51
|
Yu Q, Sun W, Hua H, Chi Y, Liu X, Dong A, Sun Y, Zhang J, Guan G. Downregulation of miR-140 is Correlated with Poor Prognosis and Progression of Thyroid Cancer. Endocr Metab Immune Disord Drug Targets 2020; 21:749-755. [PMID: 32713344 DOI: 10.2174/1871530320666200724180742] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/16/2020] [Accepted: 05/20/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND The incidence of thyroid cancer is increasing rapidly and there is an urgent need to explore novel therapeutic targets for thyroid cancer. MiR-140 has been reported to affect the progression of various cancers, which makes it possible to play a role in thyroid cancer. This study aimed to investigate the expression and role of miR-140 in thyroid cancer. METHODS The expression of miR-140 was investigated by reverse transcription-quantitative polymerase chain reaction (qRT-PCR) in thyroid cancer tissues and cell lines. The prognostic value of miR- 140 in thyroid cancer was evaluated by Kaplan-Meier survival and Cox regression. Moreover, the effects of miR-140 on cell proliferation, migration, and invasion of thyroid cancer were investigated by CCK-8 and Transwell assay. RESULTS MiR-140 was downregulated in thyroid cancer tissues and cells, which correlated with TNM stage and lymph node metastasis of patients. Patients with low miR-140 expression had a shorter survival time compared with that in patients with high miR-140 expression. Furthermore, miR-140 acts as an independent factor for the prognosis of thyroid cancer. Overexpression of miR-140 inhibited cell proliferation, migration, and invasion of thyroid cancer. CONCLUSION MiR-140 can serve as a potential prognostic factor for patients with thyroid cancer and suppress the progression of thyroid cancer, which provides new insight for the therapeutic target for thyroid cancer.
Collapse
Affiliation(s)
- Qianqian Yu
- Department of Thyroid Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Wenhai Sun
- Department of Thyroid Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Hui Hua
- Department of Thyroid Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Yulian Chi
- Medical Record Management Center, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Xiaomin Liu
- Department of Thyroid Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Anbing Dong
- Department of Thyroid Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Yinghe Sun
- Department of Thyroid Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Jianhua Zhang
- Department of Thyroid Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Ge Guan
- Hepatic Disease Center, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| |
Collapse
|
52
|
Flammang I, Reese M, Yang Z, Eble JA, Dhayat SA. Tumor-Suppressive miR-192-5p Has Prognostic Value in Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2020; 12:E1693. [PMID: 32630552 PMCID: PMC7352756 DOI: 10.3390/cancers12061693] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 06/20/2020] [Accepted: 06/22/2020] [Indexed: 12/12/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterized by fast tumor progression and diagnosis at advanced, inoperable stages. Previous studies could demonstrate an involvement of miR-192-5p in epigenetic regulation of visceral carcinomas. Due to contradictory results, however, the clinical utility of miR-192-5p in PDAC has yet to be determined. MiR-192-5p expression was analyzed by RT-qRT-PCR in human PDAC and benign tissue (n = 78), blood serum (n = 81) and serum exosomes (n = 74), as well as in PDAC cell lines (n = 5), chemoresistant cell clones (n = 2), and pancreatic duct cell line H6c7. Analysis of EMT-associated (epithelial-to-mesenchymal transition) proteins was performed by immunohistochemistry and Western blot. MiR-192-5p was deregulated in PDAC as compared to healthy controls (HCs), with downregulation in macrodissected tissue (p < 0.001) and upregulation in blood serum of PDAC UICC (Union for International Cancer Control) stage IV (p = 0.016) and serum exosomes of PDAC UICC stages II to IV (p < 0.001). MiR-192-5p expression in tumor tissue was significantly lower as compared to corresponding peritumoral tissue (PDAC UICC stage II: p < 0.001; PDAC UICC stage III: p = 0.024), while EMT markers ZEB1 and ZEB2 were more frequently expressed in tumor tissue as compared to peritumoral tissue, HCs, and chronic pancreatitis. Tissue-derived (AUC of 0.86; p < 0.0001) and exosomal (AUC of 0.83; p = 0.0004) miR-192-5p could differentiate between PDAC and HCs with good accuracy. Furthermore, high expression of miR-192-5p in PDAC tissue of curatively resected PDAC patients correlated with prolonged overall and recurrence-free survival in multivariate analysis. In vitro, miR-192-5p was downregulated in gemcitabine-resistant cell clones of AsPC-1 (p = 0.029). Transient transfection of MIA PaCa-2 cells with miR-192-5p mimic resulted in downregulation of ZEB2. MiR-192-5p seems to possess a tumor-suppressive role and high potential as a diagnostic and prognostic marker in PDAC.
Collapse
Affiliation(s)
- Isabelle Flammang
- Department of General, Visceral and Transplantation Surgery, University Hospital Muenster, Albert-Schweitzer-Campus 1 (W1), 48149 Muenster, Germany; (I.F.); (M.R.); (Z.Y.)
| | - Moritz Reese
- Department of General, Visceral and Transplantation Surgery, University Hospital Muenster, Albert-Schweitzer-Campus 1 (W1), 48149 Muenster, Germany; (I.F.); (M.R.); (Z.Y.)
| | - Zixuan Yang
- Department of General, Visceral and Transplantation Surgery, University Hospital Muenster, Albert-Schweitzer-Campus 1 (W1), 48149 Muenster, Germany; (I.F.); (M.R.); (Z.Y.)
| | - Johannes A. Eble
- Department of Physiological Chemistry and Pathobiochemistry, University of Muenster, Waldeyerstrasse 15, 48149 Muenster, Germany;
| | - Sameer A. Dhayat
- Department of General, Visceral and Transplantation Surgery, University Hospital Muenster, Albert-Schweitzer-Campus 1 (W1), 48149 Muenster, Germany; (I.F.); (M.R.); (Z.Y.)
| |
Collapse
|
53
|
Zhu M, Chen G, Yang Y, Yang J, Qin B, Gu L. miR‑217‑5p regulates myogenesis in skeletal muscle stem cells by targeting FGFR2. Mol Med Rep 2020; 22:850-858. [PMID: 32626929 PMCID: PMC7339560 DOI: 10.3892/mmr.2020.11133] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 04/04/2020] [Indexed: 02/07/2023] Open
Abstract
MicroRNA-217-5p (miR-217-5p) has been implicated in cell proliferation; however, its role in skeletal muscle stem cells (SkMSCs) remains unknown. The present study aimed to explore the roles of miR‑217‑5p in the biological characteristics of SkMSCs. SkMSCs were identified by cell surface markers using flow cytometry. The present study observed that miR‑217‑5p mimics accelerated the proliferation and suppressed the differentiation in SkMSCs. In addition, the results of the present study revealed that fibroblast growth factor receptor 2 (FGFR2) was a target of miR‑217‑5p, as miR‑217‑5p bound directly to the 3'‑untranslated region of FGFR2 mRNA, resulting in increased FGFR2 mRNA and protein levels. In addition, the present study suppressed the expression of FGFR2 in SkMSCs using a selective FGFR inhibitor AZD4547 and detected the efficiency of inhibition by reverse transcription‑quantitative PCR and western blotting. miR‑217‑5p levels were positively associated with FGFR2 expression, which was upregulated and accelerated the proliferation of SkMSCs compared with that of the miR‑NC group. Collectively, these results demonstrated that miR‑217‑5p may act as a myogenesis promoter in SkMSCs by directly targeting FGFR2 and may regulate the myogenesis of these cells.
Collapse
Affiliation(s)
- Menghai Zhu
- Department of Orthopedic Trauma and Microsurgery, The First Affiliated Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Gang Chen
- Department of Orthopedic Trauma and Microsurgery, The First Affiliated Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Yi Yang
- Department of Orthopedic Trauma and Microsurgery, The First Affiliated Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Jiantao Yang
- Department of Orthopedic Trauma and Microsurgery, The First Affiliated Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Bengang Qin
- Department of Orthopedic Trauma and Microsurgery, The First Affiliated Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Liqiang Gu
- Department of Orthopedic Trauma and Microsurgery, The First Affiliated Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| |
Collapse
|
54
|
Zhang H, Tulahong A, Wang W, Nuerrula Y, Zhang Y, Wu G, Mahati S, Zhu H. Downregulation of microRNA-519 enhances development of lung cancer by mediating the E2F2/PI3K/AKT axis. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2020; 13:711-720. [PMID: 32355519 PMCID: PMC7191141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 03/06/2020] [Indexed: 06/11/2023]
Abstract
MicroRNA-519 (miR-519) acts as an inhibitor in different kinds of tumors. The current study was set to probe the function of miR-519 in lung cancer and to explore the potential molecular mechanism. The expression difference of miRNAs between lung cancer and paracancerous tissues was analyzed by microarray. miR-519 expression was significantly diminished in lung cancer tissues and cells. After that, EdU staining, CCK-8 assay, Transwell assay, Hoechst 33258 staining and PI/Annexin-V staining revealed that overexpression of miR-519 in lung cancer cells inhibited their viability and promoted apoptosis. TragetScan and miRSearch were employed to predict the target mRNAs of miR-519, which were verified by a luciferase activity assay. miR-519 bound to the 3'untranslated region of E2F transcription factor 2 (E2F2) mRNA. Finally, the extent of PI3K/AKT signaling pathway phosphorylation was examined, which illustrated that upregulation of miR-519 repressed the phosphorylation of the PI3K/AKT pathway in SPC-A-1 and 95C cells. miR-519 reduces PI3K/AKT pathway activities by suppressing the transcription activity of E2F2, thereby potentially inhibiting the occurrence of lung cancer.
Collapse
Affiliation(s)
- Hua Zhang
- Department of Cancer Center, The First Affiliated Hospital of Xinjiang Medical UniversityUrumqi 830054, Xinjiang, P. R. China
| | - Aisikeer Tulahong
- Department of Cancer Center, The First Affiliated Hospital of Xinjiang Medical UniversityUrumqi 830054, Xinjiang, P. R. China
| | - Wenran Wang
- Department of Cancer Center, The First Affiliated Hospital of Xinjiang Medical UniversityUrumqi 830054, Xinjiang, P. R. China
| | - Yiliyaer Nuerrula
- Department of Cancer Center, The First Affiliated Hospital of Xinjiang Medical UniversityUrumqi 830054, Xinjiang, P. R. China
| | - Yuefen Zhang
- Department of Cancer Center, The First Affiliated Hospital of Xinjiang Medical UniversityUrumqi 830054, Xinjiang, P. R. China
| | - Ge Wu
- Department of Cancer Center, The First Affiliated Hospital of Xinjiang Medical UniversityUrumqi 830054, Xinjiang, P. R. China
| | - Shaya Mahati
- Department of Cancer Center, The First Affiliated Hospital of Xinjiang Medical UniversityUrumqi 830054, Xinjiang, P. R. China
| | - Hui Zhu
- Department of Thoracic Surgery, The First Affiliated Hospital of Xinjiang Medical UniversityUrumqi 830054, Xinjiang, P. R. China
| |
Collapse
|
55
|
MiRNA Targeted NP Genome of Live Attenuated Influenza Vaccines Provide Cross-Protection against a Lethal Influenza Virus Infection. Vaccines (Basel) 2020; 8:vaccines8010065. [PMID: 32028575 PMCID: PMC7158662 DOI: 10.3390/vaccines8010065] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/31/2020] [Accepted: 02/01/2020] [Indexed: 12/20/2022] Open
Abstract
The miRNA-based strategy has been used to develop live attenuated influenza vaccines. In this study, the nucleoprotein (NP) genome segment of the influenza virus was inserted by different perfect miRNA-192-5p target sites, and the virus was rescued by standard reverse genetics method, so as to verify the virulence and protective efficacy of live attenuated vaccine in cells and mice. The results showed there was no significant attenuation in 192t virus with one perfect miRNA-192-5p target site, and 192t-3 virus with three perfect miRNA target sites. However, 192t-6 virus with 6 perfect miRNA target sites and 192t-9 virus with 9 perfect miRNA target sites were both significantly attenuated after infection, and their virulence were similar to that of temperature-sensitive (TS) influenza A virus (IAV) which is a temperature-sensitive live attenuated influenza vaccine. Mice were immunized with different doses of 192t-6, 192t-9, and TS IAV. Four weeks after immunization, the IgG in serum and IgA in lung homogenate were increased in the 192t-6, 192t-9, and TS IAV groups, and the numbers of IFN-γ secreting splenocytes were also increased in a dose-dependent manner. Finally, 192t-6, and 192t-9 can protect the mice against the challenge of homologous PR8 H1N1 virus and heterosubtypic H3N2 influenza virus. MiRNA targeted viruses 192t-6 and 192t-9 were significantly attenuated and showed the same virulence as TS IAV and played a role in the cross-protection.
Collapse
|