51
|
Graham ME, Herbert WG, Song SD, Raman HN, Zhu JE, Gonzalez PE, Walther-António MRS, Tetel MJ. Gut and vaginal microbiomes on steroids: implications for women's health. Trends Endocrinol Metab 2021; 32:554-565. [PMID: 34049772 PMCID: PMC8282721 DOI: 10.1016/j.tem.2021.04.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 04/17/2021] [Accepted: 04/26/2021] [Indexed: 12/11/2022]
Abstract
This review discusses the interactions of steroids with the gut and vaginal microbiomes within each life phase of adult women and the implications for women's health. Each phase of a woman's life is characterized by distinct hormonal states which drive overall physiology of both host and commensal microbes. These host-microbiome interactions underlie disease pathology in disorders that affect women across their lifetime, including bacterial vaginosis, gestational diabetes, polycystic ovary syndrome (PCOS), anxiety, depression, and obesity. Although many associations between host health and microbiome composition are well defined, the mechanistic role of the microbiome in women's health outcomes is largely unknown. This review addresses potential mechanisms by which the microbiota influences women's health and highlights gaps in current knowledge.
Collapse
Affiliation(s)
- Madeline E Graham
- Neuroscience Department, Wellesley College, Wellesley, MA 02481, USA
| | - William G Herbert
- Department of Surgery, Department of Obstetrics and Gynecology, and Microbiome Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA; Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN 55905, USA
| | - Stephanie D Song
- Department of Surgery, Department of Obstetrics and Gynecology, and Microbiome Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Harshini N Raman
- Neuroscience Department, Wellesley College, Wellesley, MA 02481, USA
| | - Jade E Zhu
- Neuroscience Department, Wellesley College, Wellesley, MA 02481, USA
| | | | - Marina R S Walther-António
- Department of Surgery, Department of Obstetrics and Gynecology, and Microbiome Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Marc J Tetel
- Neuroscience Department, Wellesley College, Wellesley, MA 02481, USA.
| |
Collapse
|
52
|
Crooks TA, Madison JD, Walsh DM, Herbert WG, Jeraldo PR, Chia N, Cliby WA, Kaufmann SH, Walther-Antonio MRS. Porphyromonas somerae Invasion of Endometrial Cancer Cells. Front Microbiol 2021; 12:674835. [PMID: 34367083 PMCID: PMC8343132 DOI: 10.3389/fmicb.2021.674835] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 06/25/2021] [Indexed: 12/24/2022] Open
Abstract
Recent evidence suggests an association between endometrial cancer and the understudied bacterial species Porphyromonas somerae. This association was demonstrated in previous work that indicated a significantly enriched abundance of P. somerae in the uterine microbiome of endometrial cancer patients. Given the known associations of the Porphyromonas genus and oral cancer, we hypothesized that P. somerae may play a similar pathogenic role in endometrial cancer via intracellular activity. Before testing our hypothesis, we first characterized P. somerae biology, as current background data is limited. These novel characterizations include growth curves in liquid medium and susceptibility tests to antibiotics. We tested our hypothesis by examining growth changes in response to 17β-estradiol, a known risk factor for endometrial cancer, followed by metabolomic profiling in the presence and absence of 17β-estradiol. We found that P. somerae exhibits increased growth in the presence of 17β-estradiol of various concentrations. However, we did not find significant changes in metabolite levels in response to 17β-estradiol. To study direct host-microbe interactions, we used in vitro invasion assays under hypoxic conditions and found evidence for intracellular invasion of P. somerae in endometrial adenocarcinoma cells. We also examined these interactions in the presence of 17β-estradiol but did not observe changes in invasion frequency. Invasion was shown using three lines of evidence including visualization via differential staining and brightfield microscopy, increased frequency of bacterial recovery after co-culturing, and in silico methods to detail relevant genomic and transcriptomic components. These results underscore potential intracellular phenotypes of P. somerae within the uterine microbiome. Furthermore, these results raise new questions pertaining to the role of P. somerae in the progression of endometrial cancer.
