51
|
Semple SL, Alkie TN, Jenik K, Warner BM, Tailor N, Kobasa D, DeWitte-Orr SJ. More tools for our toolkit: The application of HEL-299 cells and dsRNA-nanoparticles to study human coronaviruses in vitro. Virus Res 2022; 321:198925. [PMID: 36115551 PMCID: PMC9474404 DOI: 10.1016/j.virusres.2022.198925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/31/2022] [Accepted: 09/08/2022] [Indexed: 12/24/2022]
Abstract
Human coronaviruses (HCoVs) are important human pathogens, as exemplified by the current SARS-CoV-2 pandemic. While the ability of type I interferons (IFNs) to limit coronavirus replication has been established, the ability of double-stranded (ds)RNA, a potent IFN inducer, to inhibit coronavirus replication when conjugated to a nanoparticle is largely unexplored. Additionally, the number of IFN competent cell lines that can be used to study coronaviruses in vitro are limited. In the present study, we show that poly inosinic: poly cytidylic acid (pIC), when conjugated to a phytoglycogen nanoparticle (pIC+NDX) is able to protect IFN-competent human lung fibroblasts (HEL-299 cells) from infection with different HCoV species. HEL-299 was found to be permissive to HCoV-229E, -OC43 and MERS-CoV-GFP but not to HCoV-NL63 or SARS-CoV-2. Further investigation revealed that HEL-299 does not contain the required ACE2 receptor to enable propagation of both HCoV-NL63 and SARS-CoV-2. Following 24h exposure, pIC+NDX was observed to stimulate a significant, prolonged increase in antiviral gene expression (IFNβ, CXCL10 and ISG15) when compared to both NDX alone and pIC alone. This antiviral response translated into complete protection against virus production, for 4 days or 7 days post treatment with HCoV-229E or -OC43 when either pre-treated for 6h or 24h respectively. Moreover, the pIC+NDX combination also provided complete protection for 2d post infection when HEL-299 cells were infected with MERS-CoV-GFP following a 24h pretreatment with pIC+NDX. The significance of this study is two-fold. Firstly, it was revealed that HEL-299 cells can effectively be used as an IFN-competent model system for in vitro analysis of MERS-CoV. Secondly, pIC+NDX acts as a powerful inducer of type I IFNs in HEL-299, to levels that provide complete protection against coronavirus replication. This suggests an exciting and novel area of investigation for antiviral therapies that utilize innate immune stimulants. The results of this study will help to expand the range of available tools scientists have to investigate, and thus further understand, human coronaviruses.
Collapse
Affiliation(s)
- Shawna L Semple
- Department of Biology, Wilfrid Laurier University, Waterloo, ON, Canada
| | - Tamiru N Alkie
- Department of Biology, Wilfrid Laurier University, Waterloo, ON, Canada
| | - Kristof Jenik
- Department of Biology, Wilfrid Laurier University, Waterloo, ON, Canada
| | - Bryce M Warner
- Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Nikesh Tailor
- Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Darwyn Kobasa
- Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | | |
Collapse
|
52
|
Russ A, Wittmann S, Tsukamoto Y, Herrmann A, Deutschmann J, Lagisquet J, Ensser A, Kato H, Gramberg T. Nsp16 shields SARS-CoV-2 from efficient MDA5 sensing and IFIT1-mediated restriction. EMBO Rep 2022; 23:e55648. [PMID: 36285486 PMCID: PMC9724656 DOI: 10.15252/embr.202255648] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 10/03/2022] [Accepted: 10/07/2022] [Indexed: 12/12/2022] Open
Abstract
Methylation of the mRNA 5' cap by cellular methyltransferases enables efficient translation and avoids recognition by innate immune factors. Coronaviruses encode viral 2'-O-methyltransferases to shield their RNA from host factors. Here, we generate recombinant SARS-CoV-2 harboring a catalytically inactive 2'-O-methyltransferase Nsp16, Nsp16mut, and analyze viral replication in human lung epithelial cells. Although replication is only slightly attenuated, we find SARS-CoV-2 Nsp16mut to be highly immunogenic, resulting in a strongly enhanced release of type I interferon upon infection. The elevated immunogenicity of Nsp16mut is absent in cells lacking the RNA sensor MDA5. In addition, we report that Nsp16mut is highly sensitive to type I IFN treatment and demonstrate that this strong antiviral effect of type I IFN is mediated by the restriction factor IFIT1. Together, we describe a dual role for the 2'-O-methyltransferase Nsp16 during SARS-CoV-2 replication in avoiding efficient recognition by MDA5 and in shielding its RNA from interferon-induced antiviral responses, thereby identifying Nsp16 as a promising target for generating attenuated and highly immunogenic SARS-CoV-2 strains and as a potential candidate for therapeutic intervention.
Collapse
Affiliation(s)
- Alina Russ
- Institute of Clinical and Molecular VirologyFriedrich‐Alexander University Erlangen‐NürnbergErlangenGermany
| | - Sabine Wittmann
- Institute of Clinical and Molecular VirologyFriedrich‐Alexander University Erlangen‐NürnbergErlangenGermany
| | - Yuta Tsukamoto
- Institute of Cardiovascular ImmunologyUniversity Hospital Bonn, University of BonnBonnGermany
| | - Alexandra Herrmann
- Institute of Clinical and Molecular VirologyFriedrich‐Alexander University Erlangen‐NürnbergErlangenGermany
| | - Janina Deutschmann
- Institute of Clinical and Molecular VirologyFriedrich‐Alexander University Erlangen‐NürnbergErlangenGermany
| | - Justine Lagisquet
- Institute of Clinical and Molecular VirologyFriedrich‐Alexander University Erlangen‐NürnbergErlangenGermany
| | - Armin Ensser
- Institute of Clinical and Molecular VirologyFriedrich‐Alexander University Erlangen‐NürnbergErlangenGermany
| | - Hiroki Kato
- Institute of Cardiovascular ImmunologyUniversity Hospital Bonn, University of BonnBonnGermany
| | - Thomas Gramberg
- Institute of Clinical and Molecular VirologyFriedrich‐Alexander University Erlangen‐NürnbergErlangenGermany
| |
Collapse
|
53
|
Jalloh S, Olejnik J, Berrigan J, Nisa A, Suder EL, Akiyama H, Lei M, Ramaswamy S, Tyagi S, Bushkin Y, Mühlberger E, Gummuluru S. CD169-mediated restrictive SARS-CoV-2 infection of macrophages induces pro-inflammatory responses. PLoS Pathog 2022; 18:e1010479. [PMID: 36279285 PMCID: PMC9632919 DOI: 10.1371/journal.ppat.1010479] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 11/03/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022] Open
Abstract
Exacerbated and persistent innate immune response marked by pro-inflammatory cytokine expression is thought to be a major driver of chronic COVID-19 pathology. Although macrophages are not the primary target cells of SARS-CoV-2 infection in humans, viral RNA and antigens in activated monocytes and macrophages have been detected in post-mortem samples, and dysfunctional monocytes and macrophages have been hypothesized to contribute to a protracted hyper-inflammatory state in COVID-19 patients. In this study, we demonstrate that CD169, a myeloid cell specific I-type lectin, facilitated ACE2-independent SARS-CoV-2 fusion and entry in macrophages. CD169-mediated SARS-CoV-2 entry in macrophages resulted in expression of viral genomic and subgenomic RNAs with minimal viral protein expression and no infectious viral particle release, suggesting a post-entry restriction of the SARS-CoV-2 replication cycle. Intriguingly this post-entry replication block was alleviated by exogenous ACE2 expression in macrophages. Restricted expression of viral genomic and subgenomic RNA in CD169+ macrophages elicited a pro-inflammatory cytokine expression (TNFα, IL-6 and IL-1β) in a RIG-I, MDA-5 and MAVS-dependent manner, which was suppressed by remdesivir treatment. These findings suggest that de novo expression of SARS-CoV-2 RNA in macrophages contributes to the pro-inflammatory cytokine signature and that blocking CD169-mediated ACE2 independent infection and subsequent activation of macrophages by viral RNA might alleviate COVID-19-associated hyperinflammatory response.
Collapse
Affiliation(s)
- Sallieu Jalloh
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Judith Olejnik
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts, United States of America
| | - Jacob Berrigan
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Annuurun Nisa
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
| | - Ellen L. Suder
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts, United States of America
| | - Hisashi Akiyama
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Maohua Lei
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Sita Ramaswamy
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Sanjay Tyagi
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
| | - Yuri Bushkin
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
| | - Elke Mühlberger
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts, United States of America
| | - Suryaram Gummuluru
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| |
Collapse
|
54
|
Park T, Hwang H, Moon S, Kang SG, Song S, Kim YH, Kim H, Ko EJ, Yoon SD, Kang SM, Hwang HS. Vaccines against SARS-CoV-2 variants and future pandemics. Expert Rev Vaccines 2022; 21:1363-1376. [PMID: 35924678 PMCID: PMC9979704 DOI: 10.1080/14760584.2022.2110075] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 08/02/2022] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Vaccination continues to be the most effective method for controlling COVID-19 infectious diseases. Nonetheless, SARS-CoV-2 variants continue to evolve and emerge, resulting in significant public concerns worldwide, even after more than 2 years since the COVID-19 pandemic. It is important to better understand how different COVID-19 vaccine platforms work, why SARS-CoV-2 variants continue to emerge, and what options for improving COVID-19 vaccines can be considered to fight against SARS-CoV-2 variants and future pandemics. AREA COVERED Here, we reviewed the innate immune sensors in the recognition of SARS-CoV-2 virus, innate and adaptive immunity including neutralizing antibodies by different COVID-19 vaccines. Efficacy comparison of the several COVID-19 vaccine platforms approved for use in humans, concerns about SARS-CoV-2 variants and breakthrough infections, and the options for developing future COIVD-19 vaccines were also covered. EXPERT OPINION Owing to the continuous emergence of novel pathogens and the reemergence of variants, safer and more effective new vaccines are needed. This review also aims to provide the knowledge basis for the development of next-generation COVID-19 and pan-coronavirus vaccines to provide cross-protection against new SARS-CoV-2 variants and future coronavirus pandemics.
Collapse
Affiliation(s)
- Taeyoung Park
- Department of Biology, College of Life Science and Industry, Sunchon National University (SCNU), Suncheon, South Korea
| | - Hyogyeong Hwang
- Department of Biology, College of Life Science and Industry, Sunchon National University (SCNU), Suncheon, South Korea
| | - Suhyeong Moon
- Department of Biology, College of Life Science and Industry, Sunchon National University (SCNU), Suncheon, South Korea
| | - Sang Gu Kang
- Department of Biology, College of Life Science and Industry, Sunchon National University (SCNU), Suncheon, South Korea
| | - Seunghyup Song
- Department of Biology, College of Life Science and Industry, Sunchon National University (SCNU), Suncheon, South Korea
| | - Young Hun Kim
- Department of Biology, College of Life Science and Industry, Sunchon National University (SCNU), Suncheon, South Korea
| | - Hanbi Kim
- Department of Biology, College of Life Science and Industry, Sunchon National University (SCNU), Suncheon, South Korea
| | - Eun-Ju Ko
- College of Veterinary Medicine and Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju, South Korea
| | - Soon-Do Yoon
- Department of Chemical and Biomolecular Engineering, Chonnam National University, Yeosu, South Korea
| | - Sang-Moo Kang
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Hye Suk Hwang
- Department of Biology, College of Life Science and Industry, Sunchon National University (SCNU), Suncheon, South Korea
| |
Collapse
|
55
|
Guy C, Bowie AG. Recent insights into innate immune nucleic acid sensing during viral infection. Curr Opin Immunol 2022; 78:102250. [PMID: 36209576 DOI: 10.1016/j.coi.2022.102250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 09/05/2022] [Indexed: 01/29/2023]
Abstract
Recent advances in our understanding of nucleic acid pattern-recognition receptor (PRR) sensing of viruses have revealed a previously unappreciated level of complexity of the host antiviral response. As well as direct recognition of viral nucleic acid by PRRs, viruses also induce the release of host nucleic acid from the nucleus and mitochondria into the cytosol, which boosts nucleic acid activation of antiviral PRRs. Crosstalk and cooperation between DNA- and RNA-recognition signaling pathways has also been revealed, as has direct restriction of viral genomes in an interferon-independent manner by PRRs, and new roles for inflammasomes in sensing viral nucleic acid. Further, newly identified viral-evasion strategies targeting PRR pathways emphasize the importance of nucleic acid detection during viral infection at the host-pathogen innate immune interface.
