51
|
Du T, Huang L, Wang J, Sun J, Zhang W, Wang J. Luminescent metal-organic frameworks (LMOFs): An emerging sensing platform for food quality and safety control. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.03.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
52
|
Zhang X, Li Y, Zhang L. Designed Eu 3+ functionalized Zr-MOF-808 probe for highly sensitive monitoring multiple dyes. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 251:119464. [PMID: 33493933 DOI: 10.1016/j.saa.2021.119464] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/01/2021] [Accepted: 01/07/2021] [Indexed: 06/12/2023]
Abstract
Dyes detection remains a serious task because of their high toxicity. In present work, designed Eu3+ functionalized Zr-metal-organic framework (Eu3+@Zr-MOF-808) as fluorescent probe was constructed via post-synthetic modification (PSM) for rapid monitoring four most commonly used dyes (malachite green (MG), brilliant green (BG), alizarin red S (ARS), indigo red (IDR)). Systematic exploring on the sensing mechanism reveals that fluorescence resonance energy transfer (FRET) for BG, MG and IDR and inner filter effect (IFE) for ARS contribute to the realization of the fluorescence quenching process. It exhibits excellent sensing performances with low limit of detection (LOD) of 32, 58, 77 and 133 nM for BG, IDR, MG and ARS, respectively. The as-constructed Eu3+@Zr-MOF-808 was demonstrated to be a highly sensitive probe for screening of MG in fish pond and IDR in printing wastewater with satisfying results. Moreover, a portable test reagent bottle has been developed for visual on-site screening of sample containing dyes with naked eyes under UV light. This is the first attempt to construct the Eu3+@Zr-MOF-808 probe for sensingmultiple dyes in real samples and demonstrates promising applications in water quality monitoring.
Collapse
Affiliation(s)
- Xiaoting Zhang
- College of Chemistry, Liaoning University, 66 Chongshan Middle Road, Shenyang, Liaoning 110036, People's Republic of China
| | - Ying Li
- College of Chemistry, Liaoning University, 66 Chongshan Middle Road, Shenyang, Liaoning 110036, People's Republic of China.
| | - Lei Zhang
- College of Chemistry, Liaoning University, 66 Chongshan Middle Road, Shenyang, Liaoning 110036, People's Republic of China.
| |
Collapse
|
53
|
Song H, Liu G, Fan C, Pu S. A novel fluorescent sensor for Al3+ and Zn2+ based on a new europium complex with a 1,10-phenanthroline ligand. J RARE EARTH 2021. [DOI: 10.1016/j.jre.2020.02.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
54
|
Duan SL, Zou WK, Guan Y, Lu ZW, Hu MH, Wu YF, Li YQ, Zhang H, Zou P, Wang GT. A water-stable pyridine bisphosphonate-based metal–organic framework as a selective and sensitive luminescent probe for Cr(VI) ions and acetone. J COORD CHEM 2021. [DOI: 10.1080/00958972.2021.1893312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Shao-Long Duan
- School of Science, Sichuan Agricultural University, Ya’an, PR China
| | - Wen-Kang Zou
- School of Science, Sichuan Agricultural University, Ya’an, PR China
| | - Yu Guan
- School of Science, Sichuan Agricultural University, Ya’an, PR China
| | - Zhi-Wei Lu
- School of Science, Sichuan Agricultural University, Ya’an, PR China
| | - Ming-Han Hu
- School of Science, Sichuan Agricultural University, Ya’an, PR China
| | - Yu-Fei Wu
- School of Science, Sichuan Agricultural University, Ya’an, PR China
| | - Yu-Qing Li
- School of Science, Sichuan Agricultural University, Ya’an, PR China
| | - Hui Zhang
- School of Science, Sichuan Agricultural University, Ya’an, PR China
| | - Ping Zou
- School of Science, Sichuan Agricultural University, Ya’an, PR China
| | - Guang-Tu Wang
- School of Science, Sichuan Agricultural University, Ya’an, PR China
| |
Collapse
|
55
|
Applications of reticular diversity in metal–organic frameworks: An ever-evolving state of the art. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213655] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
56
|
Jeevananthan V, Thangavelu SAG, Loganathan P, Shanmugan S. Multisite Coordination Ligands on Cyclotriphosphazene Core for the Assembly of Metal Clusters and Porous Coordination Polymers. ChemistrySelect 2021. [DOI: 10.1002/slct.202004431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Velusamy Jeevananthan
- Department of Chemistry Faculty of Engineering and Technology SRM Institute of Science and Technology Kattankulathur, Kancheepuram 603203 Tamil Nadu India
| | - Senthil A. Gurusamy Thangavelu
- Department of Chemistry Faculty of Engineering and Technology SRM Institute of Science and Technology Kattankulathur, Kancheepuram 603203 Tamil Nadu India
| | - Pushparaj Loganathan
- Department of Chemistry Faculty of Engineering and Technology SRM Institute of Science and Technology Kattankulathur, Kancheepuram 603203 Tamil Nadu India
| | - Swaminathan Shanmugan
- Department of Chemistry Faculty of Engineering and Technology SRM Institute of Science and Technology Kattankulathur, Kancheepuram 603203 Tamil Nadu India
| |
Collapse
|
57
|
Sun T, Gao Y, Du Y, Zhou L, Chen X. Recent Advances in Developing Lanthanide Metal-Organic Frameworks for Ratiometric Fluorescent Sensing. Front Chem 2021; 8:624592. [PMID: 33569372 PMCID: PMC7868329 DOI: 10.3389/fchem.2020.624592] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 12/21/2020] [Indexed: 01/18/2023] Open
Abstract
Fluorescent probes have attracted special attention in developing optical sensor systems due to their reliable and rapid fluorescent response upon reaction with the analyte. Comparing to traditional fluorescent sensing systems that employ the intensity of only a single emission, ratiometric fluorescent sensors exhibit higher sensitivity and allow fast visual screening of analytes because of quantitatively analyzing analytes through the emission intensity ratio at two or more wavelengths. Lanthanide metal–organic frameworks (LnMOFs) are highly designable multifunctional luminescent materials as lanthanide ions, organic ligands, and guest metal ions or chromophores are all potential sources for luminescence. They thus have been widely employed as ratiometric fluorescent sensors. This mini review summarized the basic concept, optical features, construction strategies, and the ratiometric fluorescent sensing mechanisms of dual-emitting LnMOFs. The review ends with a discussion on the prospects, challenges, and new direction in designing LnMOF-based ratiometric fluorescent sensors.
Collapse
Affiliation(s)
- Tianying Sun
- School of Chemical Engineering and Technology/School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
| | - Yaobin Gao
- School of Chemical Engineering and Technology/School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
| | - Yangyang Du
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, China
| | - Lei Zhou
- School of Chemical Engineering and Technology/School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
| | - Xian Chen
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, China
| |
Collapse
|
58
|
High-performance field-effect transistor glucose biosensors based on bimetallic Ni/Cu metal-organic frameworks. Biosens Bioelectron 2021; 171:112736. [DOI: 10.1016/j.bios.2020.112736] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 10/11/2020] [Accepted: 10/14/2020] [Indexed: 01/17/2023]
|
59
|
Novel rare earth coordination polymers with greatly enhanced fluorescence by synergistic effect of carboxyl-functionalized poly(arylene ether nitrile) and 1,10-phenanthroline. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.110078] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
60
|
Aleem AR, Liu J, Wang J, Wang J, Zhao Y, Wang Y, Wang Y, Wang W, Rehman FU, Kipper MJ, Tang J. Selective Sensing of Cu 2+ and Fe 3+ Ions with Vis-Excitation using Fluorescent Eu 3+-Induced Aggregates of Polysaccharides (EIAP) in Mammalian Cells and Aqueous Systems. JOURNAL OF HAZARDOUS MATERIALS 2020; 399:122991. [PMID: 32937702 DOI: 10.1016/j.jhazmat.2020.122991] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/02/2020] [Accepted: 05/17/2020] [Indexed: 06/11/2023]
Abstract
Fluorescent lanthanide complexes have favorable features for fluorescence-based sensors compared to organic fluorophores and quantum dots. They exhibit very long fluorescence lifetimes, sharp emission bands, and stability with respect to photo-bleaching, without blinking. However, these complexes are usually hydrophobic, and many are excited by UV light, making them hazardous and incompatible with aqueous environments and biological samples. In this work, the strong fluorescent Eu3+-induced aggregates of polysaccharides (EIAP) was used to improve their aqueous solubility, and to tune the appropriate excitation wavelength in the visible range for avoiding toxicity of UV light in biological applications. The complexes exhibit bright fluorescence with an excitation maximum in the visible range, near 405 nm. EIAP 3 also exhibit rapid quenching response in the presence of transition metal ions. This enables the detection of Cu2+ and Fe3+ below 1 ppm. The reverse of quenching response of copper by the addition of a chelating agent makes it possible to recover the fluorescence property. Successfully, the EIAP exhibit cytocompatibility with mammalian cells. Thus, these new polysaccharide-based complexes have the potential for rapid, sensitive and selective metal ion sensors for the environmental systems.
Collapse
Affiliation(s)
- Abdur Raheem Aleem
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Sci. & Technology Cooperation on Hybrid Materials, Qingdao University, 308 Ningxia Road, Qingdao, 266071, People's Republic of China
| | - Jin Liu
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Sci. & Technology Cooperation on Hybrid Materials, Qingdao University, 308 Ningxia Road, Qingdao, 266071, People's Republic of China
| | - Jing Wang
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Sci. & Technology Cooperation on Hybrid Materials, Qingdao University, 308 Ningxia Road, Qingdao, 266071, People's Republic of China
| | - Jing Wang
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Sci. & Technology Cooperation on Hybrid Materials, Qingdao University, 308 Ningxia Road, Qingdao, 266071, People's Republic of China
| | - Yue Zhao
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Sci. & Technology Cooperation on Hybrid Materials, Qingdao University, 308 Ningxia Road, Qingdao, 266071, People's Republic of China
| | - Yao Wang
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Sci. & Technology Cooperation on Hybrid Materials, Qingdao University, 308 Ningxia Road, Qingdao, 266071, People's Republic of China
| | - Yanxin Wang
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Sci. & Technology Cooperation on Hybrid Materials, Qingdao University, 308 Ningxia Road, Qingdao, 266071, People's Republic of China
| | - Wei Wang
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Sci. & Technology Cooperation on Hybrid Materials, Qingdao University, 308 Ningxia Road, Qingdao, 266071, People's Republic of China
| | - Faisal Ul Rehman
- Department of Medical Oncology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266003, People's Republic of China
| | - Matt J Kipper
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, Colorado, 80523, USA
| | - Jianguo Tang
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Sci. & Technology Cooperation on Hybrid Materials, Qingdao University, 308 Ningxia Road, Qingdao, 266071, People's Republic of China.
| |
Collapse
|
61
|
In situ self-assembled cationic lanthanide metal organic framework membrane sensor for effective MnO 4- and ascorbic acid detection. Anal Chim Acta 2020; 1142:211-220. [PMID: 33280699 DOI: 10.1016/j.aca.2020.10.062] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/10/2020] [Accepted: 10/31/2020] [Indexed: 02/08/2023]
Abstract
Developing portable membrane sensors to accurately detect the biomolecule ascorbic acid (AA) is extremely important for food safety and human health. Herein, we successfully design and synthesize a novel cationic metal organic framework (Eu-pbmc, Hpbmc = 2-(pyridine-2-yl)-1H-benzimidazole-5-carboxylic acid) and assemble polyacrylonitrile/Eu-pbmc membrane (PEM) by an in-situ growth strategy. Benefiting from the appreciable loading of Eu-pbmc nanoparticles and high water permeation flux, PEM possesses effective detection for MnO4- with a limit of detection (LOD) of 17 nM. Utilizing the cationic porous framework, we load MnO4- into PEM and construct a "on-off-on" system for effective AA detection. The oxidative MnO4- can be reduced by AA and the resulting turn-on luminescence can reflect the concentration of AA. Compared with pure Eu-pbmc crystals, PEM exhibits improved AA detection performance with LOD of 48 nM and detection time of 1 min via a concise detection operation. The stable membrane sensor realizes an accurate detection in real biological samples, meeting the practical requirement. Moreover, an IMP logic gate is helpful to analyze MnO4- and AA in water. The proposed novel luminescence platform as well as reasonable "on-off-on" luminescence mode provide a promising method for AA detection.
Collapse
|
62
|
Huang J, Wu P. Controlled Assembly of Luminescent Lanthanide-Organic Frameworks via Post-Treatment of 3D-Printed Objects. NANO-MICRO LETTERS 2020; 13:15. [PMID: 34138212 PMCID: PMC8187549 DOI: 10.1007/s40820-020-00543-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 09/29/2020] [Indexed: 05/02/2023]
Abstract
Complex multiscale assemblies of metal-organic frameworks are essential in the construction of large-scale optical platforms but often restricted by their bulk nature and conventional techniques. The integration of nanomaterials and 3D printing technologies allows the fabrication of multiscale functional architectures. Our study reports a unique method of controlled 3D assembly purely relying on the post-printing treatment of printed constructs. By immersing a 3D-printed patterned construct consisting of organic ligand in a solution of lanthanide ions, in situ growth of lanthanide metal-organic frameworks (LnMOFs) can rapidly occur, resulting in macroscopic assemblies and tunable fluorescence properties. This phenomenon, caused by coordination and chelation of lanthanide ions, also renders a sub-millimeter resolution and high shape fidelity. As a proof of concept, a type of 3D assembled LnMOFs-based optical sensing platform has demonstrated the feasibility in response to small molecules such as acetone. It is anticipated that the facile printing and design approach developed in this work can be applied to fabricate bespoke multiscale architectures of functional materials with controlled assembly, bringing a realistic and economic prospect.
Collapse
Affiliation(s)
- Jiahui Huang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University, Shanghai, 200433, People's Republic of China
| | - Peiyi Wu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University, Shanghai, 200433, People's Republic of China.
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Center for Advanced Low-Dimension Materials, Donghua University, Shanghai, 201620, People's Republic of China.
| |
Collapse
|
63
|
Wu S, Zhu M, Zhang Y, Kosinova M, Fedin VP, Gao E. Luminescent sensors based on coordination polymers with adjustable emissions for detecting biomarker of pollutant ethylbenzene and styrene. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.6058] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Shuangyan Wu
- The Key Laboratory of the Inorganic Molecule‐Based Chemistry of Liaoning Province and Laboratory of Coordination Chemistry Shenyang University of Chemical Technology 11th Street, Shenyang Economic and Technological Development Zone Shenyang Liaoning 110142 China
| | - Mingchang Zhu
- The Key Laboratory of the Inorganic Molecule‐Based Chemistry of Liaoning Province and Laboratory of Coordination Chemistry Shenyang University of Chemical Technology 11th Street, Shenyang Economic and Technological Development Zone Shenyang Liaoning 110142 China
| | - Ying Zhang
- The Key Laboratory of the Inorganic Molecule‐Based Chemistry of Liaoning Province and Laboratory of Coordination Chemistry Shenyang University of Chemical Technology 11th Street, Shenyang Economic and Technological Development Zone Shenyang Liaoning 110142 China
| | - Marina Kosinova
- Nikolaev Institute of Inorganic Chemistry Siberian Branch of the Russian Academy of Sciences 3, Acad. Lavrentiev Ave. Novosibirsk 630090 Russian Federation
| | - Vladimir P. Fedin
- Nikolaev Institute of Inorganic Chemistry Siberian Branch of the Russian Academy of Sciences 3, Acad. Lavrentiev Ave. Novosibirsk 630090 Russian Federation
| | - Enjun Gao
- School of Chemical Engineering University of Science and Technology Liaoning Anshan Liaoning 114051 China
- The Key Laboratory of the Inorganic Molecule‐Based Chemistry of Liaoning Province and Laboratory of Coordination Chemistry Shenyang University of Chemical Technology 11th Street, Shenyang Economic and Technological Development Zone Shenyang Liaoning 110142 China
| |
Collapse
|
64
|
Ruan B, Yang J, Zhang YJ, Ma N, Shi D, Jiang T, Tsai FC. UiO-66 derivate as a fluorescent probe for Fe3+ detection. Talanta 2020; 218:121207. [DOI: 10.1016/j.talanta.2020.121207] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/17/2020] [Accepted: 05/20/2020] [Indexed: 01/07/2023]
|
65
|
Dong J, Hou SL, Zhao B. Bimetallic Lanthanide-Organic Framework Membranes as a Self-Calibrating Luminescent Sensor for Rapidly Detecting Antibiotics in Water. ACS APPLIED MATERIALS & INTERFACES 2020; 12:38124-38131. [PMID: 32805943 DOI: 10.1021/acsami.0c09940] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Rapid, facile, and reliable recognition of different antibiotics by self-calibrating luminescent sensors are important for practical requirements. Herein, we design and synthesize a series of Eu1-xTbx-MOF using a flexible ligand H4L (5,5'-(propane-1,3-diylbis(oxy))di-isophthalic acid). With changing reactant time, submicrometer bimetallic SMOF-10-10h with homogeneous morphology was achieved and further fabricated MOF-based membrane combining with polymer materials. A luminescent study indicated that the bimetallic SMOF-10-10h membrane possesses a legible emission peak for Eu3+ and Tb3+ ions, which can act as a self-calibrating luminescent probe for efficiently sensing different antibiotics within a certain concentration range through two-dimensional (2D) readouts based on the emission intensity ratio. Our work first reports an inexpensive and convenience bimetallic MOF-based membrane as a luminescent sensor with self-calibrating to detect various antibiotics, which makes it a potential luminescent sensor for beneficial application.
Collapse
Affiliation(s)
- Jie Dong
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry (Ministry of Education), Nankai University, Tianjin 300071, China
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Sheng-Li Hou
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry (Ministry of Education), Nankai University, Tianjin 300071, China
| | - Bin Zhao
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry (Ministry of Education), Nankai University, Tianjin 300071, China
| |
Collapse
|
66
|
Hidalgo-Rosa Y, Treto-Suárez MA, Schott E, Zarate X, Páez-Hernández D. Sensing mechanism elucidation of a europium(III) metal-organic framework selective to aniline: A theoretical insight by means of multiconfigurational calculations. J Comput Chem 2020; 41:1956-1964. [PMID: 32559320 DOI: 10.1002/jcc.26365] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/15/2020] [Accepted: 05/27/2020] [Indexed: 01/20/2023]
Abstract
A theoretical procedure, via quantum chemical computations, to elucidate the detection principle of the turn-off luminescence mechanism of an Eu-based Metal-Organic Framework sensor (Eu-MOF) selective to aniline, is accomplished. The energy transfer channels that take place in the Eu-MOF, as well as understanding the luminescence quenching by aniline, were investigated using the well-known and accurate multiconfigurational ab initio methods along with sTD-DFT. Based on multireference calculations, the sensitization pathway from the ligand (antenna) to the lanthanide was assessed in detail, that is, intersystem crossing (ISC) from the S1 to the T1 state of the ligand, with subsequent energy transfer to the 5 D0 state of Eu3+ . Finally, emission from the 5 D0 state to the 7 FJ state is clearly evidenced. Otherwise, the interaction of Eu-MOF with aniline produces a mixture of the electronic states of both systems, where molecular orbitals on aniline now appear in the active space. Consequently, a stabilization of the T1 state of the antenna is observed, blocking the energy transfer to the 5 D0 state of Eu3+ , leading to a non-emissive deactivation. Finally, in this paper, it was demonstrated that the host-guest interactions, which are not taken frequently into account by previous reports, and the employment of high-level theoretical approaches are imperative to raise new concepts that explain the sensing mechanism associated to chemical sensors.
Collapse
Affiliation(s)
- Yoan Hidalgo-Rosa
- Doctorado en Fisicoquímica Molecular, Universidad Andres Bello, Santiago de Chile, Chile.,Millennium Nuclei on Catalytic Processes toward Sustainable Chemistry (CSC), Santiago, Chile
| | - Manuel A Treto-Suárez
- Doctorado en Fisicoquímica Molecular, Universidad Andres Bello, Santiago de Chile, Chile
| | - Eduardo Schott
- Millennium Nuclei on Catalytic Processes toward Sustainable Chemistry (CSC), Santiago, Chile.,Departamento de Química Inorgánica, UC Energy Research Center, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ximena Zarate
- Instituto de Ciencias Químicas Aplicadas, Theoretical and Computational Chemistry Center, Facultad de Ingeniería, Universidad Autónoma de Chile, Santiago, Chile
| | - Dayán Páez-Hernández
- Doctorado en Fisicoquímica Molecular, Universidad Andres Bello, Santiago de Chile, Chile.,Facultad de Ciencias Exactas, Universidad Andres Bello, Center of Applied Nanosciences (CANS), Santiago de Chile, Chile
| |
Collapse
|
67
|
Two kinds of 2,4-dichlorobenzoate-based lanthanide coordination polymers tuned by 4,4′-bipyridine: Syntheses, structures, photoluminescence, and magnetism. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119648] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
68
|
Zhou X, Wang Y, Wang H, Xiang L, Yan Y, Li L, Xiang G, Li Y, Jiang S, Tang X, Zhou X. Nd3+ and Nd3+/Yb3+-incorporated complexes as optical thermometer working in the second biological window. SENSING AND BIO-SENSING RESEARCH 2020. [DOI: 10.1016/j.sbsr.2020.100345] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
69
|
Bejan D, Bahrin LG, Shova S, Marangoci NL, Kökҫam-Demir Ü, Lozan V, Janiak C. New Microporous Lanthanide Organic Frameworks. Synthesis, Structure, Luminescence, Sorption, and Catalytic Acylation of 2-Naphthol. Molecules 2020; 25:E3055. [PMID: 32635351 PMCID: PMC7411860 DOI: 10.3390/molecules25133055] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 06/30/2020] [Accepted: 07/02/2020] [Indexed: 11/16/2022] Open
Abstract
New metal-organic frameworks (MOF) with lanthanum(III), cerium(III), neodymium(III), europium(III), gadolinium(III), dysprosium(III), and holmium(III)] and the ligand precursor 1,3,5-tris(4-carboxyphenyl)-2,4,6-trimethylbenzene (H3L) were synthesized under solvothermal conditions. Single crystal x-ray analysis confirmed the formation of three-dimensional frameworks of [LnL(H2O)2]n·xDMF·yH2O for Ln = La, Ce, and Nd. From the nitrogen sorption experiments, the compounds showed permanent porosity with Brunauer-Emmett-Teller (BET) surface areas of about 400 m2/g, and thermal stability up to 500 °C. Further investigations showed that these Ln-MOFs exhibit catalytic activity, paving the way for potential applications within the field of catalysis.
Collapse
Affiliation(s)
- Dana Bejan
- “Petru Poni” Institute of Macromolecular Chemistry, Romanian Academy, 700487 Iasi, Romania; (L.G.B.); (S.S.); (N.L.M.)
| | - Lucian Gabriel Bahrin
- “Petru Poni” Institute of Macromolecular Chemistry, Romanian Academy, 700487 Iasi, Romania; (L.G.B.); (S.S.); (N.L.M.)
| | - Sergiu Shova
- “Petru Poni” Institute of Macromolecular Chemistry, Romanian Academy, 700487 Iasi, Romania; (L.G.B.); (S.S.); (N.L.M.)
| | - Narcisa Laura Marangoci
- “Petru Poni” Institute of Macromolecular Chemistry, Romanian Academy, 700487 Iasi, Romania; (L.G.B.); (S.S.); (N.L.M.)
| | - Ülkü Kökҫam-Demir
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine Universität Düsseldorf, Universitätsstr. 1, D 40225 Düsseldorf, Germany;
| | - Vasile Lozan
- “Petru Poni” Institute of Macromolecular Chemistry, Romanian Academy, 700487 Iasi, Romania; (L.G.B.); (S.S.); (N.L.M.)
- Institute of Chemistry of MECR, Academiei str. 3, MD2028 Chisinau, Moldova
| | - Christoph Janiak
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine Universität Düsseldorf, Universitätsstr. 1, D 40225 Düsseldorf, Germany;
| |
Collapse
|
70
|
Razavi SAA, Morsali A. Metal ion detection using luminescent-MOFs: Principles, strategies and roadmap. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213299] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
71
|
|
72
|
Dai X, Hao JN, Gu J, Li Y. Multivalued Logic Assay of the Disease Marker of α-Ketoglutaric Acid by a Luminescent MOF-Based Biosensor. ACS APPLIED BIO MATERIALS 2020; 3:3792-3799. [DOI: 10.1021/acsabm.0c00378] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Xu Dai
- Laboratory of Low-Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, Frontier Science Center of the Materials Biology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Ji-Na Hao
- Laboratory of Low-Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, Frontier Science Center of the Materials Biology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Jinlou Gu
- Laboratory of Low-Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, Frontier Science Center of the Materials Biology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Yongsheng Li
- Laboratory of Low-Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, Frontier Science Center of the Materials Biology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, P. R. China
| |
Collapse
|
73
|
Gamonal A, Sun C, Mariano AL, Fernandez-Bartolome E, Guerrero-SanVicente E, Vlaisavljevich B, Castells-Gil J, Marti-Gastaldo C, Poloni R, Wannemacher R, Cabanillas-Gonzalez J, Sanchez Costa J. Divergent Adsorption-Dependent Luminescence of Amino-Functionalized Lanthanide Metal-Organic Frameworks for Highly Sensitive NO 2 Sensors. J Phys Chem Lett 2020; 11:3362-3368. [PMID: 32195588 DOI: 10.1021/acs.jpclett.0c00457] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
A novel gas sensing mechanism exploiting lanthanide luminescence modulation upon NO2 adsorption is demonstrated here. Two isostructural lanthanide-based metal-organic frameworks (MOFs) are used, including an amino group as the sensitive recognition center for NO2 molecules. The transfer of energy from the organic ligands to Ln is strongly dependent on the presence of NO2, resulting in an unprecedented photoluminescent sensing scheme. Thereby, NO2 exposition triggers either a reversible enhancement or a decrease in the luminescence intensity, depending on the lanthanide ion (Eu or Tb). Our experimental studies combined with density functional theory and complete active space self-consistent field calculations provide an understanding of the nature and effects of NO2 interactions within the MOFs and the signal transduction mechanism.
Collapse
Affiliation(s)
- Arturo Gamonal
- IMDEA Nanociencia, Ciudad Universitaria de Cantoblanco, Madrid 28049, Spain
| | - Chen Sun
- IMDEA Nanociencia, Ciudad Universitaria de Cantoblanco, Madrid 28049, Spain
| | - A Lorenzo Mariano
- SIMaP laboratory, CNRS, University Grenoble Alpes, Grenoble 38400, France
| | | | | | - Bess Vlaisavljevich
- University of South Dakota, 414 East Clark Street, Vermillion, South Dakota 57069, United States
| | - Javier Castells-Gil
- Instituto de Ciencia Molecular, Universitat de Valencia, Catedrático José Beltrán 2, Paterna 46980, Spain
| | - Carlos Marti-Gastaldo
- Instituto de Ciencia Molecular, Universitat de Valencia, Catedrático José Beltrán 2, Paterna 46980, Spain
| | - Roberta Poloni
- SIMaP laboratory, CNRS, University Grenoble Alpes, Grenoble 38400, France
| | | | | | - Jose Sanchez Costa
- IMDEA Nanociencia, Ciudad Universitaria de Cantoblanco, Madrid 28049, Spain
| |
Collapse
|
74
|
Ruan B, Liu HL, Xie L, Ding H, Zhang Y, Wu J, Huang Z, Shi D, Jiang T, Tsai FC. The Fluorescence Property of Zirconium-Based MOFs Adsorbed Sulforhodamine B. J Fluoresc 2020; 30:427-435. [PMID: 32314138 DOI: 10.1007/s10895-020-02531-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 03/26/2020] [Indexed: 12/14/2022]
Abstract
Sulforhodamine B (SRB) is widely utilized for cell staining and laser field. But its application is limited by aggregation-caused quenching (ACQ). In this work, we evaluated the use of UiO-66 and UiO-67 of Zr-based metal organic frameworks (Zr-MOFs) as the host to adsorb SRB molecules due to the high stabily and good loading capacity of Zr-MOFs. The fluorescence properties of the compounds were then discussed respectively. Due to the aperture difference between UiO-66 and UiO-67, they showed distinct fluorescence properties after loading SRB. When the concentration reaches 5 ppm, fluorescence quenching begins to occur in SRB@UiO-66, while it occurs in SRB@UiO-67 at 2 ppm. The solution of quenching phenomenon could open new avenues for the extensive use of SRB.
Collapse
Affiliation(s)
- Bo Ruan
- Hubei Key Laboratory of Polymer Materials, Key Laboratory for the Green Preparation and Application of Functional Materials (Ministry of Education), Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, China
| | - Huan-Li Liu
- Hubei Key Laboratory of Polymer Materials, Key Laboratory for the Green Preparation and Application of Functional Materials (Ministry of Education), Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, China
| | - Lei Xie
- Hubei Key Laboratory of Polymer Materials, Key Laboratory for the Green Preparation and Application of Functional Materials (Ministry of Education), Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, China
| | - Hui Ding
- Hubei Key Laboratory of Polymer Materials, Key Laboratory for the Green Preparation and Application of Functional Materials (Ministry of Education), Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, China
| | - Ya Zhang
- Hubei Key Laboratory of Polymer Materials, Key Laboratory for the Green Preparation and Application of Functional Materials (Ministry of Education), Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, China
| | - Jin Wu
- Hubei Key Laboratory of Polymer Materials, Key Laboratory for the Green Preparation and Application of Functional Materials (Ministry of Education), Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, China
| | - Zhe Huang
- Hubei Key Laboratory of Polymer Materials, Key Laboratory for the Green Preparation and Application of Functional Materials (Ministry of Education), Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, China
| | - Dean Shi
- Hubei Key Laboratory of Polymer Materials, Key Laboratory for the Green Preparation and Application of Functional Materials (Ministry of Education), Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, China
| | - Tao Jiang
- Hubei Key Laboratory of Polymer Materials, Key Laboratory for the Green Preparation and Application of Functional Materials (Ministry of Education), Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, China
| | - Fang-Chang Tsai
- Hubei Key Laboratory of Polymer Materials, Key Laboratory for the Green Preparation and Application of Functional Materials (Ministry of Education), Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, China.
| |
Collapse
|
75
|
Feng L, Dong C, Li M, Li L, Jiang X, Gao R, Wang R, Zhang L, Ning Z, Gao D, Bi J. Terbium-based metal-organic frameworks: highly selective and fast respond sensor for styrene detection and construction of molecular logic gate. JOURNAL OF HAZARDOUS MATERIALS 2020; 388:121816. [PMID: 31843415 DOI: 10.1016/j.jhazmat.2019.121816] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 11/19/2019] [Accepted: 12/02/2019] [Indexed: 05/23/2023]
Abstract
Volatile organic compounds (VOCs) are extremely harmful to the human body and environment, thus it is greatly meaningful and urgent to detect VOCs. In this work, terbium-based metal-organic frameworks (Tb-MOFs) have been prepared successfully via a facile and efficient route. These well-constructed Tb-MOFs architectures exhibit characteristic green emission of Tb3+ ion upon excitation of UV light. It is noteworthy that the Tb-MOFs can act as a convenient and efficient luminescent sensor for VOCs. Especially, the Tb-MOFs displayed high selectivity and superior sensitivity towards the sensing of styrene solution and vapor through fluorescence quenching mechanism. The Tb-MOFs can realize fast detection for styrene vapor with a response time of 30 s. The mechanism of fluorescence quenching of Tb-MOFs induced by styrene was also discussed. More importantly, we have designed a logic gate operation with the combination of the sensor for the intelligent detection of styrene. This developed type of lanthanide luminescent metal-organic frameworks (Ln-MOFs) based on the combination of fluorescence sensor and logic gate has a great application prospect in the detection of VOCs in daily life.
Collapse
Affiliation(s)
- Li Feng
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Chengli Dong
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Mingfeng Li
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Lanxin Li
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Xin Jiang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Rong Gao
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Ruojun Wang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Lijuan Zhang
- Institute of Process Engineering, Chinese Academy of Science, Beijing 100190, China
| | - Zhanglei Ning
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China.
| | - Daojiang Gao
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China.
| | - Jian Bi
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| |
Collapse
|
76
|
Wu S, Zhang Y, Zhu M, Kosinova M, Fedin VP, Gao E. Three coordination polymers with regulated coordination interactions as fluorescent sensors for monitoring purine metabolite uric acid. Dalton Trans 2020; 49:4343-4351. [PMID: 32163086 DOI: 10.1039/d0dt00175a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A facile optical sensor for uric acid (UA), an early pathological signature for the metabolic function of humans, was developed based on water-stable coordination polymers (CPs). Herein, three new isostructural fluorescent CPs, [Ln(TCPB)(DMF)3]n (Ln = La, CP 1; Ce, CP 2 and Pr, CP 3; H3TCPB = 1,3,5-tris(1-(2-carboxyphenyl)-1H-pyrazol-3-yl)benzene), with various metal ions were solvothermally synthesized. Significantly, by regulating the metal-organic coordination interactions, the fabricated CP 3 can quantitatively recognize UA with higher sensitivity compared with CP 1 and CP 2. The mechanism for the sensing properties further demonstrates the best performance of CP 3 and the excellent selectivity for UA monitoring. This work represents the strategy of designing fluorescent CP sensors to determine UA and provides a convenient approach for developing analysis platforms for the assessment of related disease progress and human health monitoring.
Collapse
Affiliation(s)
- Shuangyan Wu
- The Key Laboratory of the Inorganic Molecule-Based Chemistry of Liaoning Province and Laboratory of Coordination Chemistry, Shenyang University of Chemical Technology, Shenyang, Liaoning 110142, PR China
| | - Ying Zhang
- The Key Laboratory of the Inorganic Molecule-Based Chemistry of Liaoning Province and Laboratory of Coordination Chemistry, Shenyang University of Chemical Technology, Shenyang, Liaoning 110142, PR China
| | - Mingchang Zhu
- The Key Laboratory of the Inorganic Molecule-Based Chemistry of Liaoning Province and Laboratory of Coordination Chemistry, Shenyang University of Chemical Technology, Shenyang, Liaoning 110142, PR China
| | - Marina Kosinova
- Nikolaev Institute of Inorganic Chemistry, Lavrentiev Avenue 3, Novosibirsk, 630090, Russia Federation
| | - Vladimir P Fedin
- Nikolaev Institute of Inorganic Chemistry, Lavrentiev Avenue 3, Novosibirsk, 630090, Russia Federation
| | - Enjun Gao
- The Key Laboratory of the Inorganic Molecule-Based Chemistry of Liaoning Province and Laboratory of Coordination Chemistry, Shenyang University of Chemical Technology, Shenyang, Liaoning 110142, PR China and School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning 114051, PR China.
| |
Collapse
|
77
|
Jia P, Wang Z, Zhang Y, Zhang D, Gao W, Su Y, Li Y, Yang C. Selective sensing of Fe 3+ ions in aqueous solution by a biodegradable platform based lanthanide metal organic framework. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 230:118084. [PMID: 32000062 DOI: 10.1016/j.saa.2020.118084] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 01/08/2020] [Accepted: 01/20/2020] [Indexed: 05/25/2023]
Abstract
As a significant metal ion in the environmental and biological systems, excess or shortage of Fe3+ from the organism can cause a host of diseases. So it is very urgent to explore an explicit, rapid and recoverable method for the detection of Fe3+ ions. Herein, a novel and flexible ligand containing 12 carboxyl groups (BHM-COOH) is used for the structure of a series of luminescent Eu3+/Tb3+-metal-organic frameworks (MOFs). A reliable and convenient luminescent detection platform is constructed by combining polylactic acid (PLA) film with Eu0.24Tb0.76-BHM-COOH. More importantly, the luminescent platform can highly sensitive to sense Fe3+ ions through fluorescence quenching (Stern-volmer constant Ksv = 1.27 × 104 M-1 for Fe(NO3)3), and detection limit can be as low as 4.47 μM. The sensing mechanism is ascribed to the fluorescence quenching caused by the competitive absorption between Eu0.24Tb0.76-BHM-COOH and Fe3+ ion. At the same time, the sensor can be reused many times. These exciting results indicate that Eu0.24Tb0.76-BHM-COOH film can serve as a promising multi-responsive luminescent sensor for environmental pollutant monitoring.
Collapse
Affiliation(s)
- Peng Jia
- School of Materials Science and Engineering, Chongqing University of Technology, Chongqing 400054, PR China
| | - Zhonghao Wang
- School of Materials Science and Engineering, Chongqing University of Technology, Chongqing 400054, PR China
| | - Yongfeng Zhang
- School of Materials Science and Engineering, Chongqing University of Technology, Chongqing 400054, PR China
| | - Dan Zhang
- School of Materials Science and Engineering, Chongqing University of Technology, Chongqing 400054, PR China
| | - Weichen Gao
- School of Materials Science and Engineering, Chongqing University of Technology, Chongqing 400054, PR China
| | - Yan Su
- School of Materials Science and Engineering, Chongqing University of Technology, Chongqing 400054, PR China
| | - Youbing Li
- School of Materials Science and Engineering, Chongqing University of Technology, Chongqing 400054, PR China.
| | - Chaolong Yang
- School of Materials Science and Engineering, Chongqing University of Technology, Chongqing 400054, PR China.
| |
Collapse
|
78
|
Zeng X, Long Z, Jiang X, Zhang Y, Liu Q, Hu J, Li C, Wu L, Hou X. Single Bimetallic Lanthanide-Based Metal–Organic Frameworks for Visual Decoding of a Broad Spectrum of Molecules. Anal Chem 2020; 92:5500-5508. [DOI: 10.1021/acs.analchem.0c00324] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Xiaoliang Zeng
- Analytical and Testing Centre, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| | - Zhou Long
- Analytical and Testing Centre, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| | - Xiaofang Jiang
- Analytical and Testing Centre, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| | - Yajun Zhang
- Analytical and Testing Centre, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| | - Qi Liu
- Analytical and Testing Centre, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| | - Jing Hu
- Analytical and Testing Centre, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| | - Chenghui Li
- Analytical and Testing Centre, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| | - Li Wu
- Analytical and Testing Centre, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| | - Xiandeng Hou
- Analytical and Testing Centre, Sichuan University, Chengdu, Sichuan 610064, P. R. China
- Key Laboratory of Green Chemistry & Technology of MOE, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| |
Collapse
|
79
|
Wu S, Lin H, Zhang S, Liu W, Liu J, Wu Z, Wu D. Effects of naphthoxy side groups on functionalities of linear polyphosphazenes: Fluorescence, ion response and degradability. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122251] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
80
|
Yin HQ, Yin XB. Metal-Organic Frameworks with Multiple Luminescence Emissions: Designs and Applications. Acc Chem Res 2020; 53:485-495. [PMID: 31999097 DOI: 10.1021/acs.accounts.9b00575] [Citation(s) in RCA: 248] [Impact Index Per Article: 49.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Emissive species are powerful for luminescent detection with high sensitivity and simple procedure and for light-emitting diode (LED) lighting because of their high efficiency, long lifetime, and low energy consumption. Here we propose the concept of multiple luminescence emissions from a single matrix or species under single-wavelength excitation. Multiemission not only realizes the high sensitivity of luminescence sensing but also possesses the capacity of self-reference for environment-free interferences. The color change is also convenient for visible detection. In multiemission species, every emissive center responds to a specific analyte to improve the efficiency for multiple-target detection. Multiemission also extends the applications to anticounterfeiting, colorful LEDs, and information storage. To date, it is still challenging to combine more than one type of emissive center in a single matrix or species. Obtaining multiemission under single-wavelength excitation also needs exquisite design. Metal-organic frameworks (MOFs) are porous hybrid assemblies prepared with metal ions and organic ligands. Metal nodes and ligands with large π-conjugated systems have the potential for the construction of luminescent MOFs. Abundant and diverse precursors provide the possibility to prepare MOFs with multiple luminescence emissions. The pores or channels of MOFs also act as hosts to encapsulate luminescent guest species as additional emissive sites. In this Account, we propose the concept of multiple-luminescence MOFs (ML-MOFs) and summarize the recent research progress on their designs, constructions, and applications reported by our group and others. ML-MOFs are MOFs that possess more than one emissive center under single-wavelength excitation. Six different kinds of construction strategies of ML-MOFs are introduced: (1) multiemission from both metal nodes and ligands in single MOFs; (2) use of mixed-metal nodes as multiemission centers in single MOFs; (3) combination of different emissive MOFs as a whole to achieve multiemission application; (4) host-guest emissions from emissive MOFs after encapsulation of luminescent guest species; (5) organization of different emissive ligands in a single MOF for multiemission; and (6) use of single ligands exhibiting dual emission to prepare ML-MOFs. We also discuss the mechanisms that realize multiple emissions from MOFs under single-wavelength excitation, such as the antenna effect and excited-state intramolecular proton transfer. The applications of ratiometric sensing, LED lighting, anticounterfeiting, and information storage are summarized. With this Account, we hope to spark new ideas and to inspire new endeavors in the design and construction of ML-MOFs, especially with postsynthetic techniques such as postsynthetic modification, postsynthetic exchange, and postsynthetic deprotection, to promote the applications of MOFs in sensing, lighting, information storage, and others.
Collapse
Affiliation(s)
- Hua-Qing Yin
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Xue-Bo Yin
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
81
|
Wu S, Min H, Shi W, Cheng P. Multicenter Metal-Organic Framework-Based Ratiometric Fluorescent Sensors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1805871. [PMID: 30790371 DOI: 10.1002/adma.201805871] [Citation(s) in RCA: 317] [Impact Index Per Article: 63.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 01/15/2019] [Indexed: 05/18/2023]
Abstract
Metal-organic frameworks (MOFs) with multiple emission centers are newly emerging as ratiometric sensors owing to their high sensitivity and high selectivity toward a wide range of targeted functional species. Energy transfer between the light-absorbing group and emission centers and between different emission centers is the key to rationally design and synthesize MOF-based ratiometric sensors. A good match between the energy levels of the light-absorbing groups and emission centers is the prerequisite for MOF-based sensors to exhibit multiple emissions, and a good match of the MOF-based sensors and those of the targeted species can increase the sensitivity and selectivity, but this match is highly challenging to obtain via synthesis. MOFs with multiple emission centers can be produced by functionalizing MOFs with multiple lanthanide centers, organic luminophores, dyes, carbon dots, and other such emissive groups. In this progress report, recent advances in the strategies for synthesizing MOFs with multiple emission centers and their applications for ratiometric sensing of solution conditions, including the pH value, and ion, organic molecule, and biomolecule concentrations, are summarized, as are the related sensing mechanisms.
Collapse
Affiliation(s)
- Shuangyan Wu
- Key Laboratory of Advanced Energy Materials Chemistry (MOE), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Hui Min
- Key Laboratory of Advanced Energy Materials Chemistry (MOE), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Wei Shi
- Key Laboratory of Advanced Energy Materials Chemistry (MOE), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Peng Cheng
- Key Laboratory of Advanced Energy Materials Chemistry (MOE), College of Chemistry, Nankai University, Tianjin, 300071, China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
82
|
Yu HH, Chi JQ, Su ZM, Li X, Sun J, Zhou C, Hu XL, Liu Q. A water-stable terbium metal–organic framework with functionalized ligands for the detection of Fe3+ and Cr2O72− ions in water and picric acid in seawater. CrystEngComm 2020. [DOI: 10.1039/d0ce00430h] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A novel Tb-MOF-A was fabricated by functionalized ligands and Tb3+, which displays high fluorescence, water stability up to 21 days and rapid, cyclic, simultaneous detection of Fe3+, Cr2O72− ions in water and picric acid in seawater.
Collapse
Affiliation(s)
- Hai-Huan Yu
- School of Materials Science and Engineering
- Changchun University of Science and Technology
- Changchun 130022
- People's Republic of China
| | - Jia-Qi Chi
- School of Chemistry and Environmental Engineering
- Changchun University of Science and Technology
- Changchun
- People's Republic of China
| | - Zhong-Min Su
- School of Chemistry and Environmental Engineering
- Changchun University of Science and Technology
- Changchun
- People's Republic of China
- Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry
| | - Xiao Li
- School of Chemistry and Environmental Engineering
- Changchun University of Science and Technology
- Changchun
- People's Republic of China
- Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry
| | - Jing Sun
- School of Chemistry and Environmental Engineering
- Changchun University of Science and Technology
- Changchun
- People's Republic of China
- Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry
| | - Chen Zhou
- School of Chemistry and Environmental Engineering
- Changchun University of Science and Technology
- Changchun
- People's Republic of China
- Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry
| | - Xiao-Li Hu
- School of Chemistry and Environmental Engineering
- Changchun University of Science and Technology
- Changchun
- People's Republic of China
- Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry
| | - Qun Liu
- School of Materials Science and Engineering
- Changchun University of Science and Technology
- Changchun 130022
- People's Republic of China
| |
Collapse
|
83
|
Liu X, Du L, Li R, Ma N, You M, Feng X. Different effects in the selective detection of aniline and Fe 3+ by lanthanide-based coordination polymers containing multiple reactive sites. CrystEngComm 2020. [DOI: 10.1039/d0ce00238k] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Isostructural Ln-CPs (1-Eu and 2-Tb) show almost the same high detection ability for Fe3+ and different detection abilities for aniline. The detection difference was studied through PXRD, UV-vis, luminescence lifetimes and Hirshfeld surface analysis.
Collapse
Affiliation(s)
- Xinfang Liu
- College of Chemistry and Chemical Engineering
- Henan Key Laboratory of Function Oriented Porous Materials
- Luoyang Normal University
- Luoyang
- China
| | - Liyong Du
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi
- PR China
| | - Rongfang Li
- College of Chemistry and Chemical Engineering
- Henan Key Laboratory of Function Oriented Porous Materials
- Luoyang Normal University
- Luoyang
- China
| | - Ningning Ma
- College of Chemistry and Chemical Engineering
- Henan Key Laboratory of Function