms was assessed by using common performance metrics such as AUROC and AUPR values. With our trained random forest algorithms, we distinguished among various types of gliomas and identified the primary origin in cases of brain metastases. Moreover, we spectroscopically diagnosed tumor types by using biopsy fragments of pure necrotic tissue, a task unattainable through conventional light microscopy. In order to address misclassifications and enhance the assessment of our models, we sought out significant Raman bands suitable for tumor identification. Through the validation phase, we affirmed a considerable complexity within the spectroscopic data, potentially arising not only from the biological tissue subjected to a rigorous chemical procedure but also from residual components of the fixation and paraffin-embedding process. The present study demonstrates not only the potential applications but also the constraints of RS as a diagnostic tool in neuropathology, considering the challenges associated with conducting vibrational spectroscopic analysis on formalin-fixed, paraffin-embedded (FFPE) tissue.
Collapse
Affiliation(s)
- Gilbert Georg Klamminger
- Department of General and Special Pathology, Saarland University (USAAR), 66424 Homburg, Germany
- Department of General and Special Pathology, Saarland University Medical Center (UKS), 66424 Homburg, Germany
- National Center of Pathology (NCP), Laboratoire National de Santé (LNS), 3555 Dudelange, Luxembourg
| | - Laurent Mombaerts
- Luxembourg Center of Neuropathology (LCNP), 3555 Dudelange, Luxembourg
| | - Françoise Kemp
- Luxembourg Center of Neuropathology (LCNP), 3555 Dudelange, Luxembourg
| | - Finn Jelke
- National Center of Neurosurgery, Centre Hospitalier de Luxembourg (CHL), 1210 Luxembourg, Luxembourg
- Doctoral School in Science and Engineering (DSSE), University of Luxembourg (UL), 4362 Esch-sur-Alzette, Luxembourg
| | - Karoline Klein
- National Center of Neurosurgery, Centre Hospitalier de Luxembourg (CHL), 1210 Luxembourg, Luxembourg
- Faculty of Medicine, Saarland University (USAAR), 66424 Homburg, Germany
| | - Rédouane Slimani
- Doctoral School in Science and Engineering (DSSE), University of Luxembourg (UL), 4362 Esch-sur-Alzette, Luxembourg
- Department of Cancer Research (DoCR), Luxembourg Institute of Health (LIH), 1210 Luxembourg, Luxembourg
| | - Giulia Mirizzi
- National Center of Neurosurgery, Centre Hospitalier de Luxembourg (CHL), 1210 Luxembourg, Luxembourg
- Faculty of Medicine, Saarland University (USAAR), 66424 Homburg, Germany
| | - Andreas Husch
- National Center of Neurosurgery, Centre Hospitalier de Luxembourg (CHL), 1210 Luxembourg, Luxembourg
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg (UL), 4362 Esch-sur-Alzette, Luxembourg
| | - Frank Hertel
- National Center of Neurosurgery, Centre Hospitalier de Luxembourg (CHL), 1210 Luxembourg, Luxembourg
- Faculty of Medicine, Saarland University (USAAR), 66424 Homburg, Germany
| | - Michel Mittelbronn
- Luxembourg Center of Neuropathology (LCNP), 3555 Dudelange, Luxembourg
- Department of Cancer Research (DoCR), Luxembourg Institute of Health (LIH), 1210 Luxembourg, Luxembourg
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg (UL), 4362 Esch-sur-Alzette, Luxembourg
- Department of Life Sciences and Medicine (DLSM), University of Luxembourg, 4365 Esch-sur-Alzette, Luxembourg
- Faculty of Science, Technology and Medicine (FSTM), University of Luxembourg, 4365 Esch-sur-Alzette, Luxembourg
| | - Felix B. Kleine Borgmann
- National Center of Pathology (NCP), Laboratoire National de Santé (LNS), 3555 Dudelange, Luxembourg
- National Center of Neurosurgery, Centre Hospitalier de Luxembourg (CHL), 1210 Luxembourg, Luxembourg
- Department of Cancer Research (DoCR), Luxembourg Institute of Health (LIH), 1210 Luxembourg, Luxembourg
- Hôpitaux Robert Schuman, 1130 Luxembourg, Luxembourg
| |
Collapse
|
59
|
Bou-Nassif R, Reiner AS, Pease M, Bale T, Cohen MA, Rosenblum M, Tabar V. Development and prospective validation of an artificial intelligence-based smartphone app for rapid intraoperative pituitary adenoma identification. COMMUNICATIONS MEDICINE 2024; 4:45. [PMID: 38480833 PMCID: PMC10937994 DOI: 10.1038/s43856-024-00469-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 02/28/2024] [Indexed: 03/17/2024] Open
Abstract
BACKGROUND Intraoperative pathology consultation plays a crucial role in tumor surgery. The ability to accurately and rapidly distinguish tumor from normal tissue can greatly impact intraoperative surgical oncology management. However, this is dependent on the availability of a specialized pathologist for a reliable diagnosis. We developed and prospectively validated an artificial intelligence-based smartphone app capable of differentiating between pituitary adenoma and normal pituitary gland using stimulated Raman histology, almost instantly. METHODS The study consisted of three parts. After data collection (part 1) and development of a deep learning-based smartphone app (part 2), we conducted a prospective study that included 40 consecutive patients with 194 samples to evaluate the app in real-time in a surgical setting (part 3). The smartphone app's sensitivity, specificity, positive predictive value, and negative predictive value were evaluated by comparing the diagnosis rendered by the app to the ground-truth diagnosis set by a neuropathologist. RESULTS The app exhibits a sensitivity of 96.1% (95% CI: 89.9-99.0%), specificity of 92.7% (95% CI: 74-99.3%), positive predictive value of 98% (95% CI: 92.2-99.8%), and negative predictive value of 86.4% (95% CI: 66.2-96.8%). An external validation of the smartphone app on 40 different adenoma tumors and a total of 191 scanned SRH specimens from a public database shows a sensitivity of 93.7% (95% CI: 89.3-96.7%). CONCLUSIONS The app can be readily expanded and repurposed to work on different types of tumors and optical images. Rapid recognition of normal versus tumor tissue during surgery may contribute to improved intraoperative surgical management and oncologic outcomes. In addition to the accelerated pathological assessments during surgery, this platform can be of great benefit in community hospitals and developing countries, where immediate access to a specialized pathologist during surgery is limited.
Collapse
Affiliation(s)
- Rabih Bou-Nassif
- Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Multidisciplinary Pituitary and Skull Base Tumor Center, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Anne S Reiner
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Matthew Pease
- Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Multidisciplinary Pituitary and Skull Base Tumor Center, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Tejus Bale
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Marc A Cohen
- Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Multidisciplinary Pituitary and Skull Base Tumor Center, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Surgery, Head and Neck Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Marc Rosenblum
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Viviane Tabar
- Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Multidisciplinary Pituitary and Skull Base Tumor Center, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
60
|
Shen B, Li Z, Pan Y, Guo Y, Yin Z, Hu R, Qu J, Liu L. Noninvasive Nonlinear Optical Computational Histology. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308630. [PMID: 38095543 PMCID: PMC10916666 DOI: 10.1002/advs.202308630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 11/28/2023] [Indexed: 03/07/2024]
Abstract
Cancer remains a global health challenge, demanding early detection and accurate diagnosis for improved patient outcomes. An intelligent paradigm is introduced that elevates label-free nonlinear optical imaging with contrastive patch-wise learning, yielding stain-free nonlinear optical computational histology (NOCH). NOCH enables swift, precise diagnostic analysis of fresh tissues, reducing patient anxiety and healthcare costs. Nonlinear modalities are evaluated, including stimulated Raman scattering and multiphoton imaging, for their ability to enhance tumor microenvironment sensitivity, pathological analysis, and cancer examination. Quantitative analysis confirmed that NOCH images accurately reproduce nuclear morphometric features across different cancer stages. Key diagnostic features, such as nuclear morphology, size, and nuclear-cytoplasmic contrast, are well preserved. NOCH models also demonstrate promising generalization when applied to other pathological tissues. The study unites label-free nonlinear optical imaging with histopathology using contrastive learning to establish stain-free computational histology. NOCH provides a rapid, non-invasive, and precise approach to surgical pathology, holding immense potential for revolutionizing cancer diagnosis and surgical interventions.
Collapse
Affiliation(s)
- Binglin Shen
- Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province and Ministry of EducationCollege of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhen518060China
| | - Zhenglin Li
- Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province and Ministry of EducationCollege of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhen518060China
| | - Ying Pan
- China–Japan Union Hospital of Jilin UniversityChangchun130033China
| | - Yuan Guo
- Shaanxi Provincial Cancer HospitalXi'an710065China
| | - Zongyi Yin
- Shenzhen University General HospitalShenzhen518055China
| | - Rui Hu
- Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province and Ministry of EducationCollege of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhen518060China
| | - Junle Qu
- Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province and Ministry of EducationCollege of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhen518060China
| | - Liwei Liu
- Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province and Ministry of EducationCollege of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhen518060China
| |
Collapse
|
61
|
Klein K, Klamminger GG, Mombaerts L, Jelke F, Arroteia IF, Slimani R, Mirizzi G, Husch A, Frauenknecht KBM, Mittelbronn M, Hertel F, Kleine Borgmann FB. Computational Assessment of Spectral Heterogeneity within Fresh Glioblastoma Tissue Using Raman Spectroscopy and Machine Learning Algorithms. Molecules 2024; 29:979. [PMID: 38474491 DOI: 10.3390/molecules29050979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/24/2023] [Accepted: 02/07/2024] [Indexed: 03/14/2024] Open
Abstract
Understanding and classifying inherent tumor heterogeneity is a multimodal approach, which can be undertaken at the genetic, biochemical, or morphological level, among others. Optical spectral methods such as Raman spectroscopy aim at rapid and non-destructive tissue analysis, where each spectrum generated reflects the individual molecular composition of an examined spot within a (heterogenous) tissue sample. Using a combination of supervised and unsupervised machine learning methods as well as a solid database of Raman spectra of native glioblastoma samples, we succeed not only in distinguishing explicit tumor areas-vital tumor tissue and necrotic tumor tissue can correctly be predicted with an accuracy of 76%-but also in determining and classifying different spectral entities within the histomorphologically distinct class of vital tumor tissue. Measurements of non-pathological, autoptic brain tissue hereby serve as a healthy control since their respective spectroscopic properties form an individual and reproducible cluster within the spectral heterogeneity of a vital tumor sample. The demonstrated decipherment of a spectral glioblastoma heterogeneity will be valuable, especially in the field of spectroscopically guided surgery to delineate tumor margins and to assist resection control.
Collapse
Affiliation(s)
- Karoline Klein
- Faculty of Medicine, Saarland University (USAAR), 66424 Homburg, Germany
- National Center of Neurosurgery, Centre Hospitalier de Luxembourg (CHL), 1210 Luxembourg, Luxembourg
| | - Gilbert Georg Klamminger
- Department of General and Special Pathology, Saarland University (USAAR), 66424 Homburg, Germany
- Department of General and Special Pathology, Saarland University Medical Center (UKS), 66424 Homburg, Germany
- National Center of Pathology (NCP), Laboratoire National de Santé (LNS), 3555 Dudelange, Luxembourg
| | - Laurent Mombaerts
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg (UL), 4362 Esch-sur-Alzette, Luxembourg
| | - Finn Jelke
- National Center of Neurosurgery, Centre Hospitalier de Luxembourg (CHL), 1210 Luxembourg, Luxembourg
- Doctoral School in Science and Engineering (DSSE), University of Luxembourg (UL), 4362 Esch-sur-Alzette, Luxembourg
| | - Isabel Fernandes Arroteia
- National Center of Neurosurgery, Centre Hospitalier de Luxembourg (CHL), 1210 Luxembourg, Luxembourg
| | - Rédouane Slimani
- Doctoral School in Science and Engineering (DSSE), University of Luxembourg (UL), 4362 Esch-sur-Alzette, Luxembourg
- Luxembourg Center of Neuropathology (LCNP), 3555 Dudelange, Luxembourg
- Department of Cancer Research (DoCR), Luxembourg Institute of Health (LIH), 1210 Luxembourg, Luxembourg
| | - Giulia Mirizzi
- Faculty of Medicine, Saarland University (USAAR), 66424 Homburg, Germany
- National Center of Neurosurgery, Centre Hospitalier de Luxembourg (CHL), 1210 Luxembourg, Luxembourg
| | - Andreas Husch
- National Center of Neurosurgery, Centre Hospitalier de Luxembourg (CHL), 1210 Luxembourg, Luxembourg
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg (UL), 4362 Esch-sur-Alzette, Luxembourg
| | - Katrin B M Frauenknecht
- National Center of Pathology (NCP), Laboratoire National de Santé (LNS), 3555 Dudelange, Luxembourg
- Luxembourg Center of Neuropathology (LCNP), 3555 Dudelange, Luxembourg
- Department of Cancer Research (DoCR), Luxembourg Institute of Health (LIH), 1210 Luxembourg, Luxembourg
| | - Michel Mittelbronn
- National Center of Pathology (NCP), Laboratoire National de Santé (LNS), 3555 Dudelange, Luxembourg
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg (UL), 4362 Esch-sur-Alzette, Luxembourg
- Luxembourg Center of Neuropathology (LCNP), 3555 Dudelange, Luxembourg
- Department of Cancer Research (DoCR), Luxembourg Institute of Health (LIH), 1210 Luxembourg, Luxembourg
- Department of Life Sciences and Medicine (DLSM), University of Luxembourg, 4365 Esch-sur-Alzette, Luxembourg
- Faculty of Science, Technology and Medicine (FSTM), University of Luxembourg, 4365 Esch-sur-Alzette, Luxembourg
| | - Frank Hertel
- Faculty of Medicine, Saarland University (USAAR), 66424 Homburg, Germany
- National Center of Neurosurgery, Centre Hospitalier de Luxembourg (CHL), 1210 Luxembourg, Luxembourg
| | - Felix B Kleine Borgmann
- Faculty of Medicine, Saarland University (USAAR), 66424 Homburg, Germany
- National Center of Neurosurgery, Centre Hospitalier de Luxembourg (CHL), 1210 Luxembourg, Luxembourg
- Department of Cancer Research (DoCR), Luxembourg Institute of Health (LIH), 1210 Luxembourg, Luxembourg
- Hôpitaux Robert Schuman, 1130 Luxembourg, Luxembourg
| |
Collapse
|
62
|
Rethemiotaki I. Brain tumour detection from magnetic resonance imaging using convolutional neural networks. Contemp Oncol (Pozn) 2024; 27:230-241. [PMID: 38405206 PMCID: PMC10883197 DOI: 10.5114/wo.2023.135320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 01/02/2024] [Indexed: 02/27/2024] Open
Abstract
Introduction The aim of this work is to detect and classify brain tumours using computational intelligence techniques on magnetic resonance imaging (MRI) images. Material and methods A dataset of 3264 MRI brain images consisting of 4 categories: unspecified glioma, meningioma, pituitary, and healthy brain, was used in this study. Twelve convolutional neural networks (GoogleNet, MobileNetV2, Xception, DesNet-BC, ResNet 50, SqueezeNet, ShuffleNet, VGG-16, AlexNet, Enet, EfficientB0, and MobileNetV2 with meta pseudo-labels) were used to classify gliomas, meningiomas, pituitary tumours, and healthy brains to find the most appropriate model. The experiments included image preprocessing and hyperparameter tuning. The performance of each neural network was evaluated based on accuracy, precision, recall, and F-measure for each type of brain tumour. Results The experimental results show that the MobileNetV2 convolutional neural network (CNN) model was able to diagnose brain tumours with 99% accuracy, 98% recall, and 99% F1 score. On the other hand, the validation data analysis shows that the CNN model GoogleNet has the highest accuracy (97%) among CNNs and seems to be the best choice for brain tumour classification. Conclusions The results of this work highlight the importance of artificial intelligence and machine learning for brain tumour prediction. Furthermore, this study achieved the highest accuracy in brain tumour classification to date, and it is also the only study to compare the performance of so many neural networks simultaneously.
Collapse
Affiliation(s)
- Irene Rethemiotaki
- School of Electrical and Computer Engineering, Technical University of Crete, Chania, Crete, Greece
| |
Collapse
|
63
|
Weber A, Enderle-Ammour K, Kurowski K, Metzger MC, Poxleitner P, Werner M, Rothweiler R, Beck J, Straehle J, Schmelzeisen R, Steybe D, Bronsert P. AI-Based Detection of Oral Squamous Cell Carcinoma with Raman Histology. Cancers (Basel) 2024; 16:689. [PMID: 38398080 PMCID: PMC10886627 DOI: 10.3390/cancers16040689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/02/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
Stimulated Raman Histology (SRH) employs the stimulated Raman scattering (SRS) of photons at biomolecules in tissue samples to generate histological images. Subsequent pathological analysis allows for an intraoperative evaluation without the need for sectioning and staining. The objective of this study was to investigate a deep learning-based classification of oral squamous cell carcinoma (OSCC) and the sub-classification of non-malignant tissue types, as well as to compare the performances of the classifier between SRS and SRH images. Raman shifts were measured at wavenumbers k1 = 2845 cm-1 and k2 = 2930 cm-1. SRS images were transformed into SRH images resembling traditional H&E-stained frozen sections. The annotation of 6 tissue types was performed on images obtained from 80 tissue samples from eight OSCC patients. A VGG19-based convolutional neural network was then trained on 64 SRS images (and corresponding SRH images) and tested on 16. A balanced accuracy of 0.90 (0.87 for SRH images) and F1-scores of 0.91 (0.91 for SRH) for stroma, 0.98 (0.96 for SRH) for adipose tissue, 0.90 (0.87 for SRH) for squamous epithelium, 0.92 (0.76 for SRH) for muscle, 0.87 (0.90 for SRH) for glandular tissue, and 0.88 (0.87 for SRH) for tumor were achieved. The results of this study demonstrate the suitability of deep learning for the intraoperative identification of tissue types directly on SRS and SRH images.
Collapse
Affiliation(s)
- Andreas Weber
- Institute for Surgical Pathology, Medical Center, University of Freiburg, 79106 Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Kathrin Enderle-Ammour
- Institute for Surgical Pathology, Medical Center, University of Freiburg, 79106 Freiburg, Germany
| | - Konrad Kurowski
- Institute for Surgical Pathology, Medical Center, University of Freiburg, 79106 Freiburg, Germany
- Tumorbank Comprehensive Cancer Center Freiburg, Medical Center, University of Freiburg, 79106 Freiburg, Germany
- Core Facility for Histopathology and Digital Pathology, Medical Center, University of Freiburg, 79106 Freiburg, Germany
| | - Marc C. Metzger
- Department of Oral and Maxillofacial Surgery, Medical Center, University of Freiburg, 79106 Freiburg, Germany
| | - Philipp Poxleitner
- Department of Oral and Maxillofacial Surgery, Medical Center, University of Freiburg, 79106 Freiburg, Germany
- Center for Advanced Surgical Tissue Analysis (CAST), University of Freiburg, 79106 Freiburg, Germany
- Department of Oral and Maxillofacial Surgery and Facial Plastic Surgery, University Hospital, LMU Munich, 80337 Munich, Germany
| | - Martin Werner
- Institute for Surgical Pathology, Medical Center, University of Freiburg, 79106 Freiburg, Germany
- Tumorbank Comprehensive Cancer Center Freiburg, Medical Center, University of Freiburg, 79106 Freiburg, Germany
| | - René Rothweiler
- Department of Oral and Maxillofacial Surgery, Medical Center, University of Freiburg, 79106 Freiburg, Germany
| | - Jürgen Beck
- Center for Advanced Surgical Tissue Analysis (CAST), University of Freiburg, 79106 Freiburg, Germany
- Department of Neurosurgery, Medical Center, University of Freiburg, 79106 Freiburg, Germany
| | - Jakob Straehle
- Center for Advanced Surgical Tissue Analysis (CAST), University of Freiburg, 79106 Freiburg, Germany
- Department of Neurosurgery, Medical Center, University of Freiburg, 79106 Freiburg, Germany
| | - Rainer Schmelzeisen
- Department of Oral and Maxillofacial Surgery, Medical Center, University of Freiburg, 79106 Freiburg, Germany
- Center for Advanced Surgical Tissue Analysis (CAST), University of Freiburg, 79106 Freiburg, Germany
| | - David Steybe
- Department of Oral and Maxillofacial Surgery, Medical Center, University of Freiburg, 79106 Freiburg, Germany
- Center for Advanced Surgical Tissue Analysis (CAST), University of Freiburg, 79106 Freiburg, Germany
- Department of Oral and Maxillofacial Surgery and Facial Plastic Surgery, University Hospital, LMU Munich, 80337 Munich, Germany
| | - Peter Bronsert
- Institute for Surgical Pathology, Medical Center, University of Freiburg, 79106 Freiburg, Germany
- Tumorbank Comprehensive Cancer Center Freiburg, Medical Center, University of Freiburg, 79106 Freiburg, Germany
- Core Facility for Histopathology and Digital Pathology, Medical Center, University of Freiburg, 79106 Freiburg, Germany
| |
Collapse
|
64
|
Ni H, Dessai CP, Lin H, Wang W, Chen S, Yuan Y, Ge X, Ao J, Vild N, Cheng JX. High-content stimulated Raman histology of human breast cancer. Theranostics 2024; 14:1361-1370. [PMID: 38389847 PMCID: PMC10879861 DOI: 10.7150/thno.90336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/17/2023] [Indexed: 02/24/2024] Open
Abstract
Histological examination is crucial for cancer diagnosis, however, the labor-intensive sample preparation involved in the histology impedes the speed of diagnosis. Recently developed two-color stimulated Raman histology could bypass the complex tissue processing to generates result close to hematoxylin and eosin staining, which is one of the golden standards in cancer histology. Yet, the underlying chemical features are not revealed in two-color stimulated Raman histology, compromising the effectiveness of prognostic stratification. Here, we present a high-content stimulated Raman histology (HC-SRH) platform that provides both morphological and chemical information for cancer diagnosis based on un-stained breast tissues. Methods: By utilizing both hyperspectral SRS imaging in the C-H vibration window and sparsity-penalized unmixing of overlapped spectral profiles, HC-SRH enabled high-content chemical mapping of saturated lipids, unsaturated lipids, cellular protein, extracellular matrix (ECM), and water. Spectral selective sampling was further implemented to boost the speed of HC-SRH. To show the potential for clinical use, HC-SRH using a compact fiber laser-based stimulated Raman microscope was demonstrated. Harnessing the wide and rapid tuning capability of the fiber laser, both C-H and fingerprint vibration windows were accessed. Results: HC-SRH successfully mapped unsaturated lipids, cellular protein, extracellular matrix, saturated lipid, and water in breast tissue. With these five chemical maps, HC-SRH provided distinct contrast for tissue components including duct, stroma, fat cell, necrosis, and vessel. With selective spectral sampling, the speed of HC-SRH was improved by one order of magnitude. The fiber-laser-based HC-SRH produced the same image quality in the C-H window as the state-of-the-art solid laser. In the fingerprint window, nucleic acid and solid-state ester contrast was demonstrated. Conclusions: HC-SRH provides both morphological and chemical information of tissue in a label-free manner. The chemical information detected is beyond the reach of traditional hematoxylin and eosin staining and heralds the potential of HC-SRH for biomarker discovery.
Collapse
Affiliation(s)
- Hongli Ni
- Department of Electrical and Computer Engineering, Boston University, 8 St. Mary's St., Boston, MA, 02215, USA
| | | | - Haonan Lin
- Department of Electrical and Computer Engineering, Boston University, 8 St. Mary's St., Boston, MA, 02215, USA
| | - Wei Wang
- Hologic Inc., 250 campus drive, Marlborough, MA 01752, USA
| | - Shaoxiong Chen
- Indiana University School of Medicine 340 West 10th Street, Fairbanks Hall, Suite 6200, IN 46202, USA
| | - Yuhao Yuan
- Department of Electrical and Computer Engineering, Boston University, 8 St. Mary's St., Boston, MA, 02215, USA
| | - Xiaowei Ge
- Department of Electrical and Computer Engineering, Boston University, 8 St. Mary's St., Boston, MA, 02215, USA
| | - Jianpeng Ao
- Department of Electrical and Computer Engineering, Boston University, 8 St. Mary's St., Boston, MA, 02215, USA
| | - Nolan Vild
- Department of Electrical and Computer Engineering, Boston University, 8 St. Mary's St., Boston, MA, 02215, USA
| | - Ji-Xin Cheng
- Department of Electrical and Computer Engineering, Boston University, 8 St. Mary's St., Boston, MA, 02215, USA
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, MA 02215, USA
| |
Collapse
|
65
|
He H, Cao M, Gao Y, Zheng P, Yan S, Zhong JH, Wang L, Jin D, Ren B. Noise learning of instruments for high-contrast, high-resolution and fast hyperspectral microscopy and nanoscopy. Nat Commun 2024; 15:754. [PMID: 38272927 PMCID: PMC10810791 DOI: 10.1038/s41467-024-44864-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 01/05/2024] [Indexed: 01/27/2024] Open
Abstract
The low scattering efficiency of Raman scattering makes it challenging to simultaneously achieve good signal-to-noise ratio (SNR), high imaging speed, and adequate spatial and spectral resolutions. Here, we report a noise learning (NL) approach that estimates the intrinsic noise distribution of each instrument by statistically learning the noise in the pixel-spatial frequency domain. The estimated noise is then removed from the noisy spectra. This enhances the SNR by ca. 10 folds, and suppresses the mean-square error by almost 150 folds. NL allows us to improve the positioning accuracy and spatial resolution and largely eliminates the impact of thermal drift on tip-enhanced Raman spectroscopic nanoimaging. NL is also applicable to enhance SNR in fluorescence and photoluminescence imaging. Our method manages the ground truth spectra and the instrumental noise simultaneously within the training dataset, which bypasses the tedious labelling of huge dataset required in conventional deep learning, potentially shifting deep learning from sample-dependent to instrument-dependent.
Collapse
Affiliation(s)
- Hao He
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, China
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- Department of Biomedical Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China
| | - Maofeng Cao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yun Gao
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, China
| | - Peng Zheng
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, China
| | - Sen Yan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Jin-Hui Zhong
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Lei Wang
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, China.
| | - Dayong Jin
- Department of Biomedical Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China
- Institute for Biomedical Materials & Devices (IBMD), University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Bin Ren
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
- Tan Kah Kee Innovation Laboratory, Xiamen, 361104, China.
| |
Collapse
|
66
|
Qian N, Gao X, Lang X, Deng H, Bratu TM, Chen Q, Stapleton P, Yan B, Min W. Rapid single-particle chemical imaging of nanoplastics by SRS microscopy. Proc Natl Acad Sci U S A 2024; 121:e2300582121. [PMID: 38190543 PMCID: PMC10801917 DOI: 10.1073/pnas.2300582121] [Citation(s) in RCA: 52] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 10/24/2023] [Indexed: 01/10/2024] Open
Abstract
Plastics are now omnipresent in our daily lives. The existence of microplastics (1 µm to 5 mm in length) and possibly even nanoplastics (<1 μm) has recently raised health concerns. In particular, nanoplastics are believed to be more toxic since their smaller size renders them much more amenable, compared to microplastics, to enter the human body. However, detecting nanoplastics imposes tremendous analytical challenges on both the nano-level sensitivity and the plastic-identifying specificity, leading to a knowledge gap in this mysterious nanoworld surrounding us. To address these challenges, we developed a hyperspectral stimulated Raman scattering (SRS) imaging platform with an automated plastic identification algorithm that allows micro-nano plastic analysis at the single-particle level with high chemical specificity and throughput. We first validated the sensitivity enhancement of the narrow band of SRS to enable high-speed single nanoplastic detection below 100 nm. We then devised a data-driven spectral matching algorithm to address spectral identification challenges imposed by sensitive narrow-band hyperspectral imaging and achieve robust determination of common plastic polymers. With the established technique, we studied the micro-nano plastics from bottled water as a model system. We successfully detected and identified nanoplastics from major plastic types. Micro-nano plastics concentrations were estimated to be about 2.4 ± 1.3 × 105 particles per liter of bottled water, about 90% of which are nanoplastics. This is orders of magnitude more than the microplastic abundance reported previously in bottled water. High-throughput single-particle counting revealed extraordinary particle heterogeneity and nonorthogonality between plastic composition and morphologies; the resulting multidimensional profiling sheds light on the science of nanoplastics.
Collapse
Affiliation(s)
- Naixin Qian
- Department of Chemistry, Columbia University, New York, NY10027
| | - Xin Gao
- Department of Chemistry, Columbia University, New York, NY10027
| | - Xiaoqi Lang
- Department of Chemistry, Columbia University, New York, NY10027
| | - Huiping Deng
- Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY10964
| | | | - Qixuan Chen
- Department of Biostatistics, Columbia University Mailman School of Public Health, New York, NY10032
| | - Phoebe Stapleton
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Environmental and Occupational Health Sciences Institute, Rutgers University, New Brunswick, NJ08854
| | - Beizhan Yan
- Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY10964
| | - Wei Min
- Department of Chemistry, Columbia University, New York, NY10027
- Department of Biomedical Engineering, Columbia University, New York, NY10027
| |
Collapse
|
67
|
Levy JJ, Davis MJ, Chacko RS, Davis MJ, Fu LJ, Goel T, Pamal A, Nafi I, Angirekula A, Suvarna A, Vempati R, Christensen BC, Hayden MS, Vaickus LJ, LeBoeuf MR. Intraoperative margin assessment for basal cell carcinoma with deep learning and histologic tumor mapping to surgical site. NPJ Precis Oncol 2024; 8:2. [PMID: 38172524 PMCID: PMC10764333 DOI: 10.1038/s41698-023-00477-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/14/2023] [Indexed: 01/05/2024] Open
Abstract
Successful treatment of solid cancers relies on complete surgical excision of the tumor either for definitive treatment or before adjuvant therapy. Intraoperative and postoperative radial sectioning, the most common form of margin assessment, can lead to incomplete excision and increase the risk of recurrence and repeat procedures. Mohs Micrographic Surgery is associated with complete removal of basal cell and squamous cell carcinoma through real-time margin assessment of 100% of the peripheral and deep margins. Real-time assessment in many tumor types is constrained by tissue size, complexity, and specimen processing / assessment time during general anesthesia. We developed an artificial intelligence platform to reduce the tissue preprocessing and histological assessment time through automated grossing recommendations, mapping and orientation of tumor to the surgical specimen. Using basal cell carcinoma as a model system, results demonstrate that this approach can address surgical laboratory efficiency bottlenecks for rapid and complete intraoperative margin assessment.
Collapse
Affiliation(s)
- Joshua J Levy
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA.
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA.
- Department of Dermatology, Geisel School of Medicine at Dartmouth, Hanover, NH, 03756, USA.
- Emerging Diagnostic and Investigative Technologies, Clinical Genomics and Advanced Technologies, Department of Pathology and Laboratory Medicine, Dartmouth Hitchcock Medical Center, Lebanon, NH, 03756, USA.
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH, 03756, USA.
- Program in Quantitative Biomedical Sciences, Geisel School of Medicine at Dartmouth, Hanover, NH, 03756, USA.
| | - Matthew J Davis
- Department of Dermatology, Geisel School of Medicine at Dartmouth, Hanover, NH, 03756, USA
| | | | - Michael J Davis
- Department of Dermatology, Geisel School of Medicine at Dartmouth, Hanover, NH, 03756, USA
| | - Lucy J Fu
- Geisel School of Medicine at Dartmouth, Hanover, NH, 03755, USA
| | - Tarushii Goel
- Thomas Jefferson High School for Science and Technology, Alexandria, VA, 22312, USA
- Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Akash Pamal
- Thomas Jefferson High School for Science and Technology, Alexandria, VA, 22312, USA
- University of Virginia, Charlottesville, VA, 22903, USA
| | - Irfan Nafi
- Thomas Jefferson High School for Science and Technology, Alexandria, VA, 22312, USA
- Stanford University, Palo Alto, CA, 94305, USA
| | - Abhinav Angirekula
- Thomas Jefferson High School for Science and Technology, Alexandria, VA, 22312, USA
- University of Illinois Urbana-Champaign, Champaign, IL, 61820, USA
| | - Anish Suvarna
- Thomas Jefferson High School for Science and Technology, Alexandria, VA, 22312, USA
| | - Ram Vempati
- Thomas Jefferson High School for Science and Technology, Alexandria, VA, 22312, USA
| | - Brock C Christensen
- Department of Dermatology, Geisel School of Medicine at Dartmouth, Hanover, NH, 03756, USA
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, 03756, USA
- Department of Community and Family Medicine, Geisel School of Medicine at Dartmouth, Hanover, NH, 03756, USA
| | - Matthew S Hayden
- Department of Dermatology, Geisel School of Medicine at Dartmouth, Hanover, NH, 03756, USA
| | - Louis J Vaickus
- Emerging Diagnostic and Investigative Technologies, Clinical Genomics and Advanced Technologies, Department of Pathology and Laboratory Medicine, Dartmouth Hitchcock Medical Center, Lebanon, NH, 03756, USA
| | - Matthew R LeBoeuf
- Department of Dermatology, Geisel School of Medicine at Dartmouth, Hanover, NH, 03756, USA
| |
Collapse
|
68
|
Liu L, Du K. A perspective on computer vision in biosensing. BIOMICROFLUIDICS 2024; 18:011301. [PMID: 38223547 PMCID: PMC10787640 DOI: 10.1063/5.0185732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/26/2023] [Indexed: 01/16/2024]
Abstract
Computer vision has become a powerful tool in the field of biosensing, aiding in the development of innovative and precise systems for the analysis and interpretation of biological data. This interdisciplinary approach harnesses the capabilities of computer vision algorithms and techniques to extract valuable information from various biosensing applications, including medical diagnostics, environmental monitoring, and food health. Despite years of development, there is still significant room for improvement in this area. In this perspective, we outline how computer vision is applied to raw sensor data in biosensors and its advantages to biosensing applications. We then discuss ongoing research and developments in the field and subsequently explore the challenges and opportunities that computer vision faces in biosensor applications. We also suggest directions for future work, ultimately underscoring the significant impact of computer vision on advancing biosensing technologies and their applications.
Collapse
Affiliation(s)
- Li Liu
- Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, USA
| | - Ke Du
- Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, USA
| |
Collapse
|
69
|
Derbal Y. Adaptive Cancer Therapy in the Age of Generative Artificial Intelligence. Cancer Control 2024; 31:10732748241264704. [PMID: 38897721 PMCID: PMC11189021 DOI: 10.1177/10732748241264704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/17/2024] [Accepted: 06/06/2024] [Indexed: 06/21/2024] Open
Abstract
Therapeutic resistance is a major challenge facing the design of effective cancer treatments. Adaptive cancer therapy is in principle the most viable approach to manage cancer's adaptive dynamics through drug combinations with dose timing and modulation. However, there are numerous open issues facing the clinical success of adaptive therapy. Chief among these issues is the feasibility of real-time predictions of treatment response which represent a bedrock requirement of adaptive therapy. Generative artificial intelligence has the potential to learn prediction models of treatment response from clinical, molecular, and radiomics data about patients and their treatments. The article explores this potential through a proposed integration model of Generative Pre-Trained Transformers (GPTs) in a closed loop with adaptive treatments to predict the trajectories of disease progression. The conceptual model and the challenges facing its realization are discussed in the broader context of artificial intelligence integration in oncology.
Collapse
Affiliation(s)
- Youcef Derbal
- Ted Rogers School of Information Technology Management, Toronto Metropolitan University, Toronto, ON, Canada
| |
Collapse
|
70
|
Huang J, Gao Y, Chang Y, Peng J, Yu Y, Wang B. Machine Learning in Bioelectrocatalysis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306583. [PMID: 37946709 PMCID: PMC10787072 DOI: 10.1002/advs.202306583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Indexed: 11/12/2023]
Abstract
At present, the global energy crisis and environmental pollution coexist, and the demand for sustainable clean energy has been highly concerned. Bioelectrocatalysis that combines the benefits of biocatalysis and electrocatalysis produces high-value chemicals, clean biofuel, and biodegradable new materials. It has been applied in biosensors, biofuel cells, and bioelectrosynthesis. However, there are certain flaws in the application process of bioelectrocatalysis, such as low accuracy/efficiency, poor stability, and limited experimental conditions. These issues can possibly be solved using machine learning (ML) in recent reports although the combination of them is still not mature. To summarize the progress of ML in bioelectrocatalysis, this paper first introduces the modeling process of ML, then focuses on the reports of ML in bioelectrocatalysis, and ultimately makes a summary and outlook about current issues and future directions. It is believed that there is plenty of scope for this interdisciplinary research direction.
Collapse
Affiliation(s)
- Jiamin Huang
- Department of Environmental Science and EngineeringUniversity of Science and Technology BeijingBeijing100083China
- CAS Key Laboratory of Nanosystem and Hierarchical FabricationNational Center for Nanoscience and TechnologyBeijing100190China
| | - Yang Gao
- CAS Key Laboratory of Nanosystem and Hierarchical FabricationNational Center for Nanoscience and TechnologyBeijing100190China
| | - Yanhong Chang
- Department of Environmental Science and EngineeringUniversity of Science and Technology BeijingBeijing100083China
| | - Jiajie Peng
- School of Computer ScienceNorthwestern Polytechnical UniversityXi'an710072China
| | - Yadong Yu
- College of Biotechnology and Pharmaceutical EngineeringNanjing Tech UniversityNanjing211816China
| | - Bin Wang
- CAS Key Laboratory of Nanosystem and Hierarchical FabricationNational Center for Nanoscience and TechnologyBeijing100190China
| |
Collapse
|
71
|
Thenuwara G, Curtin J, Tian F. Advances in Diagnostic Tools and Therapeutic Approaches for Gliomas: A Comprehensive Review. SENSORS (BASEL, SWITZERLAND) 2023; 23:9842. [PMID: 38139688 PMCID: PMC10747598 DOI: 10.3390/s23249842] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023]
Abstract
Gliomas, a prevalent category of primary malignant brain tumors, pose formidable clinical challenges due to their invasive nature and limited treatment options. The current therapeutic landscape for gliomas is constrained by a "one-size-fits-all" paradigm, significantly restricting treatment efficacy. Despite the implementation of multimodal therapeutic strategies, survival rates remain disheartening. The conventional treatment approach, involving surgical resection, radiation, and chemotherapy, grapples with substantial limitations, particularly in addressing the invasive nature of gliomas. Conventional diagnostic tools, including computed tomography (CT), magnetic resonance imaging (MRI), and positron emission tomography (PET), play pivotal roles in outlining tumor characteristics. However, they face limitations, such as poor biological specificity and challenges in distinguishing active tumor regions. The ongoing development of diagnostic tools and therapeutic approaches represents a multifaceted and promising frontier in the battle against this challenging brain tumor. The aim of this comprehensive review is to address recent advances in diagnostic tools and therapeutic approaches for gliomas. These innovations aim to minimize invasiveness while enabling the precise, multimodal targeting of localized gliomas. Researchers are actively developing new diagnostic tools, such as colorimetric techniques, electrochemical biosensors, optical coherence tomography, reflectometric interference spectroscopy, surface-enhanced Raman spectroscopy, and optical biosensors. These tools aim to regulate tumor progression and develop precise treatment methods for gliomas. Recent technological advancements, coupled with bioelectronic sensors, open avenues for new therapeutic modalities, minimizing invasiveness and enabling multimodal targeting with unprecedented precision. The next generation of multimodal therapeutic strategies holds potential for precision medicine, aiding the early detection and effective management of solid brain tumors. These innovations offer promise in adopting precision medicine methodologies, enabling early disease detection, and improving solid brain tumor management. This review comprehensively recognizes the critical role of pioneering therapeutic interventions, holding significant potential to revolutionize brain tumor therapeutics.
Collapse
Affiliation(s)
- Gayathree Thenuwara
- School of Food Science and Environmental Health, Technological University Dublin, Grangegorman Lower, D07 H6K8 Dublin, Ireland;
- Institute of Biochemistry, Molecular Biology, and Biotechnology, University of Colombo, Colombo 00300, Sri Lanka
| | - James Curtin
- Faculty of Engineering and Built Environment, Technological University Dublin, Bolton Street, D01 K822 Dublin, Ireland;
| | - Furong Tian
- School of Food Science and Environmental Health, Technological University Dublin, Grangegorman Lower, D07 H6K8 Dublin, Ireland;
| |
Collapse
|
72
|
Sato J, Matsumoto T, Nakao R, Tanaka H, Nagahara H, Niioka H, Takamatsu T. Deep UV-excited fluorescence microscopy installed with CycleGAN-assisted image translation enhances precise detection of lymph node metastasis towards rapid intraoperative diagnosis. Sci Rep 2023; 13:21363. [PMID: 38049475 PMCID: PMC10696085 DOI: 10.1038/s41598-023-48319-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/24/2023] [Indexed: 12/06/2023] Open
Abstract
Rapid and precise intraoperative diagnosing systems are required for improving surgical outcomes and patient prognosis. Because of the poor quality and time-intensive process of the prevalent frozen section procedure, various intraoperative diagnostic imaging systems have been explored. Microscopy with ultraviolet surface excitation (MUSE) is an inexpensive, maintenance-free, and rapid imaging technique that yields images like thin-sectioned samples without sectioning. However, pathologists find it nearly impossible to assign diagnostic labels to MUSE images of unfixed specimens; thus, AI for intraoperative diagnosis cannot be trained in a supervised learning manner. In this study, we propose a deep-learning pipeline model for lymph node metastasis detection, in which CycleGAN translate MUSE images of unfixed lymph nodes to formalin-fixed paraffin-embedded (FFPE) sample, and diagnostic prediction is performed using deep convolutional neural network trained on FFPE sample images. Our pipeline yielded an average accuracy of 84.6% when using each of the three deep convolutional neural networks, which is a 18.3% increase over the classification-only model without CycleGAN. The modality translation to FFPE sample images using CycleGAN can be applied to various intraoperative diagnostic imaging systems and eliminate the difficulty for pathologists in labeling new modality images in clinical sites. We anticipate our pipeline to be a starting point for accurate rapid intraoperative diagnostic systems for new imaging modalities, leading to healthcare quality improvement.
Collapse
Affiliation(s)
- Junya Sato
- Graduate School of Information Science and Technology, Osaka University, 1-5, Yamadaoka, Suita, Osaka, 565-0871, Japan
- Department of Radiology, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
- Department of Artificial Intelligence Diagnostic Radiology, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Tatsuya Matsumoto
- Department of Pathology and Cell Regulation, Kyoto Prefectural University of Medicine, 465 Kajiicho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Ryuta Nakao
- Department of Pathology and Cell Regulation, Kyoto Prefectural University of Medicine, 465 Kajiicho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Hideo Tanaka
- Department of Pathology and Cell Regulation, Kyoto Prefectural University of Medicine, 465 Kajiicho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Hajime Nagahara
- Graduate School of Information Science and Technology, Osaka University, 1-5, Yamadaoka, Suita, Osaka, 565-0871, Japan
- Institute for Datability Science, Osaka University, 2-8 Yamadaoka, Suita, 565-0871, Japan
| | - Hirohiko Niioka
- Graduate School of Information Science and Technology, Osaka University, 1-5, Yamadaoka, Suita, Osaka, 565-0871, Japan.
- Institute for Datability Science, Osaka University, 2-8 Yamadaoka, Suita, 565-0871, Japan.
| | - Tetsuro Takamatsu
- Department of Pathology and Cell Regulation, Kyoto Prefectural University of Medicine, 465 Kajiicho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan.
- Department of Medical Photonics, Kyoto Prefectural University of Medicine, 465 Kajiicho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan.
| |
Collapse
|
73
|
Xu X, Jia Q, Yuan H, Qiu H, Dong Y, Xie W, Yao Z, Zhang J, Nie Z, Li X, Shi Y, Zou JY, Huang M, Zhuang J. A clinically applicable AI system for diagnosis of congenital heart diseases based on computed tomography images. Med Image Anal 2023; 90:102953. [PMID: 37734140 DOI: 10.1016/j.media.2023.102953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 08/22/2023] [Accepted: 09/01/2023] [Indexed: 09/23/2023]
Abstract
Congenital heart disease (CHD) is the most common type of birth defect. Without timely detection and treatment, approximately one-third of children with CHD would die in the infant period. However, due to the complicated heart structures, early diagnosis of CHD and its types is quite challenging, even for experienced radiologists. Here, we present an artificial intelligence (AI) system that achieves a comparable performance of human experts in the critical task of classifying 17 categories of CHD types. We collected the first-large CT dataset from three different CT machines, including more than 3750 CHD patients over 14 years. Experimental results demonstrate that it can achieve diagnosis accuracy (86.03%) comparable with junior cardiovascular radiologists (86.27%) in a World Health Organization appointed research and cooperation center in China on most types of CHD, and obtains a higher sensitivity (82.91%) than junior cardiovascular radiologists (76.18%). The accuracy of the combination of our AI system (97.20%) and senior radiologists achieves comparable results to that of junior radiologists and senior radiologists (97.16%) which is the current clinical routine. Our AI system can further provide 3D visualization of hearts to senior radiologists for interpretation and flexible review, surgeons for precise intuition of heart structures, and clinicians for more precise outcome prediction. We demonstrate the potential of our model to be integrated into current clinic practice to improve the diagnosis of CHD globally, especially in regions where experienced radiologists can be scarce.
Collapse
Affiliation(s)
- Xiaowei Xu
- Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China; Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Qianjun Jia
- Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China; Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China; Department of Catheterization Lab, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Haiyun Yuan
- Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China; Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China; Department of Cardiovascular Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Hailong Qiu
- Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China; Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China; Department of Cardiovascular Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Yuhao Dong
- Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China; Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China; Department of Catheterization Lab, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Wen Xie
- Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China; Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China; Department of Cardiovascular Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Zeyang Yao
- Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China; Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China; Department of Cardiovascular Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Jiawei Zhang
- Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China; Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Zhiqaing Nie
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Xiaomeng Li
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong Special Administrative Region
| | - Yiyu Shi
- Computer Science and Engineering, University of Notre Dame, IN, 46656, USA
| | - James Y Zou
- Department of Computer Science, Stanford University, Stanford, CA, 94305, USA; Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA.
| | - Meiping Huang
- Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China; Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China; Department of Catheterization Lab, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China.
| | - Jian Zhuang
- Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China; Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China; Department of Cardiovascular Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China.
| |
Collapse
|
74
|
Wu S, Cao Y, Li X, Liu Q, Ye Y, Liu X, Zeng L, Tian M. Attention-guided multi-scale context aggregation network for multi-modal brain glioma segmentation. Med Phys 2023; 50:7629-7640. [PMID: 37151131 DOI: 10.1002/mp.16452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 05/09/2023] Open
Abstract
BACKGROUND Accurate segmentation of brain glioma is a critical prerequisite for clinical diagnosis, surgical planning and treatment evaluation. In current clinical workflow, physicians typically perform delineation of brain tumor subregions slice-by-slice, which is more susceptible to variabilities in raters and also time-consuming. Besides, even though convolutional neural networks (CNNs) are driving progress, the performance of standard models still have some room for further improvement. PURPOSE To deal with these issues, this paper proposes an attention-guided multi-scale context aggregation network (AMCA-Net) for the accurate segmentation of brain glioma in the magnetic resonance imaging (MRI) images with multi-modalities. METHODS AMCA-Net extracts the multi-scale features from the MRI images and fuses the extracted discriminative features via a self-attention mechanism for brain glioma segmentation. The extraction is performed via a series of down-sampling, convolution layers, and the global context information guidance (GCIG) modules are developed to fuse the features extracted for contextual features. At the end of the down-sampling, a multi-scale fusion (MSF) module is designed to exploit and combine all the extracted multi-scale features. Each of the GCIG and MSF modules contain a channel attention (CA) module that can adaptively calibrate feature responses and emphasize the most relevant features. Finally, multiple predictions with different resolutions are fused through different weightings given by a multi-resolution adaptation (MRA) module instead of the use of averaging or max-pooling to improve the final segmentation results. RESULTS Datasets used in this paper are publicly accessible, that is, the Multimodal Brain Tumor Segmentation Challenges 2018 (BraTS2018) and 2019 (BraTS2019). BraTS2018 contains 285 patient cases and BraTS2019 contains 335 cases. Simulations show that the AMCA-Net has better or comparable performance against that of the other state-of-the-art models. In terms of the Dice score and Hausdorff 95 for the BraTS2018 dataset, 90.4% and 10.2 mm for the whole tumor region (WT), 83.9% and 7.4 mm for the tumor core region (TC), 80.2% and 4.3 mm for the enhancing tumor region (ET), whereas the Dice score and Hausdorff 95 for the BraTS2019 dataset, 91.0% and 10.7 mm for the WT, 84.2% and 8.4 mm for the TC, 80.1% and 4.8 mm for the ET. CONCLUSIONS The proposed AMCA-Net performs comparably well in comparison to several state-of-the-art neural net models in identifying the areas involving the peritumoral edema, enhancing tumor, and necrotic and non-enhancing tumor core of brain glioma, which has great potential for clinical practice. In future research, we will further explore the feasibility of applying AMCA-Net to other similar segmentation tasks.
Collapse
Affiliation(s)
- Shaozhi Wu
- School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Yunjian Cao
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, China
| | - Xinke Li
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Qiyu Liu
- Radiology Department, Mianyang Central Hospital, Mianyang, China
| | - Yuyun Ye
- Department of Electrical and Computer Engineering, University of Tulsa, Tulsa, Oklahoma, USA
| | - Xingang Liu
- School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Liaoyuan Zeng
- School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Miao Tian
- School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
75
|
Zaidan AM. The leading global health challenges in the artificial intelligence era. Front Public Health 2023; 11:1328918. [PMID: 38089037 PMCID: PMC10711066 DOI: 10.3389/fpubh.2023.1328918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 11/13/2023] [Indexed: 12/18/2023] Open
Abstract
Millions of people's health is at risk because of several factors and multiple overlapping crises, all of which hit the vulnerable the most. These challenges are dynamic and evolve in response to emerging health challenges and concerns, which need effective collaboration among countries working toward achieving Sustainable Development Goals (SDGs) and securing global health. Mental Health, the Impact of climate change, cardiovascular diseases (CVDs), diabetes, Infectious diseases, health system, and population aging are examples of challenges known to pose a vast burden worldwide. We are at a point known as the "digital revolution," characterized by the expansion of artificial intelligence (AI) and a fusion of technology types. AI has emerged as a powerful tool for addressing various health challenges, and the last ten years have been influential due to the rapid expansion in the production and accessibility of health-related data. The computational models and algorithms can understand complicated health and medical data to perform various functions and deep-learning strategies. This narrative mini-review summarizes the most current AI applications to address the leading global health challenges. Harnessing its capabilities can ultimately mitigate the Impact of these challenges and revolutionize the field. It has the ability to strengthen global health through personalized health care and improved preparedness and response to future challenges. However, ethical and legal concerns about individual or community privacy and autonomy must be addressed for effective implementation.
Collapse
Affiliation(s)
- Amal Mousa Zaidan
- King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center (KAIMRC), Riyadh, Saudi Arabia
- Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| |
Collapse
|
76
|
Liu Y. methylClass: an R package to construct DNA methylation-based classification models. Brief Bioinform 2023; 25:bbad485. [PMID: 38205965 PMCID: PMC10782803 DOI: 10.1093/bib/bbad485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/02/2023] [Accepted: 12/05/2023] [Indexed: 01/12/2024] Open
Abstract
DNA methylation profiling is a useful tool to increase the accuracy of a cancer diagnosis. However, a comprehensive R package specially for it is lacking. Hence, we developed the R package methylClass for methylation-based classification. Within it, we provide the eSVM (ensemble-based support vector machine) model to achieve much higher accuracy in methylation data classification than the popular random forest model and overcome the time-consuming problem of the traditional SVM. In addition, some novel feature selection methods are included in the package to improve the classification. Furthermore, because methylation data can be converted to other omics, such as copy number variation data, we also provide functions for multi-omics studies. The testing of this package on four datasets shows the accurate performance of our package, especially eSVM, which can be used in both methylation and multi-omics models and outperforms other methods in both cases. methylClass is available at: https://github.com/yuabrahamliu/methylClass.
Collapse
Affiliation(s)
- Yu Liu
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| |
Collapse
|
77
|
Kourounis G, Elmahmudi AA, Thomson B, Hunter J, Ugail H, Wilson C. Computer image analysis with artificial intelligence: a practical introduction to convolutional neural networks for medical professionals. Postgrad Med J 2023; 99:1287-1294. [PMID: 37794609 PMCID: PMC10658730 DOI: 10.1093/postmj/qgad095] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/06/2023] [Accepted: 09/13/2023] [Indexed: 10/06/2023]
Abstract
Artificial intelligence tools, particularly convolutional neural networks (CNNs), are transforming healthcare by enhancing predictive, diagnostic, and decision-making capabilities. This review provides an accessible and practical explanation of CNNs for clinicians and highlights their relevance in medical image analysis. CNNs have shown themselves to be exceptionally useful in computer vision, a field that enables machines to 'see' and interpret visual data. Understanding how these models work can help clinicians leverage their full potential, especially as artificial intelligence continues to evolve and integrate into healthcare. CNNs have already demonstrated their efficacy in diverse medical fields, including radiology, histopathology, and medical photography. In radiology, CNNs have been used to automate the assessment of conditions such as pneumonia, pulmonary embolism, and rectal cancer. In histopathology, CNNs have been used to assess and classify colorectal polyps, gastric epithelial tumours, as well as assist in the assessment of multiple malignancies. In medical photography, CNNs have been used to assess retinal diseases and skin conditions, and to detect gastric and colorectal polyps during endoscopic procedures. In surgical laparoscopy, they may provide intraoperative assistance to surgeons, helping interpret surgical anatomy and demonstrate safe dissection zones. The integration of CNNs into medical image analysis promises to enhance diagnostic accuracy, streamline workflow efficiency, and expand access to expert-level image analysis, contributing to the ultimate goal of delivering further improvements in patient and healthcare outcomes.
Collapse
Affiliation(s)
- Georgios Kourounis
- NIHR Blood and Transplant Research Unit, Newcastle University and Cambridge University, Newcastle upon Tyne, NE1 7RU, United Kingdom
- Institute of Transplantation, The Freeman Hospital, Newcastle upon Tyne, NE7 7DN, United Kingdom
| | - Ali Ahmed Elmahmudi
- Faculty of Engineering and Informatics, Bradford University, Bradford, BD7 1DP, United Kingdom
| | - Brian Thomson
- Faculty of Engineering and Informatics, Bradford University, Bradford, BD7 1DP, United Kingdom
| | - James Hunter
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, OX3 9DU, United Kingdom
| | - Hassan Ugail
- Faculty of Engineering and Informatics, Bradford University, Bradford, BD7 1DP, United Kingdom
| | - Colin Wilson
- NIHR Blood and Transplant Research Unit, Newcastle University and Cambridge University, Newcastle upon Tyne, NE1 7RU, United Kingdom
- Institute of Transplantation, The Freeman Hospital, Newcastle upon Tyne, NE7 7DN, United Kingdom
| |
Collapse
|
78
|
Wurm LM, Fischer B, Neuschmelting V, Reinecke D, Fischer I, Croner RS, Goldbrunner R, Hacker MC, Dybaś J, Kahlert UD. Rapid, label-free classification of glioblastoma differentiation status combining confocal Raman spectroscopy and machine learning. Analyst 2023; 148:6109-6119. [PMID: 37927114 DOI: 10.1039/d3an01303k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Label-free identification of tumor cells using spectroscopic assays has emerged as a technological innovation with a proven ability for rapid implementation in clinical care. Machine learning facilitates the optimization of processing and interpretation of extensive data, such as various spectroscopy data obtained from surgical samples. The here-described preclinical work investigates the potential of machine learning algorithms combining confocal Raman spectroscopy to distinguish non-differentiated glioblastoma cells and their respective isogenic differentiated phenotype by means of confocal ultra-rapid measurements. For this purpose, we measured and correlated modalities of 1146 intracellular single-point measurements and sustainingly clustered cell components to predict tumor stem cell existence. By further narrowing a few selected peaks, we found indicative evidence that using our computational imaging technology is a powerful approach to detect tumor stem cells in vitro with an accuracy of 91.7% in distinct cell compartments, mainly because of greater lipid content and putative different protein structures. We also demonstrate that the presented technology can overcome intra- and intertumoral cellular heterogeneity of our disease models, verifying the elevated physiological relevance of our applied disease modeling technology despite intracellular noise limitations for future translational evaluation.
Collapse
Affiliation(s)
- Lennard M Wurm
- Department of Neurosurgery, University Hospital Düsseldorf and Medical Faculty Heinrich-Heine University, Düsseldorf, Germany
- Department of Neurosurgery, University Hospital Cologne, Cologne, Germany
| | - Björn Fischer
- Institute of Pharmaceutics and Biopharmaceutics, University of Düsseldorf, Düsseldorf, Germany
- FISCHER GmbH, Raman Spectroscopic Services, 40667 Meerbusch, Germany
| | | | - David Reinecke
- Department of Neurosurgery, University Hospital Cologne, Cologne, Germany
| | - Igor Fischer
- Department of Neurosurgery, University Hospital Düsseldorf and Medical Faculty Heinrich-Heine University, Düsseldorf, Germany
| | - Roland S Croner
- Clinic of General- Visceral-, Vascular and Transplantation Surgery, Department of Molecular and Experimental Surgery, University Hospital Magdeburg and Medical Faculty Otto-von-Guericke University, Magdeburg, Germany.
| | - Roland Goldbrunner
- Department of Neurosurgery, University Hospital Cologne, Cologne, Germany
| | - Michael C Hacker
- Institute of Pharmaceutics and Biopharmaceutics, University of Düsseldorf, Düsseldorf, Germany
| | - Jakub Dybaś
- Jagiellonian Center for Experimental Therapeutics, Jagiellonian University, Krakow, Poland
| | - Ulf D Kahlert
- Clinic of General- Visceral-, Vascular and Transplantation Surgery, Department of Molecular and Experimental Surgery, University Hospital Magdeburg and Medical Faculty Otto-von-Guericke University, Magdeburg, Germany.
| |
Collapse
|
79
|
He S, Guan Y, Cheng CH, Moore TL, Luebke JI, Killiany RJ, Rosene DL, Koo BB, Ou Y. Human-to-monkey transfer learning identifies the frontal white matter as a key determinant for predicting monkey brain age. Front Aging Neurosci 2023; 15:1249415. [PMID: 38020785 PMCID: PMC10646581 DOI: 10.3389/fnagi.2023.1249415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/10/2023] [Indexed: 12/01/2023] Open
Abstract
The application of artificial intelligence (AI) to summarize a whole-brain magnetic resonance image (MRI) into an effective "brain age" metric can provide a holistic, individualized, and objective view of how the brain interacts with various factors (e.g., genetics and lifestyle) during aging. Brain age predictions using deep learning (DL) have been widely used to quantify the developmental status of human brains, but their wider application to serve biomedical purposes is under criticism for requiring large samples and complicated interpretability. Animal models, i.e., rhesus monkeys, have offered a unique lens to understand the human brain - being a species in which aging patterns are similar, for which environmental and lifestyle factors are more readily controlled. However, applying DL methods in animal models suffers from data insufficiency as the availability of animal brain MRIs is limited compared to many thousands of human MRIs. We showed that transfer learning can mitigate the sample size problem, where transferring the pre-trained AI models from 8,859 human brain MRIs improved monkey brain age estimation accuracy and stability. The highest accuracy and stability occurred when transferring the 3D ResNet [mean absolute error (MAE) = 1.83 years] and the 2D global-local transformer (MAE = 1.92 years) models. Our models identified the frontal white matter as the most important feature for monkey brain age predictions, which is consistent with previous histological findings. This first DL-based, anatomically interpretable, and adaptive brain age estimator could broaden the application of AI techniques to various animal or disease samples and widen opportunities for research in non-human primate brains across the lifespan.
Collapse
Affiliation(s)
- Sheng He
- Harvard Medical School, Boston Children's Hospital, Boston, MA, United States
| | - Yi Guan
- Department of Anatomy & Neurobiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
| | - Chia Hsin Cheng
- Department of Anatomy & Neurobiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
| | - Tara L. Moore
- Department of Anatomy & Neurobiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
| | - Jennifer I. Luebke
- Department of Anatomy & Neurobiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
| | - Ronald J. Killiany
- Department of Anatomy & Neurobiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
| | - Douglas L. Rosene
- Department of Anatomy & Neurobiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
| | - Bang-Bon Koo
- Department of Anatomy & Neurobiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
| | - Yangming Ou
- Department of Anatomy & Neurobiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
| |
Collapse
|
80
|
Huang J, Tang X, Chen Z, Li X, Zhang Y, Huang X, Zhang D, An G, Lee HJ. Rapid azoospermia classification by stimulated Raman scattering and second harmonic generation microscopy. BIOMEDICAL OPTICS EXPRESS 2023; 14:5569-5582. [PMID: 38021145 PMCID: PMC10659792 DOI: 10.1364/boe.501623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/26/2023] [Accepted: 09/26/2023] [Indexed: 12/01/2023]
Abstract
Disease diagnosis and classification pose significant challenges due to the limited capabilities of traditional methods to obtain molecular information with spatial distribution. Optical imaging techniques, utilizing (auto)fluorescence and nonlinear optical signals, introduce new dimensions for biomarkers exploration that can improve diagnosis and classification. Nevertheless, these signals often cover only a limited number of species, impeding a comprehensive assessment of the tissue microenvironment, which is crucial for effective disease diagnosis and therapy. To address this challenge, we developed a multimodal platform, termed stimulated Raman scattering and second harmonic generation microscopy (SRASH), capable of simultaneously providing both chemical bonds and structural information of tissues. Applying SRASH imaging to azoospermia patient samples, we successfully identified lipids, protein, and collagen contrasts, unveiling molecular and structural signatures for non-obstructive azoospermia. This achievement is facilitated by LiteBlendNet-Dx (LBNet-Dx), our diagnostic algorithm, which achieved an outstanding 100% sample-level accuracy in classifying azoospermia, surpassing conventional imaging modalities. As a label-free technique, SRASH imaging eliminates the requirement for sample pre-treatment, demonstrating great potential for clinical translation and enabling molecular imaging-based diagnosis and therapy.
Collapse
Affiliation(s)
- Jie Huang
- Zhejiang Polytechnic Institute, Polytechnic Institute, Zhejiang University, Hangzhou 310058, China
- College of Biomedical Engineering & Instrument Science; Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou 310058, China
| | - Xiaobin Tang
- Interdisciplinary Centre for Quantum Information, Zhejiang Province Key Laboratory of Quantum Technology and Device, and Department of Physics, Zhejiang University; Hangzhou 310027, China
| | - Zhicong Chen
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine; Guangdong Provincial Key Laboratory of Major Obstetric Diseases; Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology; Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine; The Third Affiliated Hospital of Guangzhou Medical University; Guangzhou 510150, China
| | - Xiaomin Li
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine; Guangdong Provincial Key Laboratory of Major Obstetric Diseases; Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology; Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine; The Third Affiliated Hospital of Guangzhou Medical University; Guangzhou 510150, China
| | - Yongqing Zhang
- Interdisciplinary Centre for Quantum Information, Zhejiang Province Key Laboratory of Quantum Technology and Device, and Department of Physics, Zhejiang University; Hangzhou 310027, China
| | - Xiangjie Huang
- College of Biomedical Engineering & Instrument Science; Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou 310058, China
| | - Delong Zhang
- Interdisciplinary Centre for Quantum Information, Zhejiang Province Key Laboratory of Quantum Technology and Device, and Department of Physics, Zhejiang University; Hangzhou 310027, China
| | - Geng An
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine; Guangdong Provincial Key Laboratory of Major Obstetric Diseases; Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology; Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine; The Third Affiliated Hospital of Guangzhou Medical University; Guangzhou 510150, China
| | - Hyeon Jeong Lee
- College of Biomedical Engineering & Instrument Science; Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
81
|
Agadi K, Dominari A, Tebha SS, Mohammadi A, Zahid S. Neurosurgical Management of Cerebrospinal Tumors in the Era of Artificial Intelligence : A Scoping Review. J Korean Neurosurg Soc 2023; 66:632-641. [PMID: 35831137 PMCID: PMC10641423 DOI: 10.3340/jkns.2021.0213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/06/2021] [Accepted: 03/14/2022] [Indexed: 11/27/2022] Open
Abstract
Central nervous system tumors are identified as tumors of the brain and spinal cord. The associated morbidity and mortality of cerebrospinal tumors are disproportionately high compared to other malignancies. While minimally invasive techniques have initiated a revolution in neurosurgery, artificial intelligence (AI) is expediting it. Our study aims to analyze AI's role in the neurosurgical management of cerebrospinal tumors. We conducted a scoping review using the Arksey and O'Malley framework. Upon screening, data extraction and analysis were focused on exploring all potential implications of AI, classification of these implications in the management of cerebrospinal tumors. AI has enhanced the precision of diagnosis of these tumors, enables surgeons to excise the tumor margins completely, thereby reducing the risk of recurrence, and helps to make a more accurate prediction of the patient's prognosis than the conventional methods. AI also offers real-time training to neurosurgeons using virtual and 3D simulation, thereby increasing their confidence and skills during procedures. In addition, robotics is integrated into neurosurgery and identified to increase patient outcomes by making surgery less invasive. AI, including machine learning, is rigorously considered for its applications in the neurosurgical management of cerebrospinal tumors. This field requires further research focused on areas clinically essential in improving the outcome that is also economically feasible for clinical use. The authors suggest that data analysts and neurosurgeons collaborate to explore the full potential of AI.
Collapse
Affiliation(s)
- Kuchalambal Agadi
- Division of Research and Academic Affairs, Larkin Health System, South Miami, FL, USA
| | - Asimina Dominari
- Division of Research and Academic Affairs, Larkin Health System, South Miami, FL, USA
- Aristotle University of Thessaloniki School of Medicine, Thessaloniki, Greece
| | - Sameer Saleem Tebha
- Division of Research and Academic Affairs, Larkin Health System, South Miami, FL, USA
- Department of Neurosurgery and Neurology, Jinnah Medical and Dental College, Karachi, Pakistan
| | - Asma Mohammadi
- Division of Research and Academic Affairs, Larkin Health System, South Miami, FL, USA
| | - Samina Zahid
- Division of Research and Academic Affairs, Larkin Health System, South Miami, FL, USA
| |
Collapse
|
82
|
Soteriou D, Kubánková M, Schweitzer C, López-Posadas R, Pradhan R, Thoma OM, Györfi AH, Matei AE, Waldner M, Distler JHW, Scheuermann S, Langejürgen J, Eckstein M, Schneider-Stock R, Atreya R, Neurath MF, Hartmann A, Guck J. Rapid single-cell physical phenotyping of mechanically dissociated tissue biopsies. Nat Biomed Eng 2023; 7:1392-1403. [PMID: 37024677 PMCID: PMC10651479 DOI: 10.1038/s41551-023-01015-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/22/2023] [Indexed: 04/08/2023]
Abstract
During surgery, rapid and accurate histopathological diagnosis is essential for clinical decision making. Yet the prevalent method of intra-operative consultation pathology is intensive in time, labour and costs, and requires the expertise of trained pathologists. Here we show that biopsy samples can be analysed within 30 min by sequentially assessing the physical phenotypes of singularized suspended cells dissociated from the tissues. The diagnostic method combines the enzyme-free mechanical dissociation of tissues, real-time deformability cytometry at rates of 100-1,000 cells s-1 and data analysis by unsupervised dimensionality reduction and logistic regression. Physical phenotype parameters extracted from brightfield images of single cells distinguished cell subpopulations in various tissues, enhancing or even substituting measurements of molecular markers. We used the method to quantify the degree of colon inflammation and to accurately discriminate healthy and tumorous tissue in biopsy samples of mouse and human colons. This fast and label-free approach may aid the intra-operative detection of pathological changes in solid biopsies.
Collapse
Affiliation(s)
- Despina Soteriou
- Max Planck Institute for the Science of Light and Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
| | - Markéta Kubánková
- Max Planck Institute for the Science of Light and Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
| | - Christine Schweitzer
- Max Planck Institute for the Science of Light and Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
| | - Rocío López-Posadas
- Department of Medicine 1-Gastroenterology, Pneumology and Endocrinology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
| | - Rashmita Pradhan
- Department of Medicine 1-Gastroenterology, Pneumology and Endocrinology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
| | - Oana-Maria Thoma
- Department of Medicine 1-Gastroenterology, Pneumology and Endocrinology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
| | - Andrea-Hermina Györfi
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
| | - Alexandru-Emil Matei
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
| | - Maximilian Waldner
- Department of Medicine 1-Gastroenterology, Pneumology and Endocrinology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
| | - Jörg H W Distler
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
| | | | | | - Markus Eckstein
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
- Institute of Pathology, University Hospital, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Regine Schneider-Stock
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
- Institute of Pathology, University Hospital, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Raja Atreya
- Department of Medicine 1-Gastroenterology, Pneumology and Endocrinology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
| | - Markus F Neurath
- Department of Medicine 1-Gastroenterology, Pneumology and Endocrinology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
| | - Arndt Hartmann
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
- Institute of Pathology, University Hospital, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Jochen Guck
- Max Planck Institute for the Science of Light and Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany.
| |
Collapse
|
83
|
Bin-Alamer O, Abou-Al-Shaar H, Gersey ZC, Huq S, Kallos JA, McCarthy DJ, Head JR, Andrews E, Zhang X, Hadjipanayis CG. Intraoperative Imaging and Optical Visualization Techniques for Brain Tumor Resection: A Narrative Review. Cancers (Basel) 2023; 15:4890. [PMID: 37835584 PMCID: PMC10571802 DOI: 10.3390/cancers15194890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/26/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023] Open
Abstract
Advancements in intraoperative visualization and imaging techniques are increasingly central to the success and safety of brain tumor surgery, leading to transformative improvements in patient outcomes. This comprehensive review intricately describes the evolution of conventional and emerging technologies for intraoperative imaging, encompassing the surgical microscope, exoscope, Raman spectroscopy, confocal microscopy, fluorescence-guided surgery, intraoperative ultrasound, magnetic resonance imaging, and computed tomography. We detail how each of these imaging modalities contributes uniquely to the precision, safety, and efficacy of neurosurgical procedures. Despite their substantial benefits, these technologies share common challenges, including difficulties in image interpretation and steep learning curves. Looking forward, innovations in this field are poised to incorporate artificial intelligence, integrated multimodal imaging approaches, and augmented and virtual reality technologies. This rapidly evolving landscape represents fertile ground for future research and technological development, aiming to further elevate surgical precision, safety, and, most critically, patient outcomes in the management of brain tumors.
Collapse
Affiliation(s)
- Othman Bin-Alamer
- Center for Image-Guided Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA; (O.B.-A.); (H.A.-A.-S.); (Z.C.G.); (S.H.); (J.A.K.); (D.J.M.); (J.R.H.); (E.A.); (X.Z.)
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Hussam Abou-Al-Shaar
- Center for Image-Guided Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA; (O.B.-A.); (H.A.-A.-S.); (Z.C.G.); (S.H.); (J.A.K.); (D.J.M.); (J.R.H.); (E.A.); (X.Z.)
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Zachary C. Gersey
- Center for Image-Guided Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA; (O.B.-A.); (H.A.-A.-S.); (Z.C.G.); (S.H.); (J.A.K.); (D.J.M.); (J.R.H.); (E.A.); (X.Z.)
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Sakibul Huq
- Center for Image-Guided Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA; (O.B.-A.); (H.A.-A.-S.); (Z.C.G.); (S.H.); (J.A.K.); (D.J.M.); (J.R.H.); (E.A.); (X.Z.)
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Justiss A. Kallos
- Center for Image-Guided Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA; (O.B.-A.); (H.A.-A.-S.); (Z.C.G.); (S.H.); (J.A.K.); (D.J.M.); (J.R.H.); (E.A.); (X.Z.)
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - David J. McCarthy
- Center for Image-Guided Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA; (O.B.-A.); (H.A.-A.-S.); (Z.C.G.); (S.H.); (J.A.K.); (D.J.M.); (J.R.H.); (E.A.); (X.Z.)
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Jeffery R. Head
- Center for Image-Guided Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA; (O.B.-A.); (H.A.-A.-S.); (Z.C.G.); (S.H.); (J.A.K.); (D.J.M.); (J.R.H.); (E.A.); (X.Z.)
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Edward Andrews
- Center for Image-Guided Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA; (O.B.-A.); (H.A.-A.-S.); (Z.C.G.); (S.H.); (J.A.K.); (D.J.M.); (J.R.H.); (E.A.); (X.Z.)
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Xiaoran Zhang
- Center for Image-Guided Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA; (O.B.-A.); (H.A.-A.-S.); (Z.C.G.); (S.H.); (J.A.K.); (D.J.M.); (J.R.H.); (E.A.); (X.Z.)
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Constantinos G. Hadjipanayis
- Center for Image-Guided Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA; (O.B.-A.); (H.A.-A.-S.); (Z.C.G.); (S.H.); (J.A.K.); (D.J.M.); (J.R.H.); (E.A.); (X.Z.)
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| |
Collapse
|
84
|
Luo Z, Zhu G, Xu H, Lin D, Li J, Qu J. Combination of deep learning and 2D CARS figures for identification of amyloid-β plaques. OPTICS EXPRESS 2023; 31:34413-34427. [PMID: 37859198 DOI: 10.1364/oe.500136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/18/2023] [Indexed: 10/21/2023]
Abstract
In vivo imaging and accurate identification of amyloid-β (Aβ) plaque are crucial in Alzheimer's disease (AD) research. In this work, we propose to combine the coherent anti-Stokes Raman scattering (CARS) microscopy, a powerful detection technology for providing Raman spectra and label-free imaging, with deep learning to distinguish Aβ from non-Aβ regions in AD mice brains in vivo. The 1D CARS spectra is firstly converted to 2D CARS figures by using two different methods: spectral recurrence plot (SRP) and spectral Gramian angular field (SGAF). This can provide more learnable information to the network, improving the classification precision. We then devise a cross-stage attention network (CSAN) that automatically learns the features of Aβ plaques and non-Aβ regions by taking advantage of the computational advances in deep learning. Our algorithm yields higher accuracy, precision, sensitivity and specificity than the results of conventional multivariate statistical analysis method and 1D CARS spectra combined with deep learning, demonstrating its competence in identifying Aβ plaques. Last but not least, the CSAN framework requires no prior information on the imaging modality and may be applicable to other spectroscopy analytical fields.
Collapse
|
85
|
Chen Z, Yue Z, Yang K, Shen C, Cheng Z, Zhou X, Li S. Four Ounces Can Move a Thousand Pounds: The Enormous Value of Nanomaterials in Tumor Immunotherapy. Adv Healthc Mater 2023; 12:e2300882. [PMID: 37539730 DOI: 10.1002/adhm.202300882] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 07/17/2023] [Indexed: 08/05/2023]
Abstract
The application of nanomaterials in healthcare has emerged as a promising strategy due to their unique structural diversity, surface properties, and compositional diversity. In particular, nanomaterials have found a significant role in improving drug delivery and inhibiting the growth and metastasis of tumor cells. Moreover, recent studies have highlighted their potential in modulating the tumor microenvironment (TME) and enhancing the activity of immune cells to improve tumor therapy efficacy. Various types of nanomaterials are currently utilized as drug carriers, immunosuppressants, immune activators, immunoassay reagents, and more for tumor immunotherapy. Necessarily, nanomaterials used for tumor immunotherapy can be grouped into two categories: organic and inorganic nanomaterials. Though both have shown the ability to achieve the purpose of tumor immunotherapy, their composition and structural properties result in differences in their mechanisms and modes of action. Organic nanomaterials can be further divided into organic polymers, cell membranes, nanoemulsion-modified, and hydrogel forms. At the same time, inorganic nanomaterials can be broadly classified as nonmetallic and metallic nanomaterials. The current work aims to explore the mechanisms of action of these different types of nanomaterials and their prospects for promoting tumor immunotherapy.
Collapse
Affiliation(s)
- Ziyin Chen
- Department of Urology, China-Japan Friendship Hospital, 100029, Beijing, P. R. China
| | - Ziqi Yue
- Department of Forensic Medicine, Harbin Medical University, 150001, Harbin, P. R. China
| | - Kaiqi Yang
- Clinical Medicine, Harbin Medical University, 150001, Harbin, P. R. China
| | - Congrong Shen
- Department of Urology, China-Japan Friendship Hospital, 100029, Beijing, P. R. China
| | - Zhe Cheng
- Department of Forensic Medicine, Harbin Medical University, 150001, Harbin, P. R. China
| | - Xiaofeng Zhou
- Department of Urology, China-Japan Friendship Hospital, 100029, Beijing, P. R. China
| | - Shenglong Li
- Second Ward of Bone and Soft Tissue Tumor Surgery, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, 110042, Shenyang, P. R. China
- The Liaoning Provincial Key Laboratory of Interdisciplinary Research on Gastrointestinal Tumor Combining Medicine with Engineering, Shenyang, 110042, China
| |
Collapse
|
86
|
Zhang A, Wu Z, Wu E, Wu M, Snyder MP, Zou J, Wu JC. Leveraging physiology and artificial intelligence to deliver advancements in health care. Physiol Rev 2023; 103:2423-2450. [PMID: 37104717 PMCID: PMC10390055 DOI: 10.1152/physrev.00033.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 03/06/2023] [Accepted: 04/25/2023] [Indexed: 04/29/2023] Open
Abstract
Artificial intelligence in health care has experienced remarkable innovation and progress in the last decade. Significant advancements can be attributed to the utilization of artificial intelligence to transform physiology data to advance health care. In this review, we explore how past work has shaped the field and defined future challenges and directions. In particular, we focus on three areas of development. First, we give an overview of artificial intelligence, with special attention to the most relevant artificial intelligence models. We then detail how physiology data have been harnessed by artificial intelligence to advance the main areas of health care: automating existing health care tasks, increasing access to care, and augmenting health care capabilities. Finally, we discuss emerging concerns surrounding the use of individual physiology data and detail an increasingly important consideration for the field, namely the challenges of deploying artificial intelligence models to achieve meaningful clinical impact.
Collapse
Affiliation(s)
- Angela Zhang
- Stanford Cardiovascular Institute, School of Medicine, Stanford University, Stanford, California, United States
- Department of Genetics, School of Medicine, Stanford University, Stanford, California, United States
- Greenstone Biosciences, Palo Alto, California, United States
| | - Zhenqin Wu
- Department of Chemistry, Stanford University, Stanford, California, United States
| | - Eric Wu
- Department of Electrical Engineering, Stanford University, Stanford, California, United States
| | - Matthew Wu
- Greenstone Biosciences, Palo Alto, California, United States
| | - Michael P Snyder
- Department of Genetics, School of Medicine, Stanford University, Stanford, California, United States
| | - James Zou
- Department of Biomedical Informatics, School of Medicine, Stanford University, Stanford, California, United States
- Department of Computer Science, Stanford University, Stanford, California, United States
| | - Joseph C Wu
- Stanford Cardiovascular Institute, School of Medicine, Stanford University, Stanford, California, United States
- Greenstone Biosciences, Palo Alto, California, United States
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University, Stanford, California, United States
- Department of Radiology, School of Medicine, Stanford University, Stanford, California, United States
| |
Collapse
|
87
|
Grudzień K, Klimeczek-Chrapusta M, Kwiatkowski S, Milczarek O. Predicting the WHO Grading of Pediatric Brain Tumors Based on Their MRI Appearance: A Retrospective Study. Cureus 2023; 15:e47333. [PMID: 38021610 PMCID: PMC10657198 DOI: 10.7759/cureus.47333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2023] [Indexed: 12/01/2023] Open
Abstract
The treatment of central nervous system (CNS) tumors constitutes a significant part of a pediatric neurosurgeon's workload. The classification of such neoplasms spans many entities. These include low- and high-grade lesions, with both occurring in the population of patients under 18 years of age. Magnetic resonance imaging serves as the imaging method of choice for neoplastic lesions of the brain. Through its different modalities, such as T1, T2, T1 C+, apparent diffusion coefficient (ADC), diffusion-weighted imaging (DWI), susceptibility-weighted imaging (SWI), fluid-attenuated inversion recovery (FLAIR), etc., it allows the medical team to plan the therapeutic process accordingly while also possibly suggesting the specific tumor subtype prior to obtaining a definitive histological diagnosis. We conducted a retrospective study spanning 32 children treated surgically for brain tumors between July 2021 and January 2023 who had a precise histological diagnosis determined by using the 2021 WHO Classification of Tumors of the Central Nervous System. We divided them into two groups (high-grade and low-grade tumors, i.e., WHO grades 1 and 2, and grades 3 and 4, respectively) and analyzed their demographic data and preoperative MRI results. This was done using the following criteria: sub or supratentorial location of the tumor; lesion is circumscribed or infiltrating; solid, cystic, or mixed solid and cystic character of the tumor; number of compartments in cystic lesions; signal intensity (hypo-, iso-, hyperintensity sequences: T1, T2, T1 C+); presence of restricted diffusion; the largest diameter of the solid component and/or the largest diameter of the largest cyst in the transverse section. Then, we examined the results to find any correlation between the lesions' morphologies and their final assigned degree of malignancy. We found that the only radiological criteria correlating with the final WHO grade of the tumor were an infiltrative pattern of growth (25% of low-grade lesions, 75% of high-grade; p = 0.006) and the presence of a cystic component in the tumor (in 68.75% of low-grade tumors and 43.75% of high-grade tumors; p = 0.041). The only other feature close to attaining statistical significance was diffusion restriction (33.3% of low-grade tumors, 66.7% high-grade; p = 0.055). Older children tended to present with tumors of lower degrees of malignancy, and there was a predominance of female patients (21 female, 11 male).
Collapse
Affiliation(s)
- Kacper Grudzień
- Neurosurgery, University Children's Hospital, Kraków, POL
- Medicine, Jagiellonian University Medical College, Kraków, POL
| | - Maria Klimeczek-Chrapusta
- Neurosurgery, University Children's Hospital, Kraków, POL
- Medicine, Jagiellonian University Medical College, Kraków, POL
| | - Stanisław Kwiatkowski
- Neurosurgery, University Children's Hospital, Kraków, POL
- Medicine, Jagiellonian University Medical College, Kraków, POL
| | - Olga Milczarek
- Neurosurgery, University Children's Hospital, Kraków, POL
- Medicine, Jagiellonian University Medical College, Kraków, POL
| |
Collapse
|
88
|
Reddi DM, Barner LA, Burke W, Gao G, Grady WM, Liu JTC. Nondestructive 3D Pathology Image Atlas of Barrett Esophagus With Open-Top Light-Sheet Microscopy. Arch Pathol Lab Med 2023; 147:1164-1171. [PMID: 36596255 DOI: 10.5858/arpa.2022-0133-oa] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2022] [Indexed: 01/04/2023]
Abstract
CONTEXT.— Anatomic pathologists render diagnosis on tissue samples sectioned onto glass slides and viewed under a bright-field microscope. This approach is destructive to the sample, which can limit its use for ancillary assays that can inform patient management. Furthermore, the subjective interpretation of a relatively small number of 2D tissue sections per sample contributes to low interobserver agreement among pathologists for the assessment (diagnosis and grading) of various lesions. OBJECTIVE.— To evaluate 3D pathology data sets of thick formalin-fixed Barrett esophagus specimens imaged nondestructively with open-top light-sheet (OTLS) microscopy. DESIGN.— Formalin-fixed, paraffin-embedded Barrett esophagus samples (N = 15) were deparaffinized, stained with a fluorescent analog of hematoxylin-eosin, optically cleared, and imaged nondestructively with OTLS microscopy. The OTLS microscopy images were subsequently compared with archived hematoxylin-eosin histology sections from each sample. RESULTS.— Barrett esophagus samples, both small endoscopic forceps biopsies and endoscopic mucosal resections, exhibited similar resolvable structures between OTLS microscopy and conventional light microscopy with up to a ×20 objective (×200 overall magnification). The 3D histologic images generated by OTLS microscopy can enable improved discrimination of cribriform and well-formed gland morphologies. In addition, a much larger amount of tissue is visualized with OTLS microscopy, which enables improved assessment of clinical specimens exhibiting high spatial heterogeneity. CONCLUSIONS.— In esophageal specimens, OTLS microscopy can generate images comparable in quality to conventional light microscopy, with the advantages of providing 3D information for enhanced evaluation of glandular morphologies and enabling much more of the tissue specimen to be visualized nondestructively.
Collapse
Affiliation(s)
- Deepti M Reddi
- From the Department of Laboratory Medicine and Pathology (Reddi, Liu), University of Washington, Seattle
| | - Lindsey A Barner
- Department of Mechanical Engineering (Barner, Gao, Liu), University of Washington, Seattle
| | - Wynn Burke
- Department of Medicine (Burke, Grady), University of Washington, Seattle
- The Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington (Burke, Grady)
| | - Gan Gao
- Department of Mechanical Engineering (Barner, Gao, Liu), University of Washington, Seattle
| | - William M Grady
- Department of Medicine (Burke, Grady), University of Washington, Seattle
- The Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington (Burke, Grady)
| | - Jonathan T C Liu
- From the Department of Laboratory Medicine and Pathology (Reddi, Liu), University of Washington, Seattle
- Department of Mechanical Engineering (Barner, Gao, Liu), University of Washington, Seattle
- Department of Bioengineering (Liu), University of Washington, Seattle
| |
Collapse
|
89
|
Martell MT, Haven NJM, Cikaluk BD, Restall BS, McAlister EA, Mittal R, Adam BA, Giannakopoulos N, Peiris L, Silverman S, Deschenes J, Li X, Zemp RJ. Deep learning-enabled realistic virtual histology with ultraviolet photoacoustic remote sensing microscopy. Nat Commun 2023; 14:5967. [PMID: 37749108 PMCID: PMC10519961 DOI: 10.1038/s41467-023-41574-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 09/11/2023] [Indexed: 09/27/2023] Open
Abstract
The goal of oncologic surgeries is complete tumor resection, yet positive margins are frequently found postoperatively using gold standard H&E-stained histology methods. Frozen section analysis is sometimes performed for rapid intraoperative margin evaluation, albeit with known inaccuracies. Here, we introduce a label-free histological imaging method based on an ultraviolet photoacoustic remote sensing and scattering microscope, combined with unsupervised deep learning using a cycle-consistent generative adversarial network for realistic virtual staining. Unstained tissues are scanned at rates of up to 7 mins/cm2, at resolution equivalent to 400x digital histopathology. Quantitative validation suggests strong concordance with conventional histology in benign and malignant prostate and breast tissues. In diagnostic utility studies we demonstrate a mean sensitivity and specificity of 0.96 and 0.91 in breast specimens, and respectively 0.87 and 0.94 in prostate specimens. We also find virtual stain quality is preferred (P = 0.03) compared to frozen section analysis in a blinded survey of pathologists.
Collapse
Affiliation(s)
- Matthew T Martell
- Department of Electrical and Computer Engineering, University of Alberta, 116 Street & 85 Avenue, Edmonton, AB, T6G 2R3, Canada
| | - Nathaniel J M Haven
- Department of Electrical and Computer Engineering, University of Alberta, 116 Street & 85 Avenue, Edmonton, AB, T6G 2R3, Canada
| | - Brendyn D Cikaluk
- Department of Electrical and Computer Engineering, University of Alberta, 116 Street & 85 Avenue, Edmonton, AB, T6G 2R3, Canada
| | - Brendon S Restall
- Department of Electrical and Computer Engineering, University of Alberta, 116 Street & 85 Avenue, Edmonton, AB, T6G 2R3, Canada
| | - Ewan A McAlister
- Department of Electrical and Computer Engineering, University of Alberta, 116 Street & 85 Avenue, Edmonton, AB, T6G 2R3, Canada
| | - Rohan Mittal
- Department of Laboratory Medicine and Pathology, University of Alberta, 11405 87 Avenue NW, Edmonton, AB, T6G 1C9, Canada
| | - Benjamin A Adam
- Department of Laboratory Medicine and Pathology, University of Alberta, 11405 87 Avenue NW, Edmonton, AB, T6G 1C9, Canada
| | - Nadia Giannakopoulos
- Department of Laboratory Medicine and Pathology, University of Alberta, 11405 87 Avenue NW, Edmonton, AB, T6G 1C9, Canada
| | - Lashan Peiris
- Department of Surgery, University of Alberta, 8440 - 112 Street, Edmonton, AB, T6G 2B7, Canada
| | - Sveta Silverman
- Department of Laboratory Medicine and Pathology, University of Alberta, 11405 87 Avenue NW, Edmonton, AB, T6G 1C9, Canada
| | - Jean Deschenes
- Department of Laboratory Medicine and Pathology, University of Alberta, 11405 87 Avenue NW, Edmonton, AB, T6G 1C9, Canada
| | - Xingyu Li
- Department of Electrical and Computer Engineering, University of Alberta, 116 Street & 85 Avenue, Edmonton, AB, T6G 2R3, Canada
| | - Roger J Zemp
- Department of Electrical and Computer Engineering, University of Alberta, 116 Street & 85 Avenue, Edmonton, AB, T6G 2R3, Canada.
| |
Collapse
|
90
|
Falahkheirkhah K, Mukherjee SS, Gupta S, Herrera-Hernandez L, McCarthy MR, Jimenez RE, Cheville JC, Bhargava R. Accelerating Cancer Histopathology Workflows with Chemical Imaging and Machine Learning. CANCER RESEARCH COMMUNICATIONS 2023; 3:1875-1887. [PMID: 37772992 PMCID: PMC10506535 DOI: 10.1158/2767-9764.crc-23-0226] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 08/21/2023] [Accepted: 08/21/2023] [Indexed: 09/30/2023]
Abstract
Histopathology has remained a cornerstone for biomedical tissue assessment for over a century, with a resource-intensive workflow involving biopsy or excision, gross examination, sampling, tissue processing to snap frozen or formalin-fixed paraffin-embedded blocks, sectioning, staining, optical imaging, and microscopic assessment. Emerging chemical imaging approaches, including stimulated Raman scattering (SRS) microscopy, can directly measure inherent molecular composition in tissue (thereby dispensing with the need for tissue processing, sectioning, and using dyes) and can use artificial intelligence (AI) algorithms to provide high-quality images. Here we show the integration of SRS microscopy in a pathology workflow to rapidly record chemical information from minimally processed fresh-frozen prostate tissue. Instead of using thin sections, we record data from intact thick tissues and use optical sectioning to generate images from multiple planes. We use a deep learning–based processing pipeline to generate virtual hematoxylin and eosin images. Next, we extend the computational method to generate archival-quality images in minutes, which are equivalent to those obtained from hours/days-long formalin-fixed, paraffin-embedded processing. We assessed the quality of images from the perspective of enabling pathologists to make decisions, demonstrating that the virtual stained image quality was diagnostically useful and the interpathologist agreement on prostate cancer grade was not impacted. Finally, because this method does not wash away lipids and small molecules, we assessed the utility of lipid chemical composition in determining grade. Together, the combination of chemical imaging and AI provides novel capabilities for rapid assessments in pathology by reducing the complexity and burden of current workflows. SIGNIFICANCE Archival-quality (formalin-fixed paraffin-embedded), thin-section diagnostic images are obtained from thick-cut, fresh-frozen prostate tissues without dyes or stains to expedite cancer histopathology by combining SRS microscopy and machine learning.
Collapse
Affiliation(s)
- Kianoush Falahkheirkhah
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, Illinois
| | - Sudipta S. Mukherjee
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois
| | - Sounak Gupta
- Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | | | | | - Rafael E. Jimenez
- Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - John C. Cheville
- Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Rohit Bhargava
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, Illinois
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois
- Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, Illinois
| |
Collapse
|
91
|
Dov D, Elliott Range D, Cohen J, Bell J, Rocke DJ, Kahmke RR, Weiss-Meilik A, Lee WT, Henao R, Carin L, Kovalsky SZ. Deep-Learning-Based Screening and Ancillary Testing for Thyroid Cytopathology. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:1185-1194. [PMID: 37611969 PMCID: PMC10477952 DOI: 10.1016/j.ajpath.2023.05.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 05/06/2023] [Accepted: 05/19/2023] [Indexed: 08/25/2023]
Abstract
Thyroid cancer is the most common malignant endocrine tumor. The key test to assess preoperative risk of malignancy is cytologic evaluation of fine-needle aspiration biopsies (FNABs). The evaluation findings can often be indeterminate, leading to unnecessary surgery for benign post-surgical diagnoses. We have developed a deep-learning algorithm to analyze thyroid FNAB whole-slide images (WSIs). We show, on the largest reported data set of thyroid FNAB WSIs, clinical-grade performance in the screening of determinate cases and indications for its use as an ancillary test to disambiguate indeterminate cases. The algorithm screened and definitively classified 45.1% (130/288) of the WSIs as either benign or malignant with risk of malignancy rates of 2.7% and 94.7%, respectively. It reduced the number of indeterminate cases (N = 108) by reclassifying 21.3% (N = 23) as benign with a resultant risk of malignancy rate of 1.8%. Similar results were reproduced using a data set of consecutive FNABs collected during an entire calendar year, achieving clinically acceptable margins of error for thyroid FNAB classification.
Collapse
Affiliation(s)
- David Dov
- I-Medata AI Center, Tel Aviv Sourasky Medical Center, Tel Aviv-Yafo, Israel; Department of Pathology, Duke University Medical Center, Durham, North Carolina.
| | | | - Jonathan Cohen
- Department of Head and Neck Surgery, Kaplan Medical Center, Rehovot, Israel
| | - Jonathan Bell
- Department of Pathology, Duke University Medical Center, Durham, North Carolina
| | - Daniel J Rocke
- Department of Head and Neck Surgery & Communication Sciences, Duke University Medical Center, Durham, North Carolina
| | - Russel R Kahmke
- Department of Head and Neck Surgery & Communication Sciences, Duke University Medical Center, Durham, North Carolina
| | - Ahuva Weiss-Meilik
- I-Medata AI Center, Tel Aviv Sourasky Medical Center, Tel Aviv-Yafo, Israel
| | - Walter T Lee
- Department of Head and Neck Surgery & Communication Sciences, Duke University Medical Center, Durham, North Carolina
| | - Ricardo Henao
- Biological, Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia; Department of Biostatistics and Bioinformatics, Duke University, Durham, North Carolina
| | - Lawrence Carin
- Computer Science Program, Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Shahar Z Kovalsky
- Department of Mathematics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
92
|
Schupper AJ, Hadjipanayis CG. Novel approaches to targeting gliomas at the leading/cutting edge. J Neurosurg 2023; 139:760-768. [PMID: 36840741 PMCID: PMC11225597 DOI: 10.3171/2023.1.jns221798] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 01/17/2023] [Indexed: 02/26/2023]
Abstract
Despite decades of clinical trials and surgical advances, the most common high-grade glioma, glioblastoma (GBM), remains an incurable disease with a dismal prognosis. Because of its infiltrative nature, GBM almost always recurs at the margin, or leading edge, where tumor cells invade the surrounding brain parenchyma. This region of GBMs is unique, or heterogeneous, with its own microenvironment that is different from the tumor bulk or core. The GBM microenvironment at the margin contains immunosuppressive constituents as well as invasive and therapy-resistant tumor cells that are difficult to treat. In addition, the blood-brain barrier remains essentially intact at the infiltrative margin of tumors; further limiting the effectiveness of therapies. The invasive margin creates the greatest challenge for neurosurgeons when managing these tumors. The current paradigm of resection of GBM tumors mainly focuses on resection of the contrast-enhancing component of tumors, while GBMs extend well beyond the contrast enhancement. The infiltrative margin represents a unique challenge and opportunity for solutions that may overcome current limitations in tumor treatments. In this review of the current literature, the authors discuss the current and developing advances focused on the detection and treatment of GBM at the infiltrative margin and how this could impact patient outcomes.
Collapse
Affiliation(s)
- Alexander J. Schupper
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, New York
| | | |
Collapse
|
93
|
Raghavendra U, Gudigar A, Paul A, Goutham TS, Inamdar MA, Hegde A, Devi A, Ooi CP, Deo RC, Barua PD, Molinari F, Ciaccio EJ, Acharya UR. Brain tumor detection and screening using artificial intelligence techniques: Current trends and future perspectives. Comput Biol Med 2023; 163:107063. [PMID: 37329621 DOI: 10.1016/j.compbiomed.2023.107063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 05/16/2023] [Accepted: 05/19/2023] [Indexed: 06/19/2023]
Abstract
A brain tumor is an abnormal mass of tissue located inside the skull. In addition to putting pressure on the healthy parts of the brain, it can lead to significant health problems. Depending on the region of the brain tumor, it can cause a wide range of health issues. As malignant brain tumors grow rapidly, the mortality rate of individuals with this cancer can increase substantially with each passing week. Hence it is vital to detect these tumors early so that preventive measures can be taken at the initial stages. Computer-aided diagnostic (CAD) systems, in coordination with artificial intelligence (AI) techniques, have a vital role in the early detection of this disorder. In this review, we studied 124 research articles published from 2000 to 2022. Here, the challenges faced by CAD systems based on different modalities are highlighted along with the current requirements of this domain and future prospects in this area of research.
Collapse
Affiliation(s)
- U Raghavendra
- Department of Instrumentation and Control Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Anjan Gudigar
- Department of Instrumentation and Control Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, India.
| | - Aritra Paul
- Department of Instrumentation and Control Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, India
| | - T S Goutham
- Department of Instrumentation and Control Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Mahesh Anil Inamdar
- Department of Mechatronics, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Ajay Hegde
- Consultant Neurosurgeon Manipal Hospitals, Sarjapur Road, Bangalore, India
| | - Aruna Devi
- School of Education and Tertiary Access, University of the Sunshine Coast, Caboolture Campus, Australia
| | - Chui Ping Ooi
- School of Science and Technology, Singapore University of Social Sciences, Singapore, 599494, Singapore
| | - Ravinesh C Deo
- School of Mathematics, Physics, and Computing, University of Southern Queensland, Springfield, QLD, 4300, Australia
| | - Prabal Datta Barua
- Cogninet Brain Team, Cogninet Australia, Sydney, NSW, 2010, Australia; School of Business (Information Systems), Faculty of Business, Education, Law & Arts, University of Southern Queensland, Toowoomba, QLD, 4350, Australia; Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Filippo Molinari
- Department of Electronics and Telecommunications, Politecnico di Torino, 10129, Torino, Italy
| | - Edward J Ciaccio
- Department of Medicine, Columbia University Medical Center, New York, NY, 10032, USA
| | - U Rajendra Acharya
- School of Mathematics, Physics, and Computing, University of Southern Queensland, Springfield, QLD, 4300, Australia; International Research Organization for Advanced Science and Technology (IROAST), Kumamoto University, Kumamoto, 860-8555, Japan
| |
Collapse
|
94
|
Movahed-Ezazi M, Nasir-Moin M, Fang C, Pizzillo I, Galbraith K, Drexler S, Krasnozhen-Ratush OA, Shroff S, Zagzag D, William C, Orringer D, Snuderl M. Clinical Validation of Stimulated Raman Histology for Rapid Intraoperative Diagnosis of Central Nervous System Tumors. Mod Pathol 2023; 36:100219. [PMID: 37201685 PMCID: PMC10527246 DOI: 10.1016/j.modpat.2023.100219] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/31/2023] [Accepted: 05/03/2023] [Indexed: 05/20/2023]
Abstract
Stimulated Raman histology (SRH) is an ex vivo optical imaging method that enables microscopic examination of fresh tissue intraoperatively. The conventional intraoperative method uses frozen section analysis, which is labor and time intensive, introduces artifacts that limit diagnostic accuracy, and consumes tissue. SRH imaging allows rapid microscopic imaging of fresh tissue, avoids tissue loss, and enables remote telepathology review. This improves access to expert neuropathology consultation in both low- and high-resource practices. We clinically validated SRH by performing a blinded, retrospective two-arm telepathology study to clinically validate SRH for telepathology at our institution. Using surgical specimens from 47 subjects, we generated a data set composed of 47 SRH images and 47 matched whole slide images (WSIs) of formalin-fixed, paraffin-embedded tissue stained with hematoxylin and eosin, with associated intraoperative clinicoradiologic information and structured diagnostic questions. We compared diagnostic concordance between WSI and SRH-rendered diagnoses. Also, we compared the 1-year median turnaround time (TAT) of intraoperative conventional neuropathology frozen sections with prospectively rendered SRH-telepathology TAT. All SRH images were of sufficient quality for diagnostic review. A review of SRH images showed high accuracy in distinguishing glial from nonglial tumors (96.5% SRH vs 98% WSIs) and predicting final diagnosis (85.9% SRH vs 93.1% WSIs). SRH-based diagnosis and WSI-permanent section diagnosis had high concordance (κ = 0.76). The median TAT for prospectively SRH-rendered diagnosis was 3.7 minutes, approximately 10-fold shorter than the median frozen section TAT (31 minutes). The SRH-imaging procedure did not affect ancillary studies. SRH generates diagnostic virtual histologic images with accuracy comparable to conventional hematoxylin and eosin-based methods in a rapid manner. Our study represents the largest and most rigorous clinical validation of SRH to date. It supports the feasibility of implementing SRH as a rapid method for intraoperative diagnosis complementary to conventional pathology laboratory methods.
Collapse
Affiliation(s)
- Misha Movahed-Ezazi
- Department of Pathology and Laboratory Medicine, NYU Langone, New York, New York
| | | | - Camila Fang
- Department of Pathology and Laboratory Medicine, NYU Langone, New York, New York
| | - Isabella Pizzillo
- Department of Pathology and Laboratory Medicine, NYU Langone, New York, New York
| | - Kristyn Galbraith
- Department of Pathology and Laboratory Medicine, NYU Langone, New York, New York
| | - Steven Drexler
- Department of Pathology and Laboratory Medicine, NYU, Mineola, New York
| | | | - Seema Shroff
- Department of Pathology and Laboratory Medicine, AdventHealth Orlando, Orlando, Florida
| | - David Zagzag
- Department of Pathology and Laboratory Medicine, NYU Langone, New York, New York; Department of Neurosurgery, NYU Langone, New York, New York
| | - Christopher William
- Department of Pathology and Laboratory Medicine, NYU Langone, New York, New York
| | | | - Matija Snuderl
- Department of Pathology and Laboratory Medicine, NYU Langone, New York, New York.
| |
Collapse
|
95
|
Lu N, Chen J, Rao Z, Guo B, Xu Y. Recent Advances of Biosensors for Detection of Multiple Antibiotics. BIOSENSORS 2023; 13:850. [PMID: 37754084 PMCID: PMC10526323 DOI: 10.3390/bios13090850] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/24/2023] [Accepted: 08/24/2023] [Indexed: 09/28/2023]
Abstract
The abuse of antibiotics has caused a serious threat to human life and health. It is urgent to develop sensors that can detect multiple antibiotics quickly and efficiently. Biosensors are widely used in the field of antibiotic detection because of their high specificity. Advanced artificial intelligence/machine learning algorithms have allowed for remarkable achievements in image analysis and face recognition, but have not yet been widely used in the field of biosensors. Herein, this paper reviews the biosensors that have been widely used in the simultaneous detection of multiple antibiotics based on different detection mechanisms and biorecognition elements in recent years, and compares and analyzes their characteristics and specific applications. In particular, this review summarizes some AI/ML algorithms with excellent performance in the field of antibiotic detection, and which provide a platform for the intelligence of sensors and terminal apps portability. Furthermore, this review gives a short review of biosensors for the detection of multiple antibiotics.
Collapse
Affiliation(s)
| | | | | | | | - Ying Xu
- School of Automation, Hangzhou Dianzi University, Hangzhou 310018, China
| |
Collapse
|
96
|
Kazemzadeh K, Akhlaghdoust M, Zali A. Advances in artificial intelligence, robotics, augmented and virtual reality in neurosurgery. Front Surg 2023; 10:1241923. [PMID: 37693641 PMCID: PMC10483402 DOI: 10.3389/fsurg.2023.1241923] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 08/11/2023] [Indexed: 09/12/2023] Open
Abstract
Neurosurgical practitioners undergo extensive and prolonged training to acquire diverse technical proficiencies, while neurosurgical procedures necessitate a substantial amount of pre-, post-, and intraoperative clinical data acquisition, making decisions, attention, and convalescence. The past decade witnessed an appreciable escalation in the significance of artificial intelligence (AI) in neurosurgery. AI holds significant potential in neurosurgery as it supplements the abilities of neurosurgeons to offer optimal interventional and non-interventional care to patients by improving prognostic and diagnostic outcomes in clinical therapy and assisting neurosurgeons in making decisions while surgical interventions to enhance patient outcomes. Other technologies including augmented reality, robotics, and virtual reality can assist and promote neurosurgical methods as well. Moreover, they play a significant role in generating, processing, as well as storing experimental and clinical data. Also, the usage of these technologies in neurosurgery is able to curtail the number of costs linked with surgical care and extend high-quality health care to a wider populace. This narrative review aims to integrate the results of articles that elucidate the role of the aforementioned technologies in neurosurgery.
Collapse
Affiliation(s)
- Kimia Kazemzadeh
- Students’ Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Network of Neurosurgery and Artificial Intelligence (NONAI), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Meisam Akhlaghdoust
- Network of Neurosurgery and Artificial Intelligence (NONAI), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- USERN Office, Functional Neurosurgery Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Zali
- Network of Neurosurgery and Artificial Intelligence (NONAI), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- USERN Office, Functional Neurosurgery Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
97
|
Abdusalomov AB, Mukhiddinov M, Whangbo TK. Brain Tumor Detection Based on Deep Learning Approaches and Magnetic Resonance Imaging. Cancers (Basel) 2023; 15:4172. [PMID: 37627200 PMCID: PMC10453020 DOI: 10.3390/cancers15164172] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/11/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
The rapid development of abnormal brain cells that characterizes a brain tumor is a major health risk for adults since it can cause severe impairment of organ function and even death. These tumors come in a wide variety of sizes, textures, and locations. When trying to locate cancerous tumors, magnetic resonance imaging (MRI) is a crucial tool. However, detecting brain tumors manually is a difficult and time-consuming activity that might lead to inaccuracies. In order to solve this, we provide a refined You Only Look Once version 7 (YOLOv7) model for the accurate detection of meningioma, glioma, and pituitary gland tumors within an improved detection of brain tumors system. The visual representation of the MRI scans is enhanced by the use of image enhancement methods that apply different filters to the original pictures. To further improve the training of our proposed model, we apply data augmentation techniques to the openly accessible brain tumor dataset. The curated data include a wide variety of cases, such as 2548 images of gliomas, 2658 images of pituitary, 2582 images of meningioma, and 2500 images of non-tumors. We included the Convolutional Block Attention Module (CBAM) attention mechanism into YOLOv7 to further enhance its feature extraction capabilities, allowing for better emphasis on salient regions linked with brain malignancies. To further improve the model's sensitivity, we have added a Spatial Pyramid Pooling Fast+ (SPPF+) layer to the network's core infrastructure. YOLOv7 now includes decoupled heads, which allow it to efficiently glean useful insights from a wide variety of data. In addition, a Bi-directional Feature Pyramid Network (BiFPN) is used to speed up multi-scale feature fusion and to better collect features associated with tumors. The outcomes verify the efficiency of our suggested method, which achieves a higher overall accuracy in tumor detection than previous state-of-the-art models. As a result, this framework has a lot of potential as a helpful decision-making tool for experts in the field of diagnosing brain tumors.
Collapse
Affiliation(s)
| | | | - Taeg Keun Whangbo
- Department of Computer Engineering, Gachon University, Seongnam-si 13120, Republic of Korea;
| |
Collapse
|
98
|
Murugappan S, Tofail SAM, Thorat ND. Raman Spectroscopy: A Tool for Molecular Fingerprinting of Brain Cancer. ACS OMEGA 2023; 8:27845-27861. [PMID: 37576695 PMCID: PMC10413827 DOI: 10.1021/acsomega.3c01848] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 07/12/2023] [Indexed: 08/15/2023]
Abstract
Brain cancer is one of those few cancers with very high mortality and low five-year survival rate. First and foremost reason for the woes is the difficulty in diagnosing and monitoring the progression of brain tumors both benign and malignant, noninvasively and in real time. This raises a need in this hour for a tool to diagnose the tumors in the earliest possible time frame. On the other hand, Raman spectroscopy which is well-known for its ability to precisely represent the molecular markers available in any sample given, including biological ones, with great sensitivity and specificity. This has led to a number of studies where Raman spectroscopy has been used in brain tumors in various ways. This review article highlights the fundamentals of Raman spectroscopy and its types including conventional Raman, SERS, SORS, SRS, CARS, etc. are used in brain tumors for diagnostics, monitoring, and even theragnostics, collating all the major works in the area. Also, the review explores how Raman spectroscopy can be even more effectively used in theragnostics and the clinical level which would make them a one-stop solution for all brain cancer needs in the future.
Collapse
Affiliation(s)
- Sivasubramanian Murugappan
- Department of Physics, Bernal
Institute and Limerick Digital Cancer Research Centre (LDCRC)
University of Limerick, Castletroy, Limerick V94T9PX, Ireland
| | - Syed A. M. Tofail
- Department of Physics, Bernal
Institute and Limerick Digital Cancer Research Centre (LDCRC)
University of Limerick, Castletroy, Limerick V94T9PX, Ireland
| | - Nanasaheb D. Thorat
- Department of Physics, Bernal
Institute and Limerick Digital Cancer Research Centre (LDCRC)
University of Limerick, Castletroy, Limerick V94T9PX, Ireland
| |
Collapse
|
99
|
Patel D, Nguyen A, Fleeting C, Patel AB, Mumtaz M, Lucke-Wold B. Precision medicine in neurosurgery: The evolving role of theranostics. INNOSC THERANOSTICS & PHARMACOLOGICAL SCIENCES 2023; 6:417. [PMID: 37601162 PMCID: PMC10439809 DOI: 10.36922/itps.417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Theranostics in neurosurgery is a rapidly advancing field of precision medicine that combines diagnostic and therapeutic modalities to optimize patient outcomes. This approach has the potential to provide real-time feedback during therapy and diagnose a condition while simultaneously providing treatment. One such form of theranostics is focused ultrasound, which has been found to be effective in inducing neuroablation and neuromodulation and improving the efficacy of chemotherapy drugs by disrupting the blood-brain barrier. Targeted radionuclide therapy, which pairs positron emission tomography tracers with therapeutic effects and imaging modalities, is another promising form of theranostics for neurosurgery. Automated pathology analysis is yet another form of theranostics that can provide real-time feedback during the surgical resection of tumors. Electrical stimulation has also shown promise in optimizing therapies for patients with cerebral palsy. Overall, theranostics is a cost-effective way to optimize medical care for patients in neurosurgery. It is a relatively new field, but the advancements made so far show great promise for improving patient outcomes.
Collapse
Affiliation(s)
- Drashti Patel
- Department of Neurosurgery, University of Florida, College of Medicine, Gainesville, Florida, USA
| | - Andrew Nguyen
- Department of Neurosurgery, University of Florida, College of Medicine, Gainesville, Florida, USA
| | - Chance Fleeting
- Department of Neurosurgery, University of Florida, College of Medicine, Gainesville, Florida, USA
| | - Anjali B. Patel
- Department of Neurosurgery, University of Florida, College of Medicine, Gainesville, Florida, USA
| | - Mohammed Mumtaz
- Department of Neurosurgery, University of Florida, College of Medicine, Gainesville, Florida, USA
| | - Brandon Lucke-Wold
- Department of Neurosurgery, University of Florida, College of Medicine, Gainesville, Florida, USA
| |
Collapse
|
100
|
Herta J, Cho A, Roetzer-Pejrimovsky T, Höftberger R, Marik W, Kronreif G, Peilnsteiner T, Rössler K, Wolfsberger S. Optimizing maximum resection of glioblastoma: Raman spectroscopy versus 5-aminolevulinic acid. J Neurosurg 2023; 139:334-343. [PMID: 36681953 DOI: 10.3171/2022.11.jns22693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 11/16/2022] [Indexed: 12/24/2022]
Abstract
OBJECTIVE The objective of this study was to assess and compare the potential of 5-aminolevulinic acid (5-ALA) and Raman spectroscopy (RS) in detecting tumor-infiltrated brain in patients with glioblastoma (GBM). METHODS Between July 2020 and October 2021, the authors conducted a prospective clinical trial with 15 patients who underwent neurosurgical treatment of newly diagnosed and histologically verified GBM. A solid contrast-enhancing tumor core and peritumoral tissue were investigated intraoperatively for cancer cells by using 5-ALA and RS to achieve pathology-tailored maximum resection. In each case, a minimum of 10 biopsies were sampled from navigation-guided areas. Two neuropathologists examined the biopsies for the presence of neoplastic cells. The detection performance of 5-ALA and RS alone and in combination was assessed. Pre- and postoperative MRI, Karnofsky Performance Status (KPS), and National Institutes of Health Stroke Scale (NIHSS) scores were compared, and median progression-free survival (PFS) was evaluated. RESULTS A total of 185 biopsy samples were harvested from the contrast-enhancing tumor core (n = 19) and peritumoral tissue (n = 166). In the tumor core, 5-ALA and RS each showed a sensitivity of 100%. In the peritumoral tissue, 5-ALA was less sensitive than RS in detecting cancer (46% vs 69%) but showed higher specificity (81% vs 57%). When the two methods were combined, the accuracy of tumor detection was increased by about 10%. Pathology-tailored resection led to a 52% increase in resection volume comparing the volume of preoperative contrast enhancement with the postoperative resection cavity on MRI (p = 0.0123). Eloquent brain involvement prevented gross-total resection in 4 patients. Four weeks after surgery, mean KPS (p = 0.7637) and NIHSS scores (p = 0.3146) were not significantly different from preoperative values. Of the 13 patients who had received postoperative chemoradiotherapy, 4 did not show any progression after a median follow-up of 14 months. The remaining 9 patients had a median PFS of 8 months. CONCLUSIONS According to the study data, RS is capable of detecting tumor-infiltrated brain with higher sensitivity but lower specificity than the current standard of 5-ALA. With further technological and workflow advancements, RS in combination with protoporphyrin IX fluorescence may contribute to pathology-tailored glioma resection in the future.
Collapse
Affiliation(s)
- Johannes Herta
- 1Department of Neurosurgery, Medical University of Vienna
| | - Anna Cho
- 1Department of Neurosurgery, Medical University of Vienna
| | | | - Romana Höftberger
- 2Department of Neurology, Division of Neuropathology and Neurochemistry, Medical University of Vienna
| | - Wolfgang Marik
- 3Division of Neuroradiology and Musculoskeletal Radiology, Medical University of Vienna; and
| | - Gernot Kronreif
- 4Austrian Center for Medical Innovation and Technology (ACMIT), Wiener Neustadt, Austria
| | | | - Karl Rössler
- 1Department of Neurosurgery, Medical University of Vienna
| | | |
Collapse
|