Collapse
Affiliation(s)
- Coralie Guy
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Andrew G Bowie
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland.
| |
Collapse
|
56
|
Zhou H, Møhlenberg M, Thakor JC, Tuli HS, Wang P, Assaraf YG, Dhama K, Jiang S. Sensitivity to Vaccines, Therapeutic Antibodies, and Viral Entry Inhibitors and Advances To Counter the SARS-CoV-2 Omicron Variant. Clin Microbiol Rev 2022; 35:e0001422. [PMID: 35862736 PMCID: PMC9491202 DOI: 10.1128/cmr.00014-22] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) keeps evolving and mutating into newer variants over time, which gain higher transmissibility, disease severity, and spread in communities at a faster rate, resulting in multiple waves of surge in Coronavirus Disease 2019 (COVID-19) cases. A highly mutated and transmissible SARS-CoV-2 Omicron variant has recently emerged, driving the extremely high peak of infections in almost all continents at an unprecedented speed and scale. The Omicron variant evades the protection rendered by vaccine-induced antibodies and natural infection, as well as overpowers the antibody-based immunotherapies, raising the concerns of current effectiveness of available vaccines and monoclonal antibody-based therapies. This review outlines the most recent advancements in studying the virology and biology of the Omicron variant, highlighting its increased resistance to current antibody-based therapeutics and its immune escape against vaccines. However, the Omicron variant is highly sensitive to viral fusion inhibitors targeting the HR1 motif in the spike protein, enzyme inhibitors, involving the endosomal fusion pathway, and ACE2-based entry inhibitors. Omicron variant-associated infectivity and entry mechanisms of Omicron variant are essentially distinct from previous characterized variants. Innate sensing and immune evasion of SARS-CoV-2 and T cell immunity to the virus provide new perspectives of vaccine and drug development. These findings are important for understanding SARS-CoV-2 viral biology and advances in developing vaccines, antibody-based therapies, and more effective strategies to mitigate the transmission of the Omicron variant or the next SARS-CoV-2 variant of concern.
Collapse
Affiliation(s)
- Hao Zhou
- Department of Microbiology, NYU Grossman School of Medicine, New York, New York, USA
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Michelle Møhlenberg
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Center for Cancer Biology, Department of Oncology, VIB-KU Leuven, Leuven, Belgium
| | - Jigarji C. Thakor
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar (Deemed University), Mullana, Ambala, Haryana, India
| | - Pengfei Wang
- State Key Laboratory of Genetic Engineering, Shanghai Institute of Infectious Disease and Biosecurity, School of Life Sciences, Fudan University, Shanghai, China
| | - Yehuda G. Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Faculty of Biology, Technion Israel Institute of Technology, Haifa, Israel
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
57
|
Rudraraju R, Gartner MJ, Neil JA, Stout ES, Chen J, Needham EJ, See M, Mackenzie-Kludas C, Yang Lee LY, Wang M, Pointer H, Karavendzas K, Abu-Bonsrah D, Drew D, Sun YBY, Tan JP, Sun G, Salavaty A, Charitakis N, Nim HT, Currie PD, Tham WH, Porrello E, Polo J, Humphrey SJ, Ramialison M, Elliott DA, Subbarao K. Parallel use of pluripotent human stem cell lung and heart models provide new insights for treatment of SARS-CoV-2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.09.20.508614. [PMID: 36172136 PMCID: PMC9516846 DOI: 10.1101/2022.09.20.508614] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
SARS-CoV-2 primarily infects the respiratory tract, but pulmonary and cardiac complications occur in severe COVID-19. To elucidate molecular mechanisms in the lung and heart, we conducted paired experiments in human stem cell-derived lung alveolar type II (AT2) epithelial cell and cardiac cultures infected with SARS-CoV-2. With CRISPR- Cas9 mediated knock-out of ACE2, we demonstrated that angiotensin converting enzyme 2 (ACE2) was essential for SARS-CoV-2 infection of both cell types but further processing in lung cells required TMPRSS2 while cardiac cells required the endosomal pathway. Host responses were significantly different; transcriptome profiling and phosphoproteomics responses depended strongly on the cell type. We identified several antiviral compounds with distinct antiviral and toxicity profiles in lung AT2 and cardiac cells, highlighting the importance of using several relevant cell types for evaluation of antiviral drugs. Our data provide new insights into rational drug combinations for effective treatment of a virus that affects multiple organ systems. One-sentence summary Rational treatment strategies for SARS-CoV-2 derived from human PSC models.
Collapse
|
58
|
Arefinia N, Ramezani A, Farokhnia M, Arab Zadeh AM, Yaghobi R, Sarvari J. Association between expression of ZBP1, AIM2, and MDA5 genes and severity of COVID-19. EXCLI JOURNAL 2022; 21:1171-1183. [PMID: 36320810 PMCID: PMC9618740 DOI: 10.17179/excli2022-5141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/22/2022] [Indexed: 01/24/2023]
Abstract
Antiviral and inflammatory responses following the detection of the virus genome by nucleic acid sensors play a vital role in the pathogenesis and outcome of diseases. In this study, we investigated the ZBP1, AIM2, and MDA5 expression levels in COVID-19 patients with different intensities of the disease. 75 quantitative Real-Time PCR (qRT-PCR)-confirmed COVID-19 patients were included consecutively and divided into 3 groups of mild, severe, and critical based on the severity of the disease. Also, 25 healthy volunteer subjects were included. PBMCs were collected from the whole blood, and RNA was extracted using commercial kit. The expression of ZBP1, AIM2, and MDA5 genes was investigated using qRT-PCR technique. The mean age of the patients and healthy volunteers was 52.73±13.78 and 49.120±12.490, respectively. In each group, 13 out of 25 participants were male. The expression levels of ZBP1 (P=0.001), AIM2 (P=0.001), and MDA5 (P= 0.003) transcript were significantly higher in COVID-19 patients than the control group. The results also revealed that the expression levels of ZBP1, AIM2, and MDA5 were significantly higher in the critical and severe COVID-19 patients compared to those with mild disease (P<0.05). Moreover, regarding the gender, the expression levels of AIM2 and MDA5 were significantly elevated in male severe (P=0.04 and P=0.003, respectively) and critical (P=0.005 and P=0.0004, respectively) patients than the female ones. The results indicated that ZBP1, AIM2, and MDA5 genes might have an important role in the severity of COVID-19 disease. Moreover, the severity of COVID-19 disease in male and female patients might be related to AIM2, and MDA5 expression levels. More studies are recommended to be conducted to clarify this issue.
Collapse
Affiliation(s)
- Nasir Arefinia
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amin Ramezani
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehrdad Farokhnia
- Department of Internal Medicine, School of Medicine, Research Center for Hydatid Disease in Iran, Afzalipour Hospital, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Mohammad Arab Zadeh
- Department of Internal Medicine, School of Medicine, Research Center for Hydatid Disease in Iran, Afzalipour Hospital, Kerman University of Medical Sciences, Kerman, Iran
| | - Ramin Yaghobi
- Transplant Research Center, Department of Pathology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Jamal Sarvari
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
59
|
Wing PAC, Prange-Barczynska M, Cross A, Crotta S, Orbegozo Rubio C, Cheng X, Harris JM, Zhuang X, Johnson RL, Ryan KA, Hall Y, Carroll MW, Issa F, Balfe P, Wack A, Bishop T, Salguero FJ, McKeating JA. Hypoxia inducible factors regulate infectious SARS-CoV-2, epithelial damage and respiratory symptoms in a hamster COVID-19 model. PLoS Pathog 2022; 18:e1010807. [PMID: 36067210 PMCID: PMC9481176 DOI: 10.1371/journal.ppat.1010807] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 09/16/2022] [Accepted: 08/10/2022] [Indexed: 12/03/2022] Open
Abstract
Understanding the host pathways that define susceptibility to Severe-acute-respiratory-syndrome-coronavirus-2 (SARS-CoV-2) infection and disease are essential for the design of new therapies. Oxygen levels in the microenvironment define the transcriptional landscape, however the influence of hypoxia on virus replication and disease in animal models is not well understood. In this study, we identify a role for the hypoxic inducible factor (HIF) signalling axis to inhibit SARS-CoV-2 infection, epithelial damage and respiratory symptoms in the Syrian hamster model. Pharmacological activation of HIF with the prolyl-hydroxylase inhibitor FG-4592 significantly reduced infectious virus in the upper and lower respiratory tract. Nasal and lung epithelia showed a reduction in SARS-CoV-2 RNA and nucleocapsid expression in treated animals. Transcriptomic and pathological analysis showed reduced epithelial damage and increased expression of ciliated cells. Our study provides new insights on the intrinsic antiviral properties of the HIF signalling pathway in SARS-CoV-2 replication that may be applicable to other respiratory pathogens and identifies new therapeutic opportunities.
Collapse
Affiliation(s)
- Peter A. C. Wing
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford United Kingdom
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Maria Prange-Barczynska
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Ludwig institute for Cancer Research, University of Oxford, Oxford, United Kingdom
| | - Amy Cross
- Radcliffe Department of Surgery, University of Oxford, United Kingdom
| | - Stefania Crotta
- Immunoregulation Laboratory, The Francis Crick Institute, London, United Kingdom
| | | | - Xiaotong Cheng
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Ludwig institute for Cancer Research, University of Oxford, Oxford, United Kingdom
| | - James M. Harris
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Xiaodong Zhuang
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Rachel L. Johnson
- United Kingdom Health Security Agency (UKHSA), Porton Down, Salisbury, United Kingdom
| | - Kathryn A. Ryan
- United Kingdom Health Security Agency (UKHSA), Porton Down, Salisbury, United Kingdom
| | - Yper Hall
- United Kingdom Health Security Agency (UKHSA), Porton Down, Salisbury, United Kingdom
| | - Miles W. Carroll
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Fadi Issa
- Radcliffe Department of Surgery, University of Oxford, United Kingdom
| | - Peter Balfe
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Andreas Wack
- Immunoregulation Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Tammie Bishop
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Ludwig institute for Cancer Research, University of Oxford, Oxford, United Kingdom
| | - Francisco J. Salguero
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- United Kingdom Health Security Agency (UKHSA), Porton Down, Salisbury, United Kingdom
| | - Jane A. McKeating
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford United Kingdom
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
60
|
Gonzalez D, Gupta L, Murthy V, Gonzalez EB, Williamson KA, Makol A, Tan CL, Sulaiman FN, Shahril NS, Isa LM, Martín-Nares E, Aggarwal R. Anti-MDA5 dermatomyositis after COVID-19 vaccination: a case-based review. Rheumatol Int 2022; 42:1629-1641. [PMID: 35661906 PMCID: PMC9166182 DOI: 10.1007/s00296-022-05149-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/09/2022] [Indexed: 01/01/2023]
Abstract
Anti-MDA5 (Melanoma differentiation-associated protein 5) myositis is a rare subtype of dermatomyositis (DM) characterized by distinct ulcerative, erythematous cutaneous lesions and a high risk of rapidly progressive interstitial lung disease (RP-ILD). It has been shown that SARS-CoV-2 (COVID-19) replicates rapidly in lung and skin epithelial cells, which is sensed by the cytosolic RNA-sensor MDA5. MDA5 then triggers type 1 interferon (IFN) production, and thus downstream inflammatory mediators (EMBO J 40(15):e107826, 2021); (J Virol, 2021, https://doi.org/10.1128/JVI.00862-21 ); (Cell Rep 34(2):108628, 2021); (Sci Rep 11(1):13638, 2021); (Trends Microbiol 27(1):75-85, 2019). It has also been shown that MDA5 is triggered by the mRNA COVID-19 vaccine with resultant activated dendritic cells (Nat Rev Immunol 21(4):195-197, 2021). Our literature review identified one reported case of MDA5-DM from the COVID-19 vaccine (Chest J, 2021, https://doi.org/10.1016/j.chest.2021.07.646 ). We present six additional cases of MDA5-DM that developed shortly after the administration of different kinds of COVID-19 vaccines. A review of other similar cases of myositis developing from the COVID-19 vaccine was also done. We aim to explore and discuss the evidence around recent speculations of a possible relation of MDA5-DM to COVID-19 infection and vaccine. The importance of vaccination during a worldwide pandemic should be maintained and our findings are not intended to discourage individuals from receiving the COVID-19 vaccine.
Collapse
Affiliation(s)
- Daniel Gonzalez
- Division of Rheumatology, University of Texas, Medical Branch, 301 University Boulevard, Route 1118, Galveston, TX, 77555, USA.
| | - Latika Gupta
- Department of Rheumatology, Royal Wolverhampton Trust, Wolverhampton, UK
| | - Vijaya Murthy
- Division of Rheumatology, University of Texas, Medical Branch, 301 University Boulevard, Route 1118, Galveston, TX, 77555, USA
| | - Emilio B Gonzalez
- Division of Rheumatology, University of Texas, Medical Branch, 301 University Boulevard, Route 1118, Galveston, TX, 77555, USA
| | | | - Ashima Makol
- Division of Rheumatology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Chou Luan Tan
- Department of Rheumatology, Hospital Putrajaya, Putrajaya, Malaysia
| | | | | | - Liza Mohd Isa
- Department of Rheumatology, Hospital Putrajaya, Putrajaya, Malaysia
| | - Eduardo Martín-Nares
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Rohit Aggarwal
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
61
|
Jin R, Cao X, Lu M, Gao Q, Ma T. The intersection molecule MDA5 in Cancer and COVID-19. Front Immunol 2022; 13:963051. [PMID: 36119095 PMCID: PMC9471860 DOI: 10.3389/fimmu.2022.963051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/09/2022] [Indexed: 11/13/2022] Open
Abstract
The connections between pattern recognition receptors (PRRs) and pathogen-associated molecular patterns (PAMPs) constitutes the crucial signaling pathways in the innate immune system. Cytoplasmic nucleic acid sensor melanoma differentiation-associated gene 5 (MDA5) serves as an important pattern recognition receptor in the innate immune system by recognizing viral RNA. MDA5 also plays a role in identifying the cytoplasmic RNA from damaged, dead cancer cells or autoimmune diseases. MDA5’s recognition of RNA triggers innate immune responses, induces interferon (IFN) response and a series of subsequent signaling pathways to produce immunomodulatory factors and inflammatory cytokines. Here we review the latest progress of MDA5 functions in triggering anti-tumor immunity by sensing cytoplasmic dsRNA, and recognizing SARS-CoV-2 virus infection for antiviral response, in which the virus utilizes multiple ways to evade the host defense mechanism.
Collapse
Affiliation(s)
- Renjing Jin
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Xiaoqing Cao
- Department of Thoracic Surgery, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Mingjun Lu
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Qing Gao
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Teng Ma
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
- *Correspondence: Teng Ma,
| |
Collapse
|
62
|
Bonaventure B, Goujon C. DExH/D-box helicases at the frontline of intrinsic and innate immunity against viral infections. J Gen Virol 2022; 103. [PMID: 36006669 DOI: 10.1099/jgv.0.001766] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022] Open
Abstract
DExH/D-box helicases are essential nucleic acid and ribonucleoprotein remodelers involved in all aspects of nucleic acid metabolism including replication, gene expression and post-transcriptional modifications. In parallel to their importance in basic cellular functions, DExH/D-box helicases play multiple roles in viral life cycles, with some of them highjacked by viruses or negatively regulating innate immune activation. However, other DExH/D-box helicases have recurrently been highlighted as direct antiviral effectors or as positive regulators of innate immune activation. Innate immunity relies on the ability of Pathogen Recognition Receptors to recognize viral signatures and trigger the production of interferons (IFNs) and pro-inflammatory cytokines. Secreted IFNs interact with their receptors to establish antiviral cellular reprogramming via expression regulation of the interferon-stimulated genes (ISGs). Several DExH/D-box helicases have been reported to act as viral sensors (DDX3, DDX41, DHX9, DDX1/DDX21/DHX36 complex), and others to play roles in innate immune activation (DDX60, DDX60L, DDX23). In contrast, the DDX39A, DDX46, DDX5 and DDX24 helicases act as negative regulators and impede IFN production upon viral infection. Beyond their role in viral sensing, the ISGs DDX60 and DDX60L act as viral inhibitors. Interestingly, the constitutively expressed DEAD-box helicases DDX56, DDX17, DDX42 intrinsically restrict viral replication. Hence, DExH/D-box helicases appear to form a multilayer network of primary and secondary factors involved in both intrinsic and innate antiviral immunity. In this review, we highlight recent findings on the extent of antiviral defences played by helicases and emphasize the need to better understand their immune functions as well as their complex interplay.
Collapse
Affiliation(s)
- Boris Bonaventure
- IRIM, CNRS, Montpellier University, France.,Present address: Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | |
Collapse
|
63
|
Li W, Wang H, Zheng SJ. Roles of RNA Sensors in Host Innate Response to Influenza Virus and Coronavirus Infections. Int J Mol Sci 2022; 23:8285. [PMID: 35955436 PMCID: PMC9368391 DOI: 10.3390/ijms23158285] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/22/2022] [Accepted: 07/23/2022] [Indexed: 11/16/2022] Open
Abstract
Influenza virus and coronavirus are two important respiratory viruses, which often cause serious respiratory diseases in humans and animals after infection. In recent years, highly pathogenic avian influenza virus (HPAIV) and SARS-CoV-2 have become major pathogens causing respiratory diseases in humans. Thus, an in-depth understanding of the relationship between viral infection and host innate immunity is particularly important to the stipulation of effective control strategies. As the first line of defense against pathogens infection, innate immunity not only acts as a natural physiological barrier, but also eliminates pathogens through the production of interferon (IFN), the formation of inflammasomes, and the production of pro-inflammatory cytokines. In this process, the recognition of viral pathogen-associated molecular patterns (PAMPs) by host pattern recognition receptors (PRRs) is the initiation and the most important part of the innate immune response. In this review, we summarize the roles of RNA sensors in the host innate immune response to influenza virus and coronavirus infections in different species, with a particular focus on innate immune recognition of viral nucleic acids in host cells, which will help to develop an effective strategy for the control of respiratory infectious diseases.
Collapse
Affiliation(s)
- Wei Li
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (W.L.); (H.W.)
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Hongnuan Wang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (W.L.); (H.W.)
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Shijun J. Zheng
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (W.L.); (H.W.)
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| |
Collapse
|
64
|
Van der Sluis RM, Holm CK, Jakobsen MR. Plasmacytoid dendritic cells during COVID-19: Ally or adversary? Cell Rep 2022; 40:111148. [PMID: 35858624 PMCID: PMC9279298 DOI: 10.1016/j.celrep.2022.111148] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/10/2022] [Accepted: 07/07/2022] [Indexed: 12/12/2022] Open
Abstract
Plasmacytoid dendritic cells (pDCs) are specialized cells of the immune system that are thought to be the main cellular source of type I interferon alpha (IFNα) in response to viral infections. IFNs are powerful antivirals, whereas defects in their function or induction lead to impaired resistance to virus infections, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of COVID-19. IFN production needs to be controlled, because sustained IFN production can also have detrimental effects on disease outcome. As such, pDCs are likely important for acute antiviral protection against SARS-CoV-2 infection but could potentially also contribute to chronic IFN levels. Here, we provide a historical overview of pDC biology and summarize existing literature addressing their involvement and importance during viral infections of the airways. Furthermore, we outline recent reports focused on the potential role of pDCs during SARS-CoV-2 infection, as well as the potential for this cellular subset to impact COVID-19 disease outcome.
Collapse
|
65
|
Anderle K, Machold K, Kiener HP, Bormann D, Hoetzenecker K, Geleff S, Prosch H, Laccone F, Heil PM, Petzelbauer P, Aletaha D, Blüml S, Kastrati K. COVID-19 as a putative trigger of anti-MDA5-associated dermatomyositis with acute respiratory distress syndrome (ARDS) requiring lung transplantation, a case report. BMC Rheumatol 2022; 6:42. [PMID: 35821079 PMCID: PMC9277832 DOI: 10.1186/s41927-022-00271-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/12/2022] [Indexed: 11/13/2022] Open
Abstract
Background Autoimmune disease following COVID-19 has been studied intensely since the beginning of the pandemic. Growing evidence indicates that SARS-CoV-2 infection, by virtue of molecular mimicry can lead to an antigen-mediated cross-reaction promoting the development of a plethora of autoimmune spectrum diseases involving lungs and extrapulmonary tissues alike. In both COVID-19 and autoimmune disease, the immune self-tolerance breaks, leading to an overreaction of the immune system with production of a variety of autoantibodies, sharing similarities in clinical manifestation, laboratory, imaging, and pathology findings. Anti-Melanoma Differentiation-Associated gene 5 dermatomyositis (anti-MDA5 DM) comprises a rare subtype of systemic inflammatory myopathies associated with characteristic cutaneous features and life-threatening rapidly progressive interstitial lung disease (RP-ILD). The production of anti-MDA5 autoantibodies was proposed to be triggered by viral infections. Case presentation A 20-year-old male patient with polyarthritis, fatigue and exertional dyspnea was referred to our department. An elevated anti-MDA5 autoantibody titer, myositis on MRI, ground glass opacifications on lung CT and histological features of Wong-type dermatomyositis were confirmed, suggesting the diagnosis of an anti-MDA5 DM. Amid further diagnostic procedures, a serologic proof of a recent SARS-CoV-2 infection emerged. Subsequently, the patient deteriorated into a fulminant respiratory failure and an urgent lung transplantation was performed, leading to remission ever since (i.e. 12 months as of now). Conclusions We report a unique case of a patient with a new-onset anti-MDA5 DM with fulminant ARDS emerging in a post-infectious stage of COVID-19, who underwent a successful lung transplantation and achieved remission. Given the high mortality of anti-MDA5 DM associated RP-ILD, we would like to highlight that the timely recognition of this condition and urgent therapy initiation are of utmost importance. Supplementary Information The online version contains supplementary material available at 10.1186/s41927-022-00271-1.
Collapse
Affiliation(s)
- Karolina Anderle
- Division of Rheumatology, Department of Medicine III, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.,Department of Clinical Pharmacology, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Klaus Machold
- Division of Rheumatology, Department of Medicine III, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Hans P Kiener
- Division of Rheumatology, Department of Medicine III, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Daniel Bormann
- Division of Rheumatology, Department of Medicine III, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.,Department of Thoracic Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Konrad Hoetzenecker
- Department of Thoracic Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Silvana Geleff
- Clinical Institute of Pathology, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Helmut Prosch
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Waehringer Guertel 18-20, 109, Vienna, Austria
| | - Franco Laccone
- Institute of Medical Genetics, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Peter M Heil
- Department of Dermatology, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Peter Petzelbauer
- Department of Dermatology, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Daniel Aletaha
- Division of Rheumatology, Department of Medicine III, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Stephan Blüml
- Division of Rheumatology, Department of Medicine III, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.
| | - Kastriot Kastrati
- Division of Rheumatology, Department of Medicine III, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| |
Collapse
|
66
|
Tonutti A, Motta F, Ceribelli A, Isailovic N, Selmi C, De Santis M. Anti-MDA5 Antibody Linking COVID-19, Type I Interferon, and Autoimmunity: A Case Report and Systematic Literature Review. Front Immunol 2022; 13:937667. [PMID: 35833112 PMCID: PMC9271786 DOI: 10.3389/fimmu.2022.937667] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 05/30/2022] [Indexed: 11/23/2022] Open
Abstract
Introduction The SARS-CoV-2 infection has been advocated as an environmental trigger for autoimmune diseases, and a paradigmatic example comes from similarities between COVID-19 and the myositis-spectrum disease associated with antibodies against the melanoma differentiation antigen 5 (MDA5) in terms of clinical features, lung involvement, and immune mechanisms, particularly type I interferons (IFN). Case Report We report a case of anti-MDA5 syndrome with skin manifestations, constitutional symptoms, and cardiomyopathy following a proven SARS-CoV-2 infection. Systematic Literature Review We systematically searched for publications on inflammatory myositis associated with COVID-19. We describe the main clinical, immunological, and demographic features, focusing our attention on the anti-MDA5 syndrome. Discussion MDA5 is a pattern recognition receptor essential in the immune response against viruses and this may contribute to explain the production of anti-MDA5 antibodies in some SARS-CoV-2 infected patients. The activation of MDA5 induces the synthesis of type I IFN with an antiviral role, inversely correlated with COVID-19 severity. Conversely, elevated type I IFN levels correlate with disease activity in anti-MDA5 syndrome. While recognizing this ia broad area of uncertainty, we speculate that the strong type I IFN response observed in patients with anti-MDA5 syndrome, might harbor protective effects against viral infections, including COVID-19.
Collapse
Affiliation(s)
- Antonio Tonutti
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
- Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Rozzano, Italy
| | - Francesca Motta
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
- Division of Rheumatology and Clinical Immunology, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Rozzano, Italy
| | - Angela Ceribelli
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
- Division of Rheumatology and Clinical Immunology, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Rozzano, Italy
| | - Natasa Isailovic
- Division of Rheumatology and Clinical Immunology, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Rozzano, Italy
| | - Carlo Selmi
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
- Division of Rheumatology and Clinical Immunology, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Rozzano, Italy
- *Correspondence: Carlo Selmi,
| | - Maria De Santis
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
- Division of Rheumatology and Clinical Immunology, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Rozzano, Italy
| |
Collapse
|
67
|
Znaidia M, Demeret C, van der Werf S, Komarova AV. Characterization of SARS-CoV-2 Evasion: Interferon Pathway and Therapeutic Options. Viruses 2022; 14:v14061247. [PMID: 35746718 PMCID: PMC9231409 DOI: 10.3390/v14061247] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/30/2022] [Accepted: 06/02/2022] [Indexed: 12/17/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is responsible for the current COVID-19 pandemic. SARS-CoV-2 is characterized by an important capacity to circumvent the innate immune response. The early interferon (IFN) response is necessary to establish a robust antiviral state. However, this response is weak and delayed in COVID-19 patients, along with massive pro-inflammatory cytokine production. This dysregulated innate immune response contributes to pathogenicity and in some individuals leads to a critical state. Characterizing the interplay between viral factors and host innate immunity is crucial to better understand how to manage the disease. Moreover, the constant emergence of new SARS-CoV-2 variants challenges the efficacy of existing vaccines. Thus, to control this virus and readjust the antiviral therapy currently used to treat COVID-19, studies should constantly be re-evaluated to further decipher the mechanisms leading to SARS-CoV-2 pathogenesis. Regarding the role of the IFN response in SARS-CoV-2 infection, in this review we summarize the mechanisms by which SARS-CoV-2 evades innate immune recognition. More specifically, we explain how this virus inhibits IFN signaling pathways (IFN-I/IFN-III) and controls interferon-stimulated gene (ISG) expression. We also discuss the development and use of IFNs and potential drugs controlling the innate immune response to SARS-CoV-2, helping to clear the infection.
Collapse
|
68
|
Interstitial lung disease with anti-melanoma differentiation-associated gene 5 antibody after allogeneic hematopoietic stem cell transplantation. Bone Marrow Transplant 2022; 57:1382-1388. [PMID: 35661835 PMCID: PMC9166177 DOI: 10.1038/s41409-022-01730-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/11/2022] [Accepted: 05/26/2022] [Indexed: 12/19/2022]
Abstract
Anti-melanoma differentiation-associated gene 5 (MDA5) antibody is one of auto-immune antibodies which is associated with a rare subtype of dermatomyositis (DM), and MDA5-DM is well-characterized by rapid progressive interstitial lung disease (ILD) which in part resembles pulmonary complications after allogeneic hematopoietic cell transplantation (allo-HCT). However, previous studies about anti-MDA5 antibody after allo-HCT were extremely limited. Here, we present 4 cases of ILD with anti-MDA5 antibody after allo-HCT. All of the cases showed rapidly progressive clinical course and 3 of 4 cases died despite intensive immunosuppressive therapies which included prednisolone, cyclophosphamide and calcineurin inhibitor. Additionally, 3 of 4 cases had tested positive for anti-MDA5 antibody by using cryopreserved plasma which were collected about 2–3 months before the diagnosis of MDA5-DM-ILD. It suggests that an inflammatory condition due to MDA5-DM-ILD might have sub-clinically occurred before the development of respiratory failure. The current cases suggest that the clinical feature was relatively similar to classical MDA5-DM-ILD, although it is difficult to distinguish MDA5-DM-ILD from chronic GVHD and other pulmonary complications after allo-HCT. Since clinical courses of MDA5-DM-ILD is considerably aggressive, it is important to discriminate MDA5-DM-ILD from other complications after allo-HCT.
Collapse
|
69
|
Sagulkoo P, Suratanee A, Plaimas K. Immune-Related Protein Interaction Network in Severe COVID-19 Patients toward the Identification of Key Proteins and Drug Repurposing. Biomolecules 2022; 12:biom12050690. [PMID: 35625619 PMCID: PMC9138873 DOI: 10.3390/biom12050690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/07/2022] [Accepted: 05/09/2022] [Indexed: 02/05/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is still an active global public health issue. Although vaccines and therapeutic options are available, some patients experience severe conditions and need critical care support. Hence, identifying key genes or proteins involved in immune-related severe COVID-19 is necessary to find or develop the targeted therapies. This study proposed a novel construction of an immune-related protein interaction network (IPIN) in severe cases with the use of a network diffusion technique on a human interactome network and transcriptomic data. Enrichment analysis revealed that the IPIN was mainly associated with antiviral, innate immune, apoptosis, cell division, and cell cycle regulation signaling pathways. Twenty-three proteins were identified as key proteins to find associated drugs. Finally, poly (I:C), mitomycin C, decitabine, gemcitabine, hydroxyurea, tamoxifen, and curcumin were the potential drugs interacting with the key proteins to heal severe COVID-19. In conclusion, IPIN can be a good representative network for the immune system that integrates the protein interaction network and transcriptomic data. Thus, the key proteins and target drugs in IPIN help to find a new treatment with the use of existing drugs to treat the disease apart from vaccination and conventional antiviral therapy.
Collapse
Affiliation(s)
- Pakorn Sagulkoo
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand;
- Center of Biomedical Informatics, Department of Family Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Apichat Suratanee
- Department of Mathematics, Faculty of Applied Science, King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand;
- Intelligent and Nonlinear Dynamics Innovations Research Center, Science and Technology Research Institute, King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand
| | - Kitiporn Plaimas
- Advance Virtual and Intelligent Computing (AVIC) Center, Department of Mathematics and Computer Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Omics Science and Bioinformatics Center, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Correspondence:
| |
Collapse
|
70
|
Abstract
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a devastating pandemic. Although most people infected with SARS-CoV-2 develop a mild to moderate disease with virus replication restricted mainly to the upper airways, some progress to having a life-threatening pneumonia. In this Review, we explore recent clinical and experimental advances regarding SARS-CoV-2 pathophysiology and discuss potential mechanisms behind SARS-CoV-2-associated acute respiratory distress syndrome (ARDS), specifically focusing on new insights obtained using novel technologies such as single-cell omics, organoid infection models and CRISPR screens. We describe how SARS-CoV-2 may infect the lower respiratory tract and cause alveolar damage as a result of dysfunctional immune responses. We discuss how this may lead to the induction of a 'leaky state' of both the epithelium and the endothelium, promoting inflammation and coagulation, while an influx of immune cells leads to overexuberant inflammatory responses and immunopathology. Finally, we highlight how these findings may aid the development of new therapeutic interventions against COVID-19.
Collapse
|
71
|
Airway epithelial interferon response to SARS-CoV-2 is inferior to rhinovirus and heterologous rhinovirus infection suppresses SARS-CoV-2 replication. Sci Rep 2022; 12:6972. [PMID: 35484173 PMCID: PMC9048621 DOI: 10.1038/s41598-022-10763-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 04/12/2022] [Indexed: 12/20/2022] Open
Abstract
Common alphacoronaviruses and human rhinoviruses (HRV) induce type I and III interferon (IFN) responses important to limiting viral replication in the airway epithelium. In contrast, highly pathogenic betacoronaviruses including SARS-CoV-2 may evade or antagonize RNA-induced IFN I/III responses. In airway epithelial cells (AECs) from children and older adults we compared IFN I/III responses to SARS-CoV-2 and HRV-16, and assessed whether pre-infection with HRV-16, or pretreatment with recombinant IFN-β or IFN-λ, modified SARS-CoV-2 replication. Bronchial AECs from children (ages 6-18 years) and older adults (ages 60-75 years) were differentiated ex vivo to generate organotypic cultures. In a biosafety level 3 (BSL-3) facility, cultures were infected with SARS-CoV-2 or HRV-16, and RNA and protein was harvested from cell lysates 96 h. following infection and supernatant was collected 48 and 96 h. following infection. In additional experiments cultures were pre-infected with HRV-16, or pre-treated with recombinant IFN-β1 or IFN-λ2 before SARS-CoV-2 infection. In a subset of experiments a range of infectious concentrations of HRV-16, SARS-CoV-2 WA-01, SARS-CoV-2 Delta variant, and SARS-CoV-2 Omicron variant were studied. Despite significant between-donor heterogeneity SARS-CoV-2 replicated 100 times more efficiently than HRV-16. IFNB1, INFL2, and CXCL10 gene expression and protein production following HRV-16 infection was significantly greater than following SARS-CoV-2. IFN gene expression and protein production were inversely correlated with SARS-CoV-2 replication. Treatment of cultures with recombinant IFNβ1 or IFNλ2, or pre-infection of cultures with HRV-16, markedly reduced SARS-CoV-2 replication. In addition to marked between-donor heterogeneity in IFN responses and viral replication, SARS-CoV-2 (WA-01, Delta, and Omicron variants) elicits a less robust IFN response in primary AEC cultures than does rhinovirus, and heterologous rhinovirus infection, or treatment with recombinant IFN-β1 or IFN-λ2, reduces SARS-CoV-2 replication, although to a lesser degree for the Delta and Omicron variants.
Collapse
|
72
|
Kheshtchin N, Bakhshi P, Arab S, Nourizadeh M. Immunoediting in SARS-CoV-2: Mutual relationship between the virus and the host. Int Immunopharmacol 2022; 105:108531. [PMID: 35074569 PMCID: PMC8743495 DOI: 10.1016/j.intimp.2022.108531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/04/2022] [Accepted: 01/06/2022] [Indexed: 11/05/2022]
Abstract
Immunoediting is a well-known concept that occurs in cancer through three steps of elimination, equilibrium, and escape (3Es), where the immune system first suppresses the growth of tumor cells and then promotes them towards the malignancy. This phenomenon has been conceptualized in some chronic viral infections such as HTLV-1 and HIV by obtaining the resistance to elimination and making a persistent form of infected cells especially in untreated patients. Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a heterogeneous disease characterizing from mild/asymptomatic to severe/critical courses with some behavioral aspects in an immunoediting setting. In this context, a coordinated effort between innate and adaptive immune system leads to detection and destruction of early infection followed by equilibrium between virus-specific responses and infected cells, which eventually ends up with an uncontrolled inflammatory response in severe/critical patients. Although the SARS-CoV-2 applies several escape strategies such as mutations in viral epitopes, modulating the interferon response and inhibiting the MHC I molecules similar to the cancer cells, the 3Es hallmark may not occur in all clinical conditions. Here, we discuss how the lesson learnt from cancer immunoediting and accurate understanding of these pathophysiological mechanisms helps to develop more effective therapeutic strategies for COVID-19.
Collapse
|
73
|
Jalloh S, Olejnik J, Berrigan J, Nisa A, Suder EL, Akiyama H, Lei M, Tyagi S, Bushkin Y, Mühlberger E, Gummuluru S. CD169-mediated restrictive SARS-CoV-2 infection of macrophages induces pro-inflammatory responses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.03.29.486190. [PMID: 35378756 PMCID: PMC8978933 DOI: 10.1101/2022.03.29.486190] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Exacerbated and persistent innate immune response marked by pro-inflammatory cytokine expression is thought to be a major driver of chronic COVID-19 pathology. Although macrophages are not the primary target cells of SARS-CoV-2 infection in humans, viral RNA and antigens in activated monocytes and macrophages have been detected in post-mortem samples, and dysfunctional monocytes and macrophages have been hypothesized to contribute to a protracted hyper-inflammatory state in COVID-19 patients. In this study, we demonstrate that CD169, a myeloid cell specific I-type lectin, facilitated ACE2-independent SARS-CoV-2 fusion and entry in macrophages. CD169- mediated SARS-CoV-2 entry in macrophages resulted in expression of viral genomic and sub-genomic (sg) RNAs with minimal viral protein expression and no infectious viral particle release, suggesting a post-entry restriction of the SARS-CoV-2 replication cycle. Intriguingly this post-entry replication block was alleviated by exogenous ACE2 expression in macrophages. Restricted expression of viral gRNA and sgRNA in CD169 + macrophages elicited a pro-inflammatory cytokine expression (TNFα, IL-6 and IL-1β) in a RIG-I, MDA-5 and MAVS-dependent manner, which was suppressed by remdesivir pre- treatment. These findings suggest that de novo expression of SARS-CoV-2 RNA in macrophages contributes to the pro-inflammatory cytokine signature and that blocking CD169-mediated ACE2 independent infection and subsequent activation of macrophages by viral RNA might alleviate COVID-19-associated hyperinflammatory response. Author Summary Over-exuberant production of pro-inflammatory cytokine expression by macrophages has been hypothesized to contribute to severity of COVID-19 disease. Molecular mechanisms that contribute to macrophage-intrinsic immune activation during SARS- CoV-2 infection are not fully understood. Here we show that CD169, a macrophage- specific sialic-acid binding lectin, facilitates abortive SARS-CoV-2 infection of macrophages that results in innate immune sensing of viral replication intermediates and production of proinflammatory responses. We identify an ACE2-independent, CD169- mediated endosomal viral entry mechanism that results in cytoplasmic delivery of viral capsids and initiation of virus replication, but absence of infectious viral production. Restricted viral replication in CD169 + macrophages and detection of viral genomic and sub-genomic RNAs by cytoplasmic RIG-I-like receptor family members, RIG-I and MDA5, and initiation of downstream signaling via the adaptor protein MAVS, was required for innate immune activation. These studies uncover mechanisms important for initiation of innate immune sensing of SARS-CoV-2 infection in macrophages, persistent activation of which might contribute to severe COVID-19 pathophysiology.
Collapse
Affiliation(s)
- Sallieu Jalloh
- Department of Microbiology, Boston University School of Medicine, Boston, MA, USA
| | - Judith Olejnik
- Department of Microbiology, Boston University School of Medicine, Boston, MA, USA
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
| | - Jacob Berrigan
- Department of Microbiology, Boston University School of Medicine, Boston, MA, USA
| | - Annuurun Nisa
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, NJ, USA
| | - Ellen L Suder
- Department of Microbiology, Boston University School of Medicine, Boston, MA, USA
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
| | - Hisashi Akiyama
- Department of Microbiology, Boston University School of Medicine, Boston, MA, USA
| | - Maohua Lei
- Department of Microbiology, Boston University School of Medicine, Boston, MA, USA
| | - Sanjay Tyagi
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, NJ, USA
| | - Yuri Bushkin
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, NJ, USA
| | - Elke Mühlberger
- Department of Microbiology, Boston University School of Medicine, Boston, MA, USA
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
| | - Suryaram Gummuluru
- Department of Microbiology, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
74
|
Zhang D, Zhu L, Wang Y, Li P, Gao Y. Translational Control of COVID-19 and Its Therapeutic Implication. Front Immunol 2022; 13:857490. [PMID: 35422818 PMCID: PMC9002053 DOI: 10.3389/fimmu.2022.857490] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/07/2022] [Indexed: 12/19/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of COVID-19, which has broken out worldwide for more than two years. However, due to limited treatment, new cases of infection are still rising. Therefore, there is an urgent need to understand the basic molecular biology of SARS-CoV-2 to control this virus. SARS-CoV-2 replication and spread depend on the recruitment of host ribosomes to translate viral messenger RNA (mRNA). To ensure the translation of their own mRNAs, the SARS-CoV-2 has developed multiple strategies to globally inhibit the translation of host mRNAs and block the cellular innate immune response. This review provides a comprehensive picture of recent advancements in our understanding of the molecular basis and complexity of SARS-CoV-2 protein translation. Specifically, we summarize how this viral infection inhibits host mRNA translation to better utilize translation elements for translation of its own mRNA. Finally, we discuss the potential of translational components as targets for therapeutic interventions.
Collapse
Affiliation(s)
- Dejiu Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Lei Zhu
- College of Basic Medical, Qingdao Binhai University, Qingdao, China
| | - Yin Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Yanyan Gao
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
75
|
Song Y, He X, Yang W, Wu Y, Cui J, Tang T, Zhang R. Virus-specific editing identification approach reveals the landscape of A-to-I editing and its impacts on SARS-CoV-2 characteristics and evolution. Nucleic Acids Res 2022; 50:2509-2521. [PMID: 35234938 PMCID: PMC8934641 DOI: 10.1093/nar/gkac120] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 01/19/2022] [Accepted: 02/08/2022] [Indexed: 11/14/2022] Open
Abstract
Upon SARS-CoV-2 infection, viral intermediates specifically activate the IFN response through MDA5-mediated sensing and accordingly induce ADAR1 p150 expression, which might lead to viral A-to-I RNA editing. Here, we developed an RNA virus-specific editing identification pipeline, surveyed 7622 RNA-seq data from diverse types of samples infected with SARS-CoV-2, and constructed an atlas of A-to-I RNA editing sites in SARS-CoV-2. We found that A-to-I editing was dynamically regulated, varied between tissue and cell types, and was correlated with the intensity of innate immune response. On average, 91 editing events were deposited at viral dsRNA intermediates per sample. Moreover, editing hotspots were observed, including recoding sites in the spike gene that affect viral infectivity and antigenicity. Finally, we provided evidence that RNA editing accelerated SARS-CoV-2 evolution in humans during the epidemic. Our study highlights the ability of SARS-CoV-2 to hijack components of the host antiviral machinery to edit its genome and fuel its evolution, and also provides a framework and resource for studying viral RNA editing.
Collapse
MESH Headings
- Adenosine Deaminase/genetics
- Adenosine Deaminase/immunology
- Adenosine Deaminase/metabolism
- Angiotensin-Converting Enzyme 2/genetics
- Angiotensin-Converting Enzyme 2/immunology
- Angiotensin-Converting Enzyme 2/metabolism
- Base Sequence
- Binding Sites/genetics
- COVID-19/genetics
- COVID-19/immunology
- COVID-19/virology
- Evolution, Molecular
- Gene Expression/immunology
- Humans
- Immunity, Innate/genetics
- Immunity, Innate/immunology
- Interferon-Induced Helicase, IFIH1/genetics
- Interferon-Induced Helicase, IFIH1/immunology
- Interferon-Induced Helicase, IFIH1/metabolism
- Mutation
- Protein Binding
- RNA Editing/genetics
- RNA Editing/immunology
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/immunology
- RNA-Binding Proteins/metabolism
- SARS-CoV-2/genetics
- SARS-CoV-2/immunology
- SARS-CoV-2/physiology
- Sequence Homology, Nucleic Acid
- Spike Glycoprotein, Coronavirus/genetics
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/metabolism
Collapse
Affiliation(s)
- Yulong Song
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou510275, PR China
| | - Xiuju He
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou510275, PR China
| | - Wenbing Yang
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou510275, PR China
| | - Yaoxing Wu
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou510275, PR China
| | - Jun Cui
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou510275, PR China
| | - Tian Tang
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou510275, PR China
| | - Rui Zhang
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou510275, PR China
| |
Collapse
|
76
|
Escape and Over-Activation of Innate Immune Responses by SARS-CoV-2: Two Faces of a Coin. Viruses 2022; 14:v14030530. [PMID: 35336937 PMCID: PMC8951629 DOI: 10.3390/v14030530] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 02/06/2023] Open
Abstract
In the past 20 years, coronaviruses (CoVs), including SARS-CoV-1, MERS-CoV, and SARS-CoV-2, have rapidly evolved and emerged in the human population. The innate immune system is the first line of defense against invading pathogens. Multiple host cellular receptors can trigger the innate immune system to eliminate invading pathogens. However, these CoVs have acquired strategies to evade innate immune responses by avoiding recognition by host sensors, leading to impaired interferon (IFN) production and antagonizing of the IFN signaling pathways. In contrast, the dysregulated induction of inflammasomes, leading to uncontrolled production of IL-1 family cytokines (IL-1β and IL-18) and pyroptosis, has been associated with COVID-19 pathogenesis. This review summarizes innate immune evasion strategies employed by SARS-CoV-1 and MERS-CoV in brief and SARS-CoV-2 in more detail. In addition, we outline potential mechanisms of inflammasome activation and evasion and their impact on disease prognosis.
Collapse
|
77
|
SARS-CoV-2-mediated evasion strategies for antiviral interferon pathways. J Microbiol 2022; 60:290-299. [PMID: 35122601 PMCID: PMC8817151 DOI: 10.1007/s12275-022-1525-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/24/2021] [Accepted: 11/24/2021] [Indexed: 11/04/2022]
Abstract
With global expansion of the COVID-19 pandemic and the emergence of new variants, extensive efforts have been made to develop highly effective antiviral drugs and vaccines against SARS-CoV-2. The interactions of coronaviruses with host antiviral interferon pathways ultimately determine successful viral replication and SARS-CoV-2-induced pathogenesis. Innate immune receptors play an essential role in host defense against SARS-CoV-2 via the induction of IFN production and signaling. Here, we summarize the recent advances in innate immune sensing mechanisms of SARS-CoV-2 and various strategies by which SARS-CoV-2 antagonizes antiviral innate immune signaling pathways, with a particular focus on mechanisms utilized by multiple SARS-CoV-2 proteins to evade interferon induction and signaling in host cell. Understanding the underlying immune evasion mechanisms of SARS-CoV-2 is essential for the improvement of vaccines and therapeutic strategies.
Collapse
|
78
|
Boodhoo N, Matsuyama-Kato A, Shojadoost B, Behboudi S, Sharif S. The severe acute respiratory syndrome coronavirus 2 non-structural proteins 1 and 15 proteins mediate antiviral immune evasion. CURRENT RESEARCH IN VIROLOGICAL SCIENCE 2022; 3:100021. [PMID: 35187506 PMCID: PMC8837493 DOI: 10.1016/j.crviro.2022.100021] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/03/2022] [Accepted: 02/10/2022] [Indexed: 12/11/2022]
Abstract
Infection with pathogenic viruses is often sensed by innate receptors such as Toll-Like Receptors (TLRs) which stimulate type I and III interferons (IFNs) responses, to generate an antiviral state within many cell types. To counteract these antiviral systems, many viruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), encode non-structural proteins (NSPs) that mediate immune evasion. Using an overexpression system in A549 cells, we demonstrated a significant increase (p ≤ 0.0001) in Vesicular Stomatitis Virus (VSV)-EGFP reporter virus replication in cell lines overexpressing either the SARS-CoV-2 NSP1 or NSP15 when compared to control A549 cells. The increase in VSV-EGFP virus output was associated with a decrease in TLR2, TLR4 and TLR9 protein expression and a lack of antiviral protein production. Truncation of both NSP1 and NSP15 led to an increase in cellular TLR2, TLR4 and TLR9 as well as a decrease in TLR2 expression respectively. This observation can be attributed to the presence of a functional domain in NSP1 and NSP15 between amino acid (aa) 120–180 and aa 230–346, respectively. Both TLR3 and TLR9 ligands but not TLR2 ligand were highly effective at overcoming NSP1 and NSP15 functional interference based on significant decrease (p ≤ 0.0001) in VSV-EGFP virus replication. NSP1 or NSP15 intracellular interactions are likely low affinity interactions that can be easily disrupted by stimulating cells with specific TLR3 and TLR9 ligands. This report provides insights into the role of SARS-CoV-2 NSP1 and NSP15 in limiting specific TLR pathway activation, as an evasive mechanism against host innate responses.
Collapse
Affiliation(s)
- Nitish Boodhoo
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Ayumi Matsuyama-Kato
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Bahram Shojadoost
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Shahriar Behboudi
- The Pirbright Institute, Pirbright, Woking, United Kingdom.,Faculty of Health and Medical Sciences, School of Veterinary Medicine, University of Surrey, Guildford, Surrey, United Kingdom
| | - Shayan Sharif
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, N1G 2W1, Canada
| |
Collapse
|
79
|
Vere G, Alam MR, Farrar S, Kealy R, Kessler BM, O’Brien DP, Pinto-Fernández A. Targeting the Ubiquitylation and ISGylation Machinery for the Treatment of COVID-19. Biomolecules 2022; 12:biom12020300. [PMID: 35204803 PMCID: PMC8869442 DOI: 10.3390/biom12020300] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 12/15/2022] Open
Abstract
Ubiquitylation and ISGylation are protein post-translational modifications (PTMs) and two of the main events involved in the activation of pattern recognition receptor (PRRs) signals allowing the host defense response to viruses. As with similar viruses, SARS-CoV-2, the virus causing COVID-19, hijacks these pathways by removing ubiquitin and/or ISG15 from proteins using a protease called PLpro, but also by interacting with enzymes involved in ubiquitin/ISG15 machinery. These enable viral replication and avoidance of the host immune system. In this review, we highlight potential points of therapeutic intervention in ubiquitin/ISG15 pathways involved in key host-pathogen interactions, such as PLpro, USP18, TRIM25, CYLD, A20, and others that could be targeted for the treatment of COVID-19, and which may prove effective in combatting current and future vaccine-resistant variants of the disease.
Collapse
Affiliation(s)
- George Vere
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, UK; (G.V.); (M.R.A.); (S.F.); (B.M.K.)
- MRC Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| | - Md Rashadul Alam
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, UK; (G.V.); (M.R.A.); (S.F.); (B.M.K.)
| | - Sam Farrar
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, UK; (G.V.); (M.R.A.); (S.F.); (B.M.K.)
| | - Rachel Kealy
- Environmental Futures & Big Data Impact Lab, University of Exeter, Stocker Rd., Exeter EX4 4PY, UK;
| | - Benedikt M. Kessler
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, UK; (G.V.); (M.R.A.); (S.F.); (B.M.K.)
- Chinese Academy for Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, UK
| | - Darragh P. O’Brien
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, UK; (G.V.); (M.R.A.); (S.F.); (B.M.K.)
- Correspondence: (D.P.O.); (A.P.-F.)
| | - Adán Pinto-Fernández
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, UK; (G.V.); (M.R.A.); (S.F.); (B.M.K.)
- Chinese Academy for Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, UK
- Correspondence: (D.P.O.); (A.P.-F.)
| |
Collapse
|
80
|
Miorin L, Mire CE, Ranjbar S, Hume AJ, Huang J, Crossland NA, White KM, Laporte M, Kehrer T, Haridas V, Moreno E, Nambu A, Jangra S, Cupic A, Dejosez M, Abo KA, Tseng AE, Werder RB, Rathnasinghe R, Mutetwa T, Ramos I, de Aja JS, de Alba Rivas CG, Schotsaert M, Corley RB, Falvo JV, Fernandez-Sesma A, Kim C, Rossignol JF, Wilson AA, Zwaka T, Kotton DN, Mühlberger E, García-Sastre A, Goldfeld AE. The oral drug nitazoxanide restricts SARS-CoV-2 infection and attenuates disease pathogenesis in Syrian hamsters. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.02.08.479634. [PMID: 35169796 PMCID: PMC8845418 DOI: 10.1101/2022.02.08.479634] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
A well-tolerated and cost-effective oral drug that blocks SARS-CoV-2 growth and dissemination would be a major advance in the global effort to reduce COVID-19 morbidity and mortality. Here, we show that the oral FDA-approved drug nitazoxanide (NTZ) significantly inhibits SARS-CoV-2 viral replication and infection in different primate and human cell models including stem cell-derived human alveolar epithelial type 2 cells. Furthermore, NTZ synergizes with remdesivir, and it broadly inhibits growth of SARS-CoV-2 variants B.1.351 (beta), P.1 (gamma), and B.1617.2 (delta) and viral syncytia formation driven by their spike proteins. Strikingly, oral NTZ treatment of Syrian hamsters significantly inhibits SARS-CoV-2-driven weight loss, inflammation, and viral dissemination and syncytia formation in the lungs. These studies show that NTZ is a novel host-directed therapeutic that broadly inhibits SARS-CoV-2 dissemination and pathogenesis in human and hamster physiological models, which supports further testing and optimization of NTZ-based therapy for SARS-CoV-2 infection alone and in combination with antiviral drugs.
Collapse
|
81
|
Zimmermann P, Curtis N. Why Does the Severity of COVID-19 Differ With Age?: Understanding the Mechanisms Underlying the Age Gradient in Outcome Following SARS-CoV-2 Infection. Pediatr Infect Dis J 2022; 41:e36-e45. [PMID: 34966142 PMCID: PMC8740029 DOI: 10.1097/inf.0000000000003413] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/03/2021] [Indexed: 11/26/2022]
Abstract
Although there are many hypotheses for the age-related difference in the severity of COVID-19, differences in innate, adaptive and heterologous immunity, together with differences in endothelial and clotting function, are the most likely mechanisms underlying the marked age gradient. Children have a faster and stronger innate immune response to SARS-CoV-2, especially in the nasal mucosa, which rapidly controls the virus. In contrast, adults can have an overactive, dysregulated and less effective innate response that leads to uncontrolled pro-inflammatory cytokine production and tissue injury. More recent exposure to other viruses and routine vaccines in children might be associated with protective cross-reactive antibodies and T cells against SARS-CoV-2. There is less evidence to support other mechanisms that have been proposed to explain the age-related difference in outcome following SARS-CoV-2 infection, including pre-existing immunity from exposure to common circulating coronaviruses, differences in the distribution and expression of the entry receptors ACE2 and TMPRSS2, and difference in viral load.
Collapse
Affiliation(s)
- Petra Zimmermann
- From the Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
- Department of Paediatrics, Fribourg Hospital HFR, Fribourg, Switzerland
- Department of Paediatrics, The University of Melbourne, Parkville, Australia
- Infectious Diseases Research Group, Murdoch Children’s Research Institute, Parkville, Australia
| | - Nigel Curtis
- Department of Paediatrics, The University of Melbourne, Parkville, Australia
- Infectious Diseases Research Group, Murdoch Children’s Research Institute, Parkville, Australia
- Infectious Diseases Unit, The Royal Children’s Hospital Melbourne, Parkville, Australia
| |
Collapse
|
82
|
Madden EA, Diamond MS. Host cell-intrinsic innate immune recognition of SARS-CoV-2. Curr Opin Virol 2022; 52:30-38. [PMID: 34814102 PMCID: PMC8580835 DOI: 10.1016/j.coviro.2021.11.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 11/03/2021] [Indexed: 01/04/2023]
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) emerged at the end of 2019 and caused the pandemic of coronavirus disease 2019 (COVID-19). Basic and clinical investigations indicate that severe forms of COVID-19 are due in part to dysregulated immune responses to virus infection. The innate immune system is the first line of host defense against most virus infections, with pathogen recognition receptors detecting SARS-CoV-2 RNA and protein components and initiating pro-inflammatory and antiviral responses. Notwithstanding this response, SARS-CoV-2 proteins evade, inhibit, and skew innate immune signaling early in infection. In this review, we highlight the components of cell-based recognition of SARS-CoV-2 infection and the mechanisms employed by the virus to modulate these innate immune host defense pathways.
Collapse
Affiliation(s)
- Emily A Madden
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 631100, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA; The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
83
|
Bastard P, Zhang Q, Zhang SY, Jouanguy E, Casanova JL. Type I interferons and SARS-CoV-2: from cells to organisms. Curr Opin Immunol 2022; 74:172-182. [PMID: 35149239 PMCID: PMC8786610 DOI: 10.1016/j.coi.2022.01.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 01/12/2022] [Accepted: 01/15/2022] [Indexed: 02/06/2023]
Abstract
Type I interferons (IFNs) have broad and potent antiviral activity. We review the interplay between type I IFNs and SARS-CoV-2. Human cells infected with SARS-CoV-2 in vitro produce low levels of type I IFNs, and SARS-CoV-2 proteins can inhibit various steps in type I IFN production and response. Exogenous type I IFNs inhibit viral growth in vitro. In various animal species infected in vivo, type I IFN deficiencies underlie higher viral loads and more severe disease than in control animals. The early administration of exogenous type I IFNs improves infection control. In humans, inborn errors of, and auto-antibodies against type I IFNs underlie life-threatening COVID-19 pneumonia. Overall, type I IFNs are essential for host defense against SARS-CoV-2 in individual cells and whole organisms.
Collapse
Affiliation(s)
- Paul Bastard
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France; University of Paris, Imagine Institute, Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA; Department of Pediatrics, Necker Hospital for Sick Children, AP-HP, Paris, France.
| | - Qian Zhang
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France; University of Paris, Imagine Institute, Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Shen-Ying Zhang
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France; University of Paris, Imagine Institute, Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Emmanuelle Jouanguy
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France; University of Paris, Imagine Institute, Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France; University of Paris, Imagine Institute, Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA; Department of Pediatrics, Necker Hospital for Sick Children, AP-HP, Paris, France; Howard Hughes Medical Institute, New York, NY, USA.
| |
Collapse
|
84
|
Freitas RS, Crum TF, Parvatiyar K. SARS-CoV-2 Spike Antagonizes Innate Antiviral Immunity by Targeting Interferon Regulatory Factor 3. Front Cell Infect Microbiol 2022; 11:789462. [PMID: 35083167 PMCID: PMC8785962 DOI: 10.3389/fcimb.2021.789462] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/10/2021] [Indexed: 12/12/2022] Open
Abstract
Corona virus disease 2019 (COVID-19) pathogenesis is intimately linked to the severe acute respiratory syndrome corona virus 2 (SARS-CoV-2) and disease severity has been associated with compromised induction of type I interferon (IFN-I) cytokines which coordinate the innate immune response to virus infections. Here we identified the SARS-CoV-2 encoded protein, Spike, as an inhibitor of IFN-I that antagonizes viral RNA pattern recognition receptor RIG-I signaling. Ectopic expression of SARS-CoV-2 Spike blocked RIG-I mediated activation of IFNβ and downstream induction of interferon stimulated genes. Consequently, SARS-CoV-2 Spike expressing cells harbored increased RNA viral burden compared to control cells. Co-immunoprecipitation experiments revealed SARS-CoV-2 Spike associated with interferon regulatory factor 3 (IRF3), a key transcription factor that governs IFN-I activation. Co-expression analysis via immunoassays further indicated Spike specifically suppressed IRF3 expression as NF-κB and STAT1 transcription factor levels remained intact. Further biochemical experiments uncovered SARS-CoV-2 Spike potentiated proteasomal degradation of IRF3, implicating a novel mechanism by which SARS-CoV-2 evades the host innate antiviral immune response to facilitate COVID-19 pathogenesis.
Collapse
Affiliation(s)
- Raul S Freitas
- Department of Microbiology & Immunology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Tyler F Crum
- Department of Microbiology & Immunology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Kislay Parvatiyar
- Department of Microbiology & Immunology, Tulane University School of Medicine, New Orleans, LA, United States
| |
Collapse
|
85
|
Neufeldt CJ, Cerikan B, Cortese M, Frankish J, Lee JY, Plociennikowska A, Heigwer F, Prasad V, Joecks S, Burkart SS, Zander DY, Subramanian B, Gimi R, Padmanabhan S, Iyer R, Gendarme M, El Debs B, Halama N, Merle U, Boutros M, Binder M, Bartenschlager R. SARS-CoV-2 infection induces a pro-inflammatory cytokine response through cGAS-STING and NF-κB. Commun Biol 2022; 5:45. [PMID: 35022513 PMCID: PMC8755718 DOI: 10.1038/s42003-021-02983-5] [Citation(s) in RCA: 133] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 12/14/2021] [Indexed: 12/21/2022] Open
Abstract
SARS-CoV-2 is a novel virus that has rapidly spread, causing a global pandemic. In the majority of infected patients, SARS-CoV-2 leads to mild disease; however, in a significant proportion of infections, individuals develop severe symptoms that can lead to long-lasting lung damage or death. These severe cases are often associated with high levels of pro-inflammatory cytokines and low antiviral responses, which can cause systemic complications. Here, we have evaluated transcriptional and cytokine secretion profiles and detected a distinct upregulation of inflammatory cytokines in infected cell cultures and samples taken from infected patients. Building on these observations, we found a specific activation of NF-κB and a block of IRF3 nuclear translocation in SARS-CoV-2 infected cells. This NF-κB response was mediated by cGAS-STING activation and could be attenuated through several STING-targeting drugs. Our results show that SARS-CoV-2 directs a cGAS-STING mediated, NF-κB-driven inflammatory immune response in human epithelial cells that likely contributes to inflammatory responses seen in patients and could be therapeutically targeted to suppress severe disease symptoms.
Collapse
Affiliation(s)
- Christopher J Neufeldt
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany.
| | - Berati Cerikan
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| | - Mirko Cortese
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| | | | - Ji-Young Lee
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| | - Agnieszka Plociennikowska
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany.,Division Virus-Associated Carcinogenesis, German Cancer Research Center, Heidelberg, Germany
| | - Florian Heigwer
- Division of Signaling and Functional Genomics, German Cancer Research Center, and Department of Cell and Molecular Biology, Heidelberg University, Medical Faculty Mannheim, Mannheim, Germany
| | - Vibhu Prasad
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| | - Sebastian Joecks
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| | - Sandy S Burkart
- Research Group "Dynamics of Early Viral Infection and the Innate Antiviral Response", Division Virus-Associated Carcinogenesis, German Cancer Research Center, Heidelberg, Germany
| | - David Y Zander
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany.,Research Group "Dynamics of Early Viral Infection and the Innate Antiviral Response", Division Virus-Associated Carcinogenesis, German Cancer Research Center, Heidelberg, Germany
| | - Baskaran Subramanian
- Spring Bank Pharmaceuticals, Inc., 35 Corporate Drive, Hopkinton, MA, 01748, USA
| | - Rayomand Gimi
- Spring Bank Pharmaceuticals, Inc., 35 Corporate Drive, Hopkinton, MA, 01748, USA
| | | | - Radhakrishnan Iyer
- Spring Bank Pharmaceuticals, Inc., 35 Corporate Drive, Hopkinton, MA, 01748, USA
| | | | | | - Niels Halama
- Division of Translational Immunotherapy, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Uta Merle
- Department of Internal Medicine IV, University Hospital Heidelberg, Heidelberg, Germany
| | - Michael Boutros
- Division of Signaling and Functional Genomics, German Cancer Research Center, and Department of Cell and Molecular Biology, Heidelberg University, Medical Faculty Mannheim, Mannheim, Germany
| | - Marco Binder
- Research Group "Dynamics of Early Viral Infection and the Innate Antiviral Response", Division Virus-Associated Carcinogenesis, German Cancer Research Center, Heidelberg, Germany
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany. .,Division Virus-Associated Carcinogenesis, German Cancer Research Center, Heidelberg, Germany. .,German Center for Infection Research, Heidelberg partner site, Heidelberg, Germany.
| |
Collapse
|
86
|
Hatton CF, Botting RA, Dueñas ME, Haq IJ, Verdon B, Thompson BJ, Spegarova JS, Gothe F, Stephenson E, Gardner AI, Murphy S, Scott J, Garnett JP, Carrie S, Powell J, Khan CMA, Huang L, Hussain R, Coxhead J, Davey T, Simpson AJ, Haniffa M, Hambleton S, Brodlie M, Ward C, Trost M, Reynolds G, Duncan CJA. Delayed induction of type I and III interferons mediates nasal epithelial cell permissiveness to SARS-CoV-2. Nat Commun 2021; 12:7092. [PMID: 34876592 PMCID: PMC8651658 DOI: 10.1038/s41467-021-27318-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 11/12/2021] [Indexed: 12/15/2022] Open
Abstract
The nasal epithelium is a plausible entry point for SARS-CoV-2, a site of pathogenesis and transmission, and may initiate the host response to SARS-CoV-2. Antiviral interferon (IFN) responses are critical to outcome of SARS-CoV-2. Yet little is known about the interaction between SARS-CoV-2 and innate immunity in this tissue. Here we apply single-cell RNA sequencing and proteomics to a primary cell model of human nasal epithelium differentiated at air-liquid interface. SARS-CoV-2 demonstrates widespread tropism for nasal epithelial cell types. The host response is dominated by type I and III IFNs and interferon-stimulated gene products. This response is notably delayed in onset relative to viral gene expression and compared to other respiratory viruses. Nevertheless, once established, the paracrine IFN response begins to impact on SARS-CoV-2 replication. When provided prior to infection, recombinant IFNβ or IFNλ1 induces an efficient antiviral state that potently restricts SARS-CoV-2 viral replication, preserving epithelial barrier integrity. These data imply that the IFN-I/III response to SARS-CoV-2 initiates in the nasal airway and suggest nasal delivery of recombinant IFNs to be a potential chemoprophylactic strategy.
Collapse
Affiliation(s)
- Catherine F Hatton
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Rachel A Botting
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | | | - Iram J Haq
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- Paediatric Respiratory Medicine, Great North Children's Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Bernard Verdon
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Benjamin J Thompson
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Jarmila Stremenova Spegarova
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Florian Gothe
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Emily Stephenson
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Aaron I Gardner
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Sandra Murphy
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Jonathan Scott
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - James P Garnett
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Sean Carrie
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Jason Powell
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - C M Anjam Khan
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Lei Huang
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Rafiqul Hussain
- Genomics Core Facility, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Jonathan Coxhead
- Genomics Core Facility, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Tracey Davey
- Electron Microscopy Research Services, Newcastle University, Newcastle upon Tyne, UK
| | - A John Simpson
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Muzlifah Haniffa
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
- NIHR Newcastle Biomedical Research Centre, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
- Department of Dermatology, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Sophie Hambleton
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- Great North Children's Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Malcolm Brodlie
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- Paediatric Respiratory Medicine, Great North Children's Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Chris Ward
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Matthias Trost
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Gary Reynolds
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Christopher J A Duncan
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.
- Department of Infection and Tropical Medicine, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK.
| |
Collapse
|
87
|
Li W, Qiao J, You Q, Zong S, Peng Q, Liu Y, Hu S, Liu W, Li S, Shu X, Sun B. SARS-CoV-2 Nsp5 Activates NF-κB Pathway by Upregulating SUMOylation of MAVS. Front Immunol 2021; 12:750969. [PMID: 34858407 PMCID: PMC8631293 DOI: 10.3389/fimmu.2021.750969] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 10/21/2021] [Indexed: 12/28/2022] Open
Abstract
The COVID-19 is an infectious disease caused by SARS-CoV-2 infection. A large number of clinical studies found high-level expression of pro-inflammatory cytokines in patients infected with SARS-CoV-2, which fuels the rapid development of the disease. However, the specific molecular mechanism is still unclear. In this study, we found that SARS-CoV-2 Nsp5 can induce the expression of cytokines IL-1β, IL-6, TNF-α, and IL-2 in Calu-3 and THP1 cells. Further research found that Nsp5 enhances cytokine expression through activating the NF-κB signaling pathway. Subsequently, we investigated the upstream effectors of the NF-κB signal pathway on Nsp5 overexpression and discovered that Nsp5 increases the protein level of MAVS. Moreover, Nsp5 can promote the SUMOylation of MAVS to increase its stability and lead to increasing levels of MAVS protein, finally triggering activation of NF-κB signaling. The knockdown of MAVS and the inhibitor of SUMOylation treatment can attenuate Nsp5-mediated NF-κB activation and cytokine induction. We identified a novel role of SARS-CoV-2 Nsp5 to enhance cytokine production by activating the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Weiling Li
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| | - Jialu Qiao
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| | - Qiang You
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| | - Shan Zong
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| | - Qian Peng
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| | - Yuchen Liu
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| | - Song Hu
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| | - Wei Liu
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| | - Shufen Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Xiji Shu
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| | - Binlian Sun
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| |
Collapse
|
88
|
Sharma A, Kontodimas K, Bosmann M. The MAVS Immune Recognition Pathway in Viral Infection and Sepsis. Antioxid Redox Signal 2021; 35:1376-1392. [PMID: 34348482 PMCID: PMC8817698 DOI: 10.1089/ars.2021.0167] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 07/29/2021] [Indexed: 02/03/2023]
Abstract
Significance: It is estimated that close to 50 million cases of sepsis result in over 11 million annual fatalities worldwide. The pathognomonic feature of sepsis is a dysregulated inflammatory response arising from viral, bacterial, or fungal infections. Immune recognition of pathogen-associated molecular patterns is a hallmark of the host immune defense to combat microbes and to prevent the progression to sepsis. Mitochondrial antiviral signaling protein (MAVS) is a ubiquitous adaptor protein located at the outer mitochondrial membrane, which is activated by the cytosolic pattern recognition receptors, retinoic acid-inducible gene I (RIG-I) and melanoma differentiation associated gene 5 (MDA5), following binding of viral RNA agonists. Recent Advances: Substantial progress has been made in deciphering the activation of the MAVS pathway with its interacting proteins, downstream signaling events (interferon [IFN] regulatory factors, nuclear factor kappa B), and context-dependent type I/III IFN response. Critical Issues: In the evolutionary race between pathogens and the host, viruses have developed immune evasion strategies for cleavage, degradation, or blockade of proteins in the MAVS pathway. For example, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) M protein and ORF9b protein antagonize MAVS signaling and a protective type I IFN response. Future Directions: The role of MAVS as a sensor for nonviral pathogens, host cell injury, and metabolic perturbations awaits better characterization in the future. New technical advances in multidimensional single-cell analysis and single-molecule methods will accelerate the rate of new discoveries. The ultimate goal is to manipulate MAVS activities in the form of immune-modulatory therapies to combat infections and sepsis. Antioxid. Redox Signal. 35, 1376-1392.
Collapse
Affiliation(s)
- Arjun Sharma
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Konstantinos Kontodimas
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Markus Bosmann
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| |
Collapse
|
89
|
Vanderwall ER, Barrow KA, Rich LM, Read DF, Trapnell C, Okoloko O, Ziegler SF, Hallstrand TS, White MP, Debley JS. Airway epithelial interferon response to SARS-CoV-2 is inferior to rhinovirus and heterologous rhinovirus infection suppresses SARS-CoV-2 replication. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021. [PMID: 34845445 DOI: 10.1101/2021.11.20.469409] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
INTRODUCTION Common alphacoronaviruses and human rhinoviruses (HRV) induce type I and III interferon (IFN) responses important to limiting viral replication in the airway epithelium. In contrast, highly pathogenic betacoronaviruses including SARS-CoV-2 may evade or antagonize RNA-induced IFN I/III responses. METHODS In airway epithelial cells (AECs) from children and older adults we compared IFN I/III responses to SARS-CoV-2 and HRV-16, and assessed whether pre-infection with HRV-16, or pretreatment with recombinant IFN-β or IFN-λ, modified SARS-CoV-2 replication. Bronchial AECs from children (ages 6-18 yrs.) and older adults (ages 60-75 yrs.) were differentiated ex vivo to generate organotypic cultures. In a biosafety level 3 (BSL-3) facility, cultures were infected with SARS-CoV-2 or HRV-16, and RNA and protein was harvested from cell lysates 96 hrs. following infection and supernatant was collected 48 and 96 hrs. following infection. In additional experiments cultures were pre-infected with HRV-16, or pre-treated with recombinant IFN-β1 or IFN-λ2 before SARS-CoV-2 infection. RESULTS Despite significant between-donor heterogeneity SARS-CoV-2 replicated 100 times more efficiently than HRV-16. IFNB1, INFL2, and CXCL10 gene expression and protein production following HRV-16 infection was significantly greater than following SARS-CoV-2. IFN gene expression and protein production were inversely correlated with SARS-CoV-2 replication. Treatment of cultures with recombinant IFNβ1 or IFNλ2, or pre-infection of cultures with HRV-16, markedly reduced SARS-CoV-2 replication. DISCUSSION In addition to marked between-donor heterogeneity in IFN responses and viral replication, SARS-CoV-2 elicits a less robust IFN response in primary AEC cultures than does rhinovirus, and heterologous rhinovirus infection, or treatment with recombinant IFN-β1 or IFN-λ2, markedly reduces SARS-CoV-2 replication.
Collapse
|
90
|
Elsaid AF, Agrawal S, Agrawal A, Ghoneum M. Dietary Supplementation with Biobran/MGN-3 Increases Innate Resistance and Reduces the Incidence of Influenza-like Illnesses in Elderly Subjects: A Randomized, Double-Blind, Placebo-Controlled Pilot Clinical Trial. Nutrients 2021; 13:nu13114133. [PMID: 34836388 PMCID: PMC8618540 DOI: 10.3390/nu13114133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/13/2021] [Accepted: 11/14/2021] [Indexed: 12/13/2022] Open
Abstract
Influenza-like illness (ILI) remains a major cause of severe mortality and morbidity in the elderly. Aging is associated with a decreased ability to sense pathogens and mount effective innate and adaptive immune responses, thus mandating the development of protective nutraceuticals. Biobran/MGN-3, an arabinoxylan from rice bran, has potent anti-aging and immunomodulatory effects, suggesting that it may be effective against ILI. The objective of the current study was to investigate the effect of Biobran/MGN-3 on ILI incidence, natural killer (NK) cell activity, and the expressions of RIG-1 (retinoic acid-inducible gene 1), MDA5 (melanoma differentiation-associated protein 5), and their downstream signaling genes ISG-15 (interferon-stimulated genes 15) and MX1 (myxovirus (influenza) resistance 1, interferon-inducible). A double-blind, placebo-controlled clinical trial included eighty healthy older adults over 55 years old, 40 males and 40 females, who received either a placebo or Biobran/MGN-3 (500 mg/day) for 3 months during known ILI seasonality (peak incidence) in Egypt. The incidence of ILI was confirmed clinically according to the WHO case definition criteria. Hematological, hepatic, and renal parameters were assessed in all subjects, while the activity of NK and NKT (natural killer T) cells was assessed in six randomly chosen subjects in each group by the degranulation assay. The effect of Biobran/MGN-3 on RIG-1 and MDA5, as well as downstream ISG15 and MX1, was assessed in BEAS-2B pulmonary epithelial cells using flow cytometry. The incidence rate and incidence density of ILI in the Biobran/MGN-3 group were 5.0% and 0.57 cases per 1000 person-days, respectively, compared to 22.5% and 2.95 cases per 1000 person-days in the placebo group. Furthermore, Biobran/MGN-3 ingestion significantly enhanced NK activity compared to the basal levels and to the placebo group. In addition, Biobran/MGN-3 significantly upregulated the expression levels of RIG-1, MDA5, ISG15, and MX1 in the human pulmonary epithelial BEAS-2B cell lines. No side effects were observed. Taken together, Biobran/MGN-3 supplementation enhanced the innate immune response of elderly subjects by upregulating the NK activity associated with reduction of ILI incidence. It also upregulated the intracellular RIG-1, MDA5, ISG15, and MX1 expression in pulmonary epithelial tissue cultures. Biobran/MGN-3 could be a novel agent with prophylactic effects against a wide spectrum of respiratory viral infections that warrants further investigation.
Collapse
Affiliation(s)
- Ahmed F. Elsaid
- Department of Community Medicine and Public Health, Zagazig University, Zagazig 44519, Egypt
- Correspondence: or
| | - Sudhanshu Agrawal
- Division of Basic and Clinical Immunology, Department of Medicine, University of California, Irvine, CA 92697, USA; (S.A.); (A.A.)
| | - Anshu Agrawal
- Division of Basic and Clinical Immunology, Department of Medicine, University of California, Irvine, CA 92697, USA; (S.A.); (A.A.)
| | - Mamdooh Ghoneum
- Department of Surgery, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA;
| |
Collapse
|
91
|
Setaro AC, Gaglia MM. All hands on deck: SARS-CoV-2 proteins that block early anti-viral interferon responses. CURRENT RESEARCH IN VIROLOGICAL SCIENCE 2021; 2:100015. [PMID: 34786565 PMCID: PMC8588586 DOI: 10.1016/j.crviro.2021.100015] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/02/2021] [Accepted: 11/09/2021] [Indexed: 12/11/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is responsible for the current pandemic coronavirus disease of 2019 (COVID-19). Like other pathogens, SARS-CoV-2 infection can elicit production of the type I and III interferon (IFN) cytokines by the innate immune response. A rapid and robust type I and III IFN response can curb viral replication and improve clinical outcomes of SARS-CoV-2 infection. To effectively replicate in the host, SARS-CoV-2 has evolved mechanisms for evasion of this innate immune response, which could also modulate COVID-19 pathogenesis. In this review, we discuss studies that have reported the identification and characterization of SARS-CoV-2 proteins that inhibit type I IFNs. We focus especially on the mechanisms of nsp1 and ORF6, which are the two most potent and best studied SARS-CoV-2 type I IFN inhibitors. We also discuss naturally occurring mutations in these SARS-CoV-2 IFN antagonists and the impact of these mutations in vitro and on clinical presentation. As SARS-CoV-2 continues to spread and evolve, researchers will have the opportunity to study natural mutations in IFN antagonists and assess their role in disease. Additional studies that look more closely at previously identified antagonists and newly arising mutants may inform future therapeutic interventions for COVID-19.
Collapse
Key Words
- 3CLpro, 3-chymotrypsin like protease
- COVID-19, coronavirus disease of 2019
- IFN, interferon
- IFNAR, interferon alpha/beta receptor
- IFNLR, interferon lambda receptor
- IRF, interferon response factor
- ISRE, interferon stimulated response element
- Immune evasion
- MAVS, mitochondrial antiviral-signaling protein
- MDA-5, melanoma differentiation-associated protein 5
- ORF, open reading frame
- ORF6
- PLpro, papain-like protease
- RIG-I, retinoic acid-inducible gene I
- SARS-CoV-2
- SARS-CoV-2, SARS coronavirus 2
- SRP, signal recognition particle
- STAT, signal transducer and regulator of transcription
- SeV, Sendai virus
- TAB1, TGF-beta activated kinase 1 binding protein 1
- TAK1, TGF-beta activated kinase 1
- TBK1, TANK-binding kinase 1
- TLR, toll-like receptor
- TRIF, TIR domain-containing adapter-inducing interferon beta
- Type I interferon
- UTR, untranslated region
- eIF, eukaryotic initiation factor
- nsp, non-structural protein
- nsp1
Collapse
Affiliation(s)
- Alessandra C Setaro
- Program in Immunology, Tufts Graduate School of Biomedical Sciences, USA.,Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Tufts University, MA, USA
| | - Marta M Gaglia
- Program in Immunology, Tufts Graduate School of Biomedical Sciences, USA.,Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Tufts University, MA, USA
| |
Collapse
|
92
|
Francistiová L, Klepe A, Curley G, Gulya K, Dinnyés A, Filkor K. Cellular and Molecular Effects of SARS-CoV-2 Linking Lung Infection to the Brain. Front Immunol 2021; 12:730088. [PMID: 34484241 PMCID: PMC8414801 DOI: 10.3389/fimmu.2021.730088] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 07/27/2021] [Indexed: 12/13/2022] Open
Abstract
In December 2019, a new viral disease emerged and quickly spread all around the world. In March 2020, the COVID-19 outbreak was classified as a global pandemic and by June 2021, the number of infected people grew to over 170 million. Along with the patients' mild-to-severe respiratory symptoms, reports on probable central nervous system (CNS) effects appeared shortly, raising concerns about the possible long-term detrimental effects on human cognition. It remains unresolved whether the neurological symptoms are caused directly by the SARS-CoV-2 infiltration in the brain, indirectly by secondary immune effects of a cytokine storm and antibody overproduction, or as a consequence of systemic hypoxia-mediated microglia activation. In severe COVID-19 cases with impaired lung capacity, hypoxia is an anticipated subsidiary event that can cause progressive and irreversible damage to neurons. To resolve this problem, intensive research is currently ongoing, which seeks to evaluate the SARS-CoV-2 virus' neuroinvasive potential and the examination of the antibody and autoantibody generation upon infection, as well as the effects of prolonged systemic hypoxia on the CNS. In this review, we summarize the current research on the possible interplay of the SARS-CoV-2 effects on the lung, especially on alveolar macrophages and direct and indirect effects on the brain, with special emphasis on microglia, as a possible culprit of neurological manifestation during COVID-19.
Collapse
Affiliation(s)
- Linda Francistiová
- BioTalentum Ltd, Gödöllő, Hungary
- Department of Physiology and Animal Health, Institute of Physiology and Animal Health, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - Adrián Klepe
- BioTalentum Ltd, Gödöllő, Hungary
- Department of Cell Biology and Molecular Medicine, University of Szeged, Szeged, Hungary
- Hungarian Centre of Excellence for Molecular Medicine - University of Szeged (HCEMM-USZ) StemCell Research Group, University of Szeged, Szeged, Hungary
| | - Géza Curley
- BioTalentum Ltd, Gödöllő, Hungary
- Department of Cell Biology and Molecular Medicine, University of Szeged, Szeged, Hungary
- Hungarian Centre of Excellence for Molecular Medicine - University of Szeged (HCEMM-USZ) StemCell Research Group, University of Szeged, Szeged, Hungary
| | - Károly Gulya
- Department of Cell Biology and Molecular Medicine, University of Szeged, Szeged, Hungary
| | - András Dinnyés
- BioTalentum Ltd, Gödöllő, Hungary
- Department of Cell Biology and Molecular Medicine, University of Szeged, Szeged, Hungary
- Hungarian Centre of Excellence for Molecular Medicine - University of Szeged (HCEMM-USZ) StemCell Research Group, University of Szeged, Szeged, Hungary
| | - Kata Filkor
- BioTalentum Ltd, Gödöllő, Hungary
- Department of Cell Biology and Molecular Medicine, University of Szeged, Szeged, Hungary
- Hungarian Centre of Excellence for Molecular Medicine - University of Szeged (HCEMM-USZ) StemCell Research Group, University of Szeged, Szeged, Hungary
| |
Collapse
|
93
|
Bessière P, Wasniewski M, Picard-Meyer E, Servat A, Figueroa T, Foret-Lucas C, Coggon A, Lesellier S, Boué F, Cebron N, Gausserès B, Trumel C, Foucras G, Salguero FJ, Monchatre-Leroy E, Volmer R. Intranasal type I interferon treatment is beneficial only when administered before clinical signs onset in the SARS-CoV-2 hamster model. PLoS Pathog 2021; 17:e1009427. [PMID: 34370799 PMCID: PMC8376007 DOI: 10.1371/journal.ppat.1009427] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 08/19/2021] [Accepted: 07/07/2021] [Indexed: 12/23/2022] Open
Abstract
Impaired type I interferons (IFNs) production or signaling have been associated with severe COVID-19, further promoting the evaluation of recombinant type I IFNs as therapeutics against SARS-CoV-2 infection. In the Syrian hamster model, we show that intranasal administration of IFN-α starting one day pre-infection or one day post-infection limited weight loss and decreased viral lung titers. By contrast, intranasal administration of IFN-α starting at the onset of symptoms three days post-infection had no impact on the clinical course of SARS-CoV-2 infection. Our results provide evidence that early type I IFN treatment is beneficial, while late interventions are ineffective, although not associated with signs of enhanced disease. Type I interferons are major antiviral effectors produced by the host in response to viral infections. Importantly, delayed or impaired type I IFN signalling response has been shown to correlate with severe COVID-19. These observations provided further impetus to test the administration of exogenous type I IFN as a treatment against SARS-CoV-2 infection in patients. However, studies using MERS-CoV or SARS-CoV infected mice demonstrated that type I interferon treatment was beneficial when administered early, but was ineffective and even caused deleterious immunopathology when administered at later stages of infection. It is therefore crucial to understand how the timing of the type I IFN treatments modulates their efficacy and safety against SARS-CoV-2. In this preclinical study using the SARS-CoV-2-infected Syrian hamster model, we showed that intranasal type I IFN treatment was beneficial only when administered before the onset of symptoms. Importantly, late treatment was ineffective but was not associated with deleterious effects. This study provides important information to interpret clinical trials showing no to modest effects of type I IFNs in COVID-19 patients.
Collapse
Affiliation(s)
- Pierre Bessière
- Ecole nationale vétérinaire de Toulouse, ENVT, INRAE, UMR 1225, IHAP, Université de Toulouse, Toulouse, France
| | - Marine Wasniewski
- Nancy laboratory for rabies and wildlife, ANSES, Lyssavirus Unit, Malzéville, France
| | - Evelyne Picard-Meyer
- Nancy laboratory for rabies and wildlife, ANSES, Lyssavirus Unit, Malzéville, France
| | - Alexandre Servat
- Nancy laboratory for rabies and wildlife, ANSES, Lyssavirus Unit, Malzéville, France
| | - Thomas Figueroa
- Ecole nationale vétérinaire de Toulouse, ENVT, INRAE, UMR 1225, IHAP, Université de Toulouse, Toulouse, France
| | - Charlotte Foret-Lucas
- Ecole nationale vétérinaire de Toulouse, ENVT, INRAE, UMR 1225, IHAP, Université de Toulouse, Toulouse, France
| | - Amelia Coggon
- Ecole nationale vétérinaire de Toulouse, ENVT, INRAE, UMR 1225, IHAP, Université de Toulouse, Toulouse, France
| | - Sandrine Lesellier
- Nancy laboratory for rabies and wildlife, ANSES, Atton experimental facility, Atton, France
| | - Frank Boué
- Nancy laboratory for rabies and wildlife, ANSES, Lyssavirus Unit, Malzéville, France
| | - Nathan Cebron
- Ecole nationale vétérinaire de Toulouse, ENVT, INRAE, UMR 1225, IHAP, Université de Toulouse, Toulouse, France
| | - Blandine Gausserès
- Ecole nationale vétérinaire de Toulouse, ENVT, INRAE, UMR 1225, IHAP, Université de Toulouse, Toulouse, France
| | - Catherine Trumel
- Ecole nationale vétérinaire de Toulouse, ENVT, CREFRE, INSERM, Université de Toulouse, Toulouse, France
| | - Gilles Foucras
- Ecole nationale vétérinaire de Toulouse, ENVT, INRAE, UMR 1225, IHAP, Université de Toulouse, Toulouse, France
| | - Francisco J. Salguero
- National Infection Service, Public Health England (PHE), Porton Down, Salisbury, Wiltshire, United Kingdom
| | | | - Romain Volmer
- Ecole nationale vétérinaire de Toulouse, ENVT, INRAE, UMR 1225, IHAP, Université de Toulouse, Toulouse, France
- * E-mail:
| |
Collapse
|
94
|
Min YQ, Huang M, Sun X, Deng F, Wang H, Ning YJ. Immune evasion of SARS-CoV-2 from interferon antiviral system. Comput Struct Biotechnol J 2021; 19:4217-4225. [PMID: 34336145 PMCID: PMC8310780 DOI: 10.1016/j.csbj.2021.07.023] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 12/18/2022] Open
Abstract
The on-going pandemic of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to unprecedented medical and socioeconomic crises. Although the viral pathogenesis remains elusive, deficiency of effective antiviral interferon (IFN) responses upon SARS-CoV-2 infection has been recognized as a hallmark of COVID-19 contributing to the disease pathology and progress. Recently, multiple proteins encoded by SARS-CoV-2 have been shown to act as potential IFN antagonists with diverse possible mechanisms. Here, we summarize and discuss the strategies of SARS-CoV-2 for evasion of innate immunity (particularly the antiviral IFN responses), understanding of which will facilitate not only the elucidation of SARS-CoV-2 infection and pathogenesis but also the development of antiviral intervention therapies.
Collapse
Affiliation(s)
- Yuan-Qin Min
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071/430207, China
- Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071/430207, China
| | - Mengzhuo Huang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071/430207, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Xiulian Sun
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071/430207, China
- Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071/430207, China
| | - Fei Deng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071/430207, China
- Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071/430207, China
| | - Hualin Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071/430207, China
- Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071/430207, China
| | - Yun-Jia Ning
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071/430207, China
- Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071/430207, China
| |
Collapse
|