Collapse
Affiliation(s)
- Taylor A Crooks
- Microbiome Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, United States.,Department of Microbiology and Immunology, University of Minnesota Twin Cities, Minneapolis, MN, United States
| | - Joseph D Madison
- Microbiome Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, United States.,Biology Department, University of Massachusetts Boston, Boston, MA, United States.,Department of Surgery, Mayo Clinic, Rochester, MN, United States
| | - Dana M Walsh
- Microbiome Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, United States
| | - William G Herbert
- Microbiome Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, United States.,Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, United States
| | - Patricio R Jeraldo
- Microbiome Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, United States.,Department of Surgery, Mayo Clinic, Rochester, MN, United States
| | - Nicholas Chia
- Microbiome Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, United States.,Department of Surgery, Mayo Clinic, Rochester, MN, United States
| | - William A Cliby
- Department of Obstetrics and Gynecology, Mayo Clinic, Rochester, MN, United States
| | - Scott H Kaufmann
- Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN, United States
| | - Marina R S Walther-Antonio
- Microbiome Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, United States.,Department of Surgery, Mayo Clinic, Rochester, MN, United States.,Department of Obstetrics and Gynecology, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
53
|
Wahid M, Dar SA, Jawed A, Mandal RK, Akhter N, Khan S, Khan F, Jogiah S, Rai AK, Rattan R. Microbes in gynecologic cancers: Causes or consequences and therapeutic potential. Semin Cancer Biol 2021; 86:1179-1189. [PMID: 34302959 DOI: 10.1016/j.semcancer.2021.07.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 12/24/2022]
Abstract
Gynecologic cancers, starting in the reproductive organs of females, include cancer of cervix, endometrium, ovary commonly and vagina and vulva rarely. The changes in the composition of microbiome in gut and vagina affect immune and metabolic signaling of the host cells resulting in chronic inflammation, angiogenesis, cellular proliferation, genome instability, epithelial barrier breach and metabolic dysregulation that may lead to the onset or aggravated progression of gynecologic cancers. While microbiome in gynecologic cancers is just at horizon, certain significant microbiome signature associations have been found. Cervical cancer is accompanied with high loads of human papillomavirus, Fusobacteria and Sneathia species; endometrial cancer is reported to have presence of Atopobium vaginae and Porphyromonas species and significantly elevated levels of Proteobacteria and Firmicutes phylum bacteria, with Chlamydia trachomatis, Lactobacillus and Mycobacterium reported in ovarian cancer. Balancing microbiome composition in gynecologic cancers has the potential to be used as a therapeutic target. For example, the Lactobacillus species may play an important role in blocking adhesions of incursive pathogens to vaginal epithelium by lowering the pH, producing bacteriocins and employing competitive exclusions. The optimum or personalized balance of the microbiota can be maintained using pre- and probiotics, and fecal microbiota transplantations loaded with specific bacteria. Current evidence strongly suggest that a healthy microbiome can train and trigger the body's immune response to attack various gynecologic cancers. Furthermore, microbiome modulations can potentially contribute to improvements in immuno-oncology therapies.
Collapse
Affiliation(s)
- Mohd Wahid
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
| | - Sajad A Dar
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
| | - Arshad Jawed
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
| | - Raju Kumar Mandal
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
| | - Naseem Akhter
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Albaha University, Albaha, Saudi Arabia
| | - Saif Khan
- Department of Basic Dental and Medical Sciences, College of Dentistry, University of Ha'il, Ha'il, Saudi Arabia
| | - Farah Khan
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Sudhisa Jogiah
- Department of Biotechnology and Microbiology, Karnatak University, Dharwad, Karnataka, India
| | - Ashutosh Kumar Rai
- Department of Biochemistry, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Ramandeep Rattan
- Division of Gynecology Oncology, Women's Health Services, Henry Ford Hospital, Detroit, MI, USA; Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA.
| |
Collapse
|
54
|
Gut and Endometrial Microbiome Dysbiosis: A New Emergent Risk Factor for Endometrial Cancer. J Pers Med 2021; 11:jpm11070659. [PMID: 34357126 PMCID: PMC8304951 DOI: 10.3390/jpm11070659] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/09/2021] [Accepted: 07/12/2021] [Indexed: 12/14/2022] Open
Abstract
Endometrial cancer is one of the most common gynaecological malignancies worldwide. Histologically, two types of endometrial cancer with morphological and molecular differences and also therapeutic implications have been identified. Type I endometrial cancer has an endometrioid morphology and is estrogen-dependent, while Type II appears with non-endometrioid differentiation and follows an estrogen-unrelated pathway. Understanding the molecular biology and genetics of endometrial cancer is crucial for its prognosis and the development of novel therapies for its treatment. However, until now, scant attention has been paid to environmental components like the microbiome. Recently, due to emerging evidence that the uterus is not a sterile cavity, some studies have begun to investigate the composition of the endometrial microbiome and its role in endometrial cancer. In this review, we summarize the current state of this line of investigation, focusing on the relationship between gut and endometrial microbiome and inflammation, estrogen metabolism, and different endometrial cancer therapies.
Collapse
|
55
|
Translocation of vaginal microbiota is involved in impairment and protection of uterine health. Nat Commun 2021; 12:4191. [PMID: 34234149 PMCID: PMC8263591 DOI: 10.1038/s41467-021-24516-8] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 06/18/2021] [Indexed: 02/06/2023] Open
Abstract
The vaginal and uterine microbiota play important roles in the health of the female reproductive system. However, the interactions among the microbes in these two niches and their effects on uterine health remain unclear. Here we profile the vaginal and uterine microbial samples of 145 women, and combine with deep mining of public data and animal experiments to characterize the microbial translocation in the female reproductive tract and its role in modulating uterine health. Synchronous variation and increasing convergence of the uterine and vaginal microbiome with advancing age are shown. We also find that transplanting certain strains of vaginal bacteria into the vagina of rats induces or reduces endometritis-like symptoms, and verify the damaging or protective effects of certain vaginal bacteria on endometrium. This study clarifies the interdependent relationship of vaginal bacterial translocation with uterine microecology and endometrial health, which will undoubtedly increase our understanding of female reproductive health.
Collapse
|
56
|
Chambers LM, Bussies P, Vargas R, Esakov E, Tewari S, Reizes O, Michener C. The Microbiome and Gynecologic Cancer: Current Evidence and Future Opportunities. Curr Oncol Rep 2021; 23:92. [PMID: 34125319 DOI: 10.1007/s11912-021-01079-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2021] [Indexed: 02/08/2023]
Abstract
PURPOSE OF REVIEW We review the emerging evidence regarding the relationship between the microbiota of the gastrointestinal and female reproductive tracts and gynecologic cancer. RECENT FINDINGS The microbiome has essential roles in maintaining health. In recent years, the microbiota of the gastrointestinal and female reproductive tracts have been linked to many diseases, including gynecologic cancer. Alterations to the bacterial populations in a microbiota, or dysbiosis, have been shown to favor a pro-carcinogenic state through altered immune responses, dysregulated hormone metabolism, and modulation of the cell cycle. Pre-clinical and clinical studies have emerged, demonstrating that specific bacteria or microbial communities may be associated with increased risk for uterine, ovarian, and cervical cancers. Notably, numerous studies have linked a non-Lactobacillus-dominant vaginal microbiota, composed of anaerobic bacteria, with HPV infection, persistence, and development of invasive cervical cancer. Similarly, next-generation high-throughput sequencing techniques have enabled the characterization of unique microbiotas in patients with malignant and benign gynecologic conditions, shedding light on new associations between bacterial species and gynecologic cancers. Harnessing the power of the microbiome for early diagnosis, therapeutic intervention and modulation creates tremendous potential to optimize gynecologic cancer outcomes in the future.
Collapse
Affiliation(s)
- Laura M Chambers
- Division of Gynecologic Oncology; Obstetrics, Gynecology and Women's Health Institute, Cleveland Clinic, Desk A81, 9500 Euclid Avenue, Cleveland, OH, 44195, USA.
| | - Parker Bussies
- Obstetrics, Gynecology and Women's Health Institute, Cleveland Clinic, Desk A81, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Roberto Vargas
- Division of Gynecologic Oncology; Obstetrics, Gynecology and Women's Health Institute, Cleveland Clinic, Desk A81, 9500 Euclid Avenue, Cleveland, OH, 44195, USA.,Case Comprehensive Cancer Center, Cleveland, OH, USA
| | - Emily Esakov
- Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Surabhi Tewari
- Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.,Cleveland Clinic Lerner College of Medicine, Cleveland, OH, USA
| | - Ofer Reizes
- Case Comprehensive Cancer Center, Cleveland, OH, USA.,Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Chad Michener
- Division of Gynecologic Oncology; Obstetrics, Gynecology and Women's Health Institute, Cleveland Clinic, Desk A81, 9500 Euclid Avenue, Cleveland, OH, 44195, USA.,Case Comprehensive Cancer Center, Cleveland, OH, USA
| |
Collapse
|
57
|
Rizzo AE, Gordon JC, Berard AR, Burgener AD, Avril S. The Female Reproductive Tract Microbiome-Implications for Gynecologic Cancers and Personalized Medicine. J Pers Med 2021; 11:546. [PMID: 34208337 PMCID: PMC8231212 DOI: 10.3390/jpm11060546] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/30/2021] [Accepted: 06/05/2021] [Indexed: 11/17/2022] Open
Abstract
The microbial colonization of the lower female reproductive tract has been extensively studied over the past few decades. In contrast, the upper female reproductive tract including the uterine cavity and peritoneum where the ovaries and fallopian tubes reside were traditionally assumed to be sterile under non-pathologic conditions. However, recent studies applying next-generation sequencing of the bacterial 16S ribosomal RNA gene have provided convincing evidence for the existence of an upper female reproductive tract microbiome. While the vaginal microbiome and its importance for reproductive health outcomes has been extensively studied, the microbiome of the upper female reproductive tract and its relevance for gynecologic cancers has been less studied and will be the focus of this article. This targeted review summarizes the pertinent literature on the female reproductive tract microbiome in gynecologic malignancies and its anticipated role in future research and clinical applications in personalized medicine.
Collapse
Affiliation(s)
- Anthony E. Rizzo
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, University Hospitals Cleveland Medical Center and Case Western Reserve University, Cleveland, OH 44106, USA; (A.E.R.); (J.C.G.)
| | - Jennifer C. Gordon
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, University Hospitals Cleveland Medical Center and Case Western Reserve University, Cleveland, OH 44106, USA; (A.E.R.); (J.C.G.)
| | - Alicia R. Berard
- Department of Obstetrics and Gynecology, University of Manitoba, Winnipeg, MB R3E 0W2, Canada;
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Adam D. Burgener
- Department of Obstetrics and Gynecology, University of Manitoba, Winnipeg, MB R3E 0W2, Canada;
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, OH 44106, USA
- Case Comprehensive Cancer Center, Cleveland, OH 44106, USA
- Department of Pathology, Case Western Reserve University and University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Stefanie Avril
- Case Comprehensive Cancer Center, Cleveland, OH 44106, USA
- Department of Pathology, Case Western Reserve University and University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| |
Collapse
|
58
|
Molina NM, Sola-Leyva A, Haahr T, Aghajanova L, Laudanski P, Castilla JA, Altmäe S. Analysing endometrial microbiome: methodological considerations and recommendations for good practice. Hum Reprod 2021; 36:859-879. [DOI: 10.1093/humrep/deab009] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/02/2020] [Indexed: 12/12/2022] Open
Abstract
ABSTRACT
There is growing evidence that the upper female genital tract is not sterile, harbouring its own microbial communities. However, the significance and the potential effect of endometrial microorganisms on reproductive functions remain to be fully elucidated. Analysing the endometrial microbiome, the microbes and their genetic material present in the endometrium, is an emerging area of study. The initial studies suggest it is associated with poor reproductive outcomes and with different gynaecological pathologies. Nevertheless, studying a low-biomass microbial niche as is endometrium, the challenge is to conduct well-designed and well-controlled experiments in order to avoid and adjust for the risk of contamination, especially from the lower genital tract. Herein, we aim to highlight methodological considerations and propose good practice recommendations for future endometrial microbiome studies.
Collapse
Affiliation(s)
- Nerea M Molina
- Department of Biochemistry and Molecular Biology, Faculty of Sciences, University of Granada, Granada 18071, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada 18014, Spain
| | - Alberto Sola-Leyva
- Department of Biochemistry and Molecular Biology, Faculty of Sciences, University of Granada, Granada 18071, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada 18014, Spain
| | - Thor Haahr
- The Fertility Clinic, Skive Regional Hospital, Skive 7800, Denmark
| | - Lusine Aghajanova
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Stanford School of Medicine, Sunnyvale, CA 94087, USA
| | - Piotr Laudanski
- Department of Obstetrics and Gynecology, Medical University of Warsaw, Warsaw 02-015, Poland
| | - Jose Antonio Castilla
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada 18014, Spain
- Unidad de Reproducción, UGC de Obstetricia y Ginecología, Hospital Universitario Virgen de las Nieves, Granada 18012, Spain
- CEIFER Biobanco—NextClinics, Granada 18004, Spain
| | - Signe Altmäe
- Department of Biochemistry and Molecular Biology, Faculty of Sciences, University of Granada, Granada 18071, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada 18014, Spain
- Competence Centre on Health Technologies, Tartu 50410, Estonia
| |
Collapse
|
59
|
Crooks TA, Madison JD, Walsh DM, Herbert WG, Jeraldo PR, Chia N, Cliby WA, Kaufmann SH, Walther-Antonio MRS. Porphyromonas somerae Invasion of Endometrial Cancer Cells. Front Microbiol 2021. [PMID: 34367083 DOI: 10.3389/fmicb.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023] Open
Abstract
Recent evidence suggests an association between endometrial cancer and the understudied bacterial species Porphyromonas somerae. This association was demonstrated in previous work that indicated a significantly enriched abundance of P. somerae in the uterine microbiome of endometrial cancer patients. Given the known associations of the Porphyromonas genus and oral cancer, we hypothesized that P. somerae may play a similar pathogenic role in endometrial cancer via intracellular activity. Before testing our hypothesis, we first characterized P. somerae biology, as current background data is limited. These novel characterizations include growth curves in liquid medium and susceptibility tests to antibiotics. We tested our hypothesis by examining growth changes in response to 17β-estradiol, a known risk factor for endometrial cancer, followed by metabolomic profiling in the presence and absence of 17β-estradiol. We found that P. somerae exhibits increased growth in the presence of 17β-estradiol of various concentrations. However, we did not find significant changes in metabolite levels in response to 17β-estradiol. To study direct host-microbe interactions, we used in vitro invasion assays under hypoxic conditions and found evidence for intracellular invasion of P. somerae in endometrial adenocarcinoma cells. We also examined these interactions in the presence of 17β-estradiol but did not observe changes in invasion frequency. Invasion was shown using three lines of evidence including visualization via differential staining and brightfield microscopy, increased frequency of bacterial recovery after co-culturing, and in silico methods to detail relevant genomic and transcriptomic components. These results underscore potential intracellular phenotypes of P. somerae within the uterine microbiome. Furthermore, these results raise new questions pertaining to the role of P. somerae in the progression of endometrial cancer.
Collapse
Affiliation(s)
- Taylor A Crooks
- Microbiome Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, United States
- Department of Microbiology and Immunology, University of Minnesota Twin Cities, Minneapolis, MN, United States
| | - Joseph D Madison
- Microbiome Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, United States
- Biology Department, University of Massachusetts Boston, Boston, MA, United States
- Department of Surgery, Mayo Clinic, Rochester, MN, United States
| | - Dana M Walsh
- Microbiome Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, United States
| | - William G Herbert
- Microbiome Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, United States
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, United States
| | - Patricio R Jeraldo
- Microbiome Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, United States
- Department of Surgery, Mayo Clinic, Rochester, MN, United States
| | - Nicholas Chia
- Microbiome Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, United States
- Department of Surgery, Mayo Clinic, Rochester, MN, United States
| | - William A Cliby
- Department of Obstetrics and Gynecology, Mayo Clinic, Rochester, MN, United States
| | - Scott H Kaufmann
- Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN, United States
| | - Marina R S Walther-Antonio
- Microbiome Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, United States
- Department of Surgery, Mayo Clinic, Rochester, MN, United States
- Department of Obstetrics and Gynecology, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
60
|
AlHilli MM, Bae-Jump V. Diet and gut microbiome interactions in gynecologic cancer. Gynecol Oncol 2020; 159:299-308. [PMID: 32933758 DOI: 10.1016/j.ygyno.2020.08.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 08/23/2020] [Indexed: 12/13/2022]
Abstract
Over the last decade, there has been a dramatic surge in research exploring the human gut microbiome and its role in health and disease. It is now widely accepted that commensal microorganisms coexist within the human gastrointestinal tract and other organs, including those of the reproductive tract. These microorganisms, which are collectively known as the "microbiome", contribute to maintaining host physiology and to the development of pathology. Next generation sequencing and multi-'omics' technology has enriched our understanding of the complex and interdependent relationship that exists between the host and microbiome. Global changes in the microbiome are known to be influenced by dietary, genetic, lifestyle, and environmental factors. Accumulating data have shown that alterations in the gut microbiome contribute to the development, prognosis and treatment of many disease states including cancer primarily through interactions with the immune system. However, there are large gaps in knowledge regarding the association between the gut microbiome and gynecologic cancers, and research characterizing the reproductive tract microbiome is insufficient. Herein, we explore the mechanisms by which alterations in the gut and reproductive tract microbiome contribute to carcinogenesis focusing on obesity, hyperestrogenism, inflammation and altered tumor metabolism. The impact of the gut microbiome on response to anti-cancer therapy is highlighted with an emphasis on immune checkpoint inhibitor efficacy in gynecologic cancers. We discuss dietary interventions that are likely to modulate the metabolic and immunologic milieu as well as tumor microenvironment through the gut microbiome including intermittent fasting/ketogenic diet, high fiber diet, use of probiotics and the metabolic management of obesity. We conclude that enhanced understanding of the microbiome in gynecologic cancers coupled with thorough evaluation of metabolic and metagenomic analyses would enable us to integrate novel preventative strategies and adjunctive interventions into the care of women with gynecologic cancers.
Collapse
Affiliation(s)
- Mariam M AlHilli
- Department of Obstetrics and Gynecology, Women's Health Institute, Cleveland Clinic, Cleveland, OH, United States of America.
| | - Victoria Bae-Jump
- Department of Obstetrics and Gynecology, University of North Carolina, Chapel Hill, NC, United States of America
| |
Collapse
|
61
|
Molina NM, Sola-Leyva A, Saez-Lara MJ, Plaza-Diaz J, Tubić-Pavlović A, Romero B, Clavero A, Mozas-Moreno J, Fontes J, Altmäe S. New Opportunities for Endometrial Health by Modifying Uterine Microbial Composition: Present or Future? Biomolecules 2020; 10:E593. [PMID: 32290428 PMCID: PMC7226034 DOI: 10.3390/biom10040593] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/06/2020] [Accepted: 04/09/2020] [Indexed: 02/08/2023] Open
Abstract
Current knowledge suggests that the uterus harbours its own microbiota, where the microbes could influence the uterine functions in health and disease; however, the core uterine microbial composition and the host-microbial relationships remain to be fully elucidated. Different studies are indicating, based on next-generation sequencing techniques, that microbial dysbiosis could be associated with several gynaecological disorders, such as endometriosis, chronic endometritis, dysfunctional menstrual bleeding, endometrial cancer, and infertility. Treatments using antibiotics and probiotics and/or prebiotics for endometrial microbial dysbiosis are being applied. Nevertheless there is no unified protocol for assessing the endometrial dysbiosis and no optimal treatment protocol for the established dysbiosis. With this review we outline the microbes (mostly bacteria) identified in the endometrial microbiome studies, the current treatments offered for bacterial dysbiosis in the clinical setting, and the future possibilities such as pro- and prebiotics and microbial transplants for modifying uterine microbial composition.
Collapse
Affiliation(s)
- Nerea M. Molina
- Department of Biochemistry and Molecular Biology, Faculty of Sciences, University of Granada, 18071 Granada, Spain; (N.M.M.); (A.S.-L.); (M.J.S.-L.)
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18014 Granada, Spain; (J.P.-D.); (B.R.); (A.C.); (J.M.-M.); (J.F.)
| | - Alberto Sola-Leyva
- Department of Biochemistry and Molecular Biology, Faculty of Sciences, University of Granada, 18071 Granada, Spain; (N.M.M.); (A.S.-L.); (M.J.S.-L.)
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18014 Granada, Spain; (J.P.-D.); (B.R.); (A.C.); (J.M.-M.); (J.F.)
| | - Maria Jose Saez-Lara
- Department of Biochemistry and Molecular Biology, Faculty of Sciences, University of Granada, 18071 Granada, Spain; (N.M.M.); (A.S.-L.); (M.J.S.-L.)
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18014 Granada, Spain; (J.P.-D.); (B.R.); (A.C.); (J.M.-M.); (J.F.)
- “José Mataix Verdú” Institute of Nutrition and Food Technology (INYTA), Biomedical Research Centre (CIBM), University of Granada, 18100 Granada, Spain
| | - Julio Plaza-Diaz
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18014 Granada, Spain; (J.P.-D.); (B.R.); (A.C.); (J.M.-M.); (J.F.)
- “José Mataix Verdú” Institute of Nutrition and Food Technology (INYTA), Biomedical Research Centre (CIBM), University of Granada, 18100 Granada, Spain
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, University of Granada, 18011 Granada, Spain
| | | | - Barbara Romero
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18014 Granada, Spain; (J.P.-D.); (B.R.); (A.C.); (J.M.-M.); (J.F.)
- Unidad de Reproducción, UGC de Obstetricia y Ginecología, Hospital Universitario Virgen de las Nieves, 18014 Granada, Spain
| | - Ana Clavero
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18014 Granada, Spain; (J.P.-D.); (B.R.); (A.C.); (J.M.-M.); (J.F.)
- Unidad de Reproducción, UGC de Obstetricia y Ginecología, Hospital Universitario Virgen de las Nieves, 18014 Granada, Spain
| | - Juan Mozas-Moreno
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18014 Granada, Spain; (J.P.-D.); (B.R.); (A.C.); (J.M.-M.); (J.F.)
- Unidad de Reproducción, UGC de Obstetricia y Ginecología, Hospital Universitario Virgen de las Nieves, 18014 Granada, Spain
- Consortium for Biomedical Research in Epidemiology & Public Health (CIBER Epidemiología y Salud Pública-CIBERESP), 28029 Madrid, Spain
- Departament of Obstetrics and Gynecology, Faculty of Medicine, University of Granada, 18016 Granada, Spain
| | - Juan Fontes
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18014 Granada, Spain; (J.P.-D.); (B.R.); (A.C.); (J.M.-M.); (J.F.)
- Unidad de Reproducción, UGC de Obstetricia y Ginecología, Hospital Universitario Virgen de las Nieves, 18014 Granada, Spain
| | - Signe Altmäe
- Department of Biochemistry and Molecular Biology, Faculty of Sciences, University of Granada, 18071 Granada, Spain; (N.M.M.); (A.S.-L.); (M.J.S.-L.)
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18014 Granada, Spain; (J.P.-D.); (B.R.); (A.C.); (J.M.-M.); (J.F.)
- Competence Centre on Health Technologies, 50410 Tartu, Estonia
| |
Collapse
|