51
|
Sun R, Liu S. Synthesis of photoluminescent carbon dots and its effect on chondrocytes for knee joint therapy applications. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:1321-1325. [PMID: 31007061 DOI: 10.1080/21691401.2019.1593855] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In the process of natural precursors examining for the carbon dots (CDs) synthesis, a bio-friendly and highly luminescent CDs synthesis is being reported herein. For the first time, we are reporting CDs synthesis using Selenicereus grandiflorus plant materials without any use of additional oxidizing agents like ethanol which was used in the earlier mentioned reports. Ultraviolet-visible spectroscopy (UV-Vis), X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, high-resolution transmission electron (HR-TEM) microscopy and Raman spectroscopy. This method is entirely safe to use in all biological practices because no toxic chemicals were used in this method. Further, we studied the toxicity of CDs against chondrocytes obtained from the knee joint. In order to inquire about the feasible harmful effects of exposing CD on the knee cells, we carried out CD treatment in SW-1353 chondrocytes. Cytotoxicity outcomes displayed a dosage-dependent reduction of cell viability. Therefore, we studied the toxic effects of CDs on the knee, indicating the important prospectives of CDs in future knee therapy.
Collapse
Affiliation(s)
- Rui Sun
- a Department of Pharmacy , Luoyang Central Hospital Affiliated to Zhengzhou University , Luoyang , PR China
| | - Shichao Liu
- b Department of Pharmacy , Luoyang Center for Women & Children Health Care , Luoyang , PR China
| |
Collapse
|
52
|
Fathi P, Khamo JS, Huang X, Srivastava I, Esch MB, Zhang K, Pan D. Bulk-state and single-particle imaging are central to understanding carbon dot photo-physics and elucidating the effects of precursor composition and reaction temperature. CARBON 2019; 145:10.1016/j.carbon.2018.12.105. [PMID: 34795455 PMCID: PMC8596966 DOI: 10.1016/j.carbon.2018.12.105] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Carbon dots have garnered attention for their strong multi-color luminescence properties and unprecedented biocompatibility. Despite significant progress in the recent past, a fundamental understanding of their photoluminescence and structure-properties relationships, especially at the bulk vs. single-particle level, has not been well established. Here we present a comparative study of bulk- and single-particle properties as a function of precursor composition and reaction temperature. The synthesis and characterization of multicolored inherently functionalized carbon dots were achieved from a variety of carbon sources, and at synthesis temperatures of 150 °C and 200 °C. Solvothermal synthesis at 200 °C led to quantum yields as high as 86%, smaller particle sizes, and a narrowed fluorescence emission, while synthesis at 150 °C resulted in a greater UV-visible absorbance, increase in nanoparticle stability, red-shifted fluorescence, and a greater resistance to bulk photobleaching. These results suggest the potential for synthesis temperature to be utilized as a simple tool for modulating carbon dot photophysical properties. Single-particle imaging resolved that particle brightness was determined by both the instantaneous intensity and the on-time duty cycle. Increasing the synthesis temperature caused an enhancement in blinking frequency, which led to an increase in on-time duty cycle in three out of four precursors.
Collapse
Affiliation(s)
- Parinaz Fathi
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, IL, 61801, USA
- Biomedical Technologies Group, Microsystems and Nanotechnology Division, Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA
| | - John S. Khamo
- Department of Biochemistry, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Xuedong Huang
- Department of Chemistry, Fudan University, Shanghai, PR China
| | - Indrajit Srivastava
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, IL, 61801, USA
| | - Mandy B. Esch
- Biomedical Technologies Group, Microsystems and Nanotechnology Division, Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA
| | - Kai Zhang
- Department of Biochemistry, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Dipanjan Pan
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, IL, 61801, USA
| |
Collapse
|
53
|
Molaei MJ. Carbon quantum dots and their biomedical and therapeutic applications: a review. RSC Adv 2019; 9:6460-6481. [PMID: 35518468 PMCID: PMC9061119 DOI: 10.1039/c8ra08088g] [Citation(s) in RCA: 199] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 02/14/2019] [Indexed: 12/19/2022] Open
Abstract
In recent years, nano carbon quantum dots (CQDs) have received increasing attention due to their properties such as small size, fluorescence emission, chemical stability, water solubility, easy synthesis, and the possibility of functionalization. CQDs are fluorescent 0D carbon nanostructures with sizes below 10 nm. The fluorescence in CQDs originates from two sources, the fluorescence emission from bandgap transitions of conjugated π-domains and fluorescence from surface defects. The CQDs can emit fluorescence in the near-infrared (NIR) spectral region which makes them appropriate for biomedical applications. The fluorescence in these structures can be tuned with respect to the excitation wavelength. The CQDs have found applications in different areas such as biomedicine, photocatalysis, photosensors, solar energy conversion, light emitting diodes (LEDs), etc. The biomedical applications of CQDs include bioimaging, drug delivery, gene delivery, and cancer therapy. The fluorescent CQDs have low toxicity and other exceptional physicochemical properties in comparison to heavy metals semiconductor quantum dots (QDs) which make them superior candidates for biomedical applications. In this review, the synthesis routes and optical properties of the CQDs are clarified and recent advances in CQDs biomedical applications in bioimaging (in vivo and in vitro), drug delivery, cancer therapy, their potential to pass blood-brain barrier (BBB), and gene delivery are discussed.
Collapse
Affiliation(s)
- Mohammad Jafar Molaei
- Faculty of Chemical and Materials Engineering, Shahrood University of Technology Shahrood Iran
| |
Collapse
|
54
|
Mohammadinejad R, Dadashzadeh A, Moghassemi S, Ashrafizadeh M, Dehshahri A, Pardakhty A, Sassan H, Sohrevardi SM, Mandegary A. Shedding light on gene therapy: Carbon dots for the minimally invasive image-guided delivery of plasmids and noncoding RNAs - A review. J Adv Res 2019; 18:81-93. [PMID: 30828478 PMCID: PMC6383136 DOI: 10.1016/j.jare.2019.01.004] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/10/2019] [Accepted: 01/10/2019] [Indexed: 12/21/2022] Open
Abstract
Recently, carbon dots (CDs) have attracted great attention due to their superior properties, such as biocompatibility, fluorescence, high quantum yield, and uniform distribution. These characteristics make CDs interesting for bioimaging, therapeutic delivery, optogenetics, and theranostics. Photoluminescence (PL) properties enable CDs to act as imaging-trackable gene nanocarriers, while cationic CDs with high transfection efficiency have been applied for plasmid DNA and siRNA delivery. In this review, we have highlighted the precursors, structure and properties of positively charged CDs to demonstrate the various applications of these materials for nucleic acid delivery. Additionally, the potential of CDs as trackable gene delivery systems has been discussed. Although there are several reports on cellular and animal approaches to investigating the potential clinical applications of these nanomaterials, further systematic multidisciplinary approaches are required to examine the pharmacokinetic and biodistribution patterns of CDs for potential clinical applications.
Collapse
Affiliation(s)
- Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Arezoo Dadashzadeh
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Saeid Moghassemi
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Ali Dehshahri
- Department of Pharmaceutical Biotechnology, School of Pharmacy, P.O. Box: 71345-1583, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abbas Pardakhty
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Hosseinali Sassan
- Department of Biology, Faculty of Sciences, Shahid Bahonar University, Kerman, Iran
| | - Seyed-Mojtaba Sohrevardi
- Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Shahid Sadoughi University of Medical Silences, Yazd, Iran
| | - Ali Mandegary
- Neuroscience Research Center, Institute of Neuropharmacology, and Department of Toxicology & Pharmacology, School of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
55
|
Mickaël C, Jiahui F, Mickaël R, Françoise P, Luc L. Influence of carbonization conditions on luminescence and gene delivery properties of nitrogen-doped carbon dots. RSC Adv 2019; 9:3493-3502. [PMID: 35518969 PMCID: PMC9060250 DOI: 10.1039/c8ra09651a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 03/07/2019] [Accepted: 01/21/2019] [Indexed: 12/25/2022] Open
Abstract
Carbon dots (CDs) have been intensively investigated due to their unique photoluminescence (PL) properties that are improved through surface passivation with nitrogen-containing groups. Recently, gene delivery applications emerged as passivation of CDs may yield positively charged nanoparticles that can interact with negatively charged nucleic acids. However previous work in the field focused on the use of high molecular weight polyamines for CD passivation, posing the problem of the separation of nanoparticles from residual polymer that is harmful to cells. In this work, cationic CDs were prepared by pyrolysis of citric acid/bPEI600 (1/4, w/w) so unreacted low molecular weight reagents could be conveniently eliminated by extensive dialysis. Various reaction conditions and activation modes were evaluated and eleven CDs that exhibited superior solubility in water were produced. All the nanoparticles were characterized with respect to their physical, optical and PL properties and their ability to deliver plasmid DNA to mammal cells was evaluated. Despite their similar physical properties, the CDs displayed marked differences in their gene delivery efficiency. CDs produced under microwave irradiation in a domestic oven were revealed to be superior to all the other nanoparticles produced in this study and compared to the gold standard transfection reagent bPEI25k, with an optimal CD/pDNA w/w ratio that was significantly down shifted, as was the associated cytotoxicity. Carbon dots prepared from citric acid and bPEI600 using various activation modes were evaluated as gene delivery reagents.![]()
Collapse
Affiliation(s)
- Claudel Mickaël
- Laboratoire de Conception et Application de Molécules Bioactives
- UMR 7199 CNRS – Université de Strasbourg
- Faculté de Pharmacie
- France
| | - Fan Jiahui
- Laboratoire de Conception et Application de Molécules Bioactives
- UMR 7199 CNRS – Université de Strasbourg
- Faculté de Pharmacie
- France
| | - Rapp Mickaël
- Laboratoire de Conception et Application de Molécules Bioactives
- UMR 7199 CNRS – Université de Strasbourg
- Faculté de Pharmacie
- France
| | - Pons Françoise
- Laboratoire de Conception et Application de Molécules Bioactives
- UMR 7199 CNRS – Université de Strasbourg
- Faculté de Pharmacie
- France
| | - Lebeau Luc
- Laboratoire de Conception et Application de Molécules Bioactives
- UMR 7199 CNRS – Université de Strasbourg
- Faculté de Pharmacie
- France
| |
Collapse
|
56
|
Molaei MJ. A review on nanostructured carbon quantum dots and their applications in biotechnology, sensors, and chemiluminescence. Talanta 2018; 196:456-478. [PMID: 30683392 DOI: 10.1016/j.talanta.2018.12.042] [Citation(s) in RCA: 204] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 12/11/2018] [Accepted: 12/13/2018] [Indexed: 12/22/2022]
Abstract
Carbon quantum dots (CQDs) are a member of carbon nanostructures family which have received increasing attention for their photoluminescence (PL), physical and chemical stability and low toxicity. The classical semiconductor quantum dots (QDs) are semiconductor particles that are able to emit fluorescence by excitation. The CQDs is mainly referred to photoluminescent carbon nanoparticles less than 10 nm, with surface modification or functionalization. Contrary to other carbon nanostructures, CQDs can be synthesized and functionalized fast and easily. The fluorescence origin of the CQDs is a controversial issue which depends on carbon source, experimental conditions, and functional groups. However, PL emissions originated from conjugated π-domains and surface defects have been proposed for the PL emission mechanisms of the CQDs. These nanostructures have been used as nontoxic alternatives to the classical heavy metals containing semiconductor QDs in some applications such as in-vivo and in-vitro bio-imaging, drug delivery, photosensors, chemiluminescence (CL), and etc. This paper will introduce CQDs, their structure, and PL characteristics. Recent advances of the application of CQDs in biotechnology, sensors, and CL is comprehensively discussed.
Collapse
Affiliation(s)
- Mohammad Jafar Molaei
- Faculty of Chemical and Materials Engineering, Shahrood University of Technology, Shahrood 3619995161, Iran.
| |
Collapse
|
57
|
Ghosal K, Ghosh A. Carbon dots: The next generation platform for biomedical applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 96:887-903. [PMID: 30606603 DOI: 10.1016/j.msec.2018.11.060] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 11/03/2018] [Accepted: 11/27/2018] [Indexed: 02/08/2023]
Abstract
Among the wide range of carbon family nanomaterials, carbon dots (CDs) one of the promising candidate which has attracted tremendous attention due to its unique advantages such as facile synthesis procedure, easy surface functionalization, outstanding water solubility, low toxicity and excellent photo-physical properties. Due to these unique advantages, CDs are extensively used in catalysis, electronics, sensing, power as well as in biological sectors. In this review we will discuss recent progress in synthesis, structure and fluorescence properties of CDs with special highlight on its biomedical applications, more precisely we will highlight on CDs, for drug/gene delivery, bioimaging and photothermal and photodynamic therapy applications. Furthermore, we discuss the current challenges and future perspective of CDs in the field of biomedical sector.
Collapse
Affiliation(s)
- Krishanu Ghosal
- Department of Polymer Science & Technology, University of Calcutta, 92, A.P.C. Road, Kolkata 700009, India.
| | - Ashis Ghosh
- Materials Science Centre, IIT Kharagpur, Kharagpur 721302, India
| |
Collapse
|
58
|
Wang Y, Cao P, Li S, Zhang X, Hu J, Yang M, Yao S, Gao F, Xia A, Shen J, Huang X. Layer-by-layer assembled PEI-based vector with the upconversion luminescence marker for gene delivery. Biochem Biophys Res Commun 2018; 503:2504-2509. [PMID: 30208518 DOI: 10.1016/j.bbrc.2018.07.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 07/02/2018] [Indexed: 12/17/2022]
Abstract
The upconversion luminescence (UCL) marker based on upconversion nanoparticles (UCNPs) shows unique advantages over traditional fluorescence markers, such as enhanced tissue penetration, better photostability, and less autofluorescence. Herein, we constructed a new UCL gene-delivery nonviral vector via layer-by-layer self-assembly of poly(ethylene imine) (PEI) with UCNPs. To reduce the cytotoxicity of PEI, citric acid (CA) was introduced for aqueous modification, and PEI assembly was introduced on the UCNP surface. Our data show that the nonviral vector for UCL gene-delivery demonstrates excellent photostability, low toxicity, and good stability under physiological or serum conditions and can strongly bind to DNA. Moreover, this UCL PEI-based vector could serve as a promising fluorescent gene-delivery carrier for theranostic applications.
Collapse
Affiliation(s)
- Yaqiong Wang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, School of Chemistry and Materials Science, Nanjing Normal University, Wenyuan Road 1, Nanjing, 210046, China
| | - Ping Cao
- Shanghai Jahwa United Co., Ltd, Baoding Road 527, Shanghai, 200082, China
| | - Shicui Li
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, School of Chemistry and Materials Science, Nanjing Normal University, Wenyuan Road 1, Nanjing, 210046, China
| | - Xiaofeng Zhang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, School of Chemistry and Materials Science, Nanjing Normal University, Wenyuan Road 1, Nanjing, 210046, China
| | - Jin Hu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, School of Chemistry and Materials Science, Nanjing Normal University, Wenyuan Road 1, Nanjing, 210046, China
| | - Mingyue Yang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, School of Chemistry and Materials Science, Nanjing Normal University, Wenyuan Road 1, Nanjing, 210046, China
| | - Sujuan Yao
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, School of Chemistry and Materials Science, Nanjing Normal University, Wenyuan Road 1, Nanjing, 210046, China
| | - Feng Gao
- Jinling Hospital, Zhongshandonglu Road 305, Nanjing, 210002, China
| | - Ao Xia
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, School of Chemistry and Materials Science, Nanjing Normal University, Wenyuan Road 1, Nanjing, 210046, China.
| | - Jian Shen
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, School of Chemistry and Materials Science, Nanjing Normal University, Wenyuan Road 1, Nanjing, 210046, China
| | - Xiaohua Huang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, School of Chemistry and Materials Science, Nanjing Normal University, Wenyuan Road 1, Nanjing, 210046, China
| |
Collapse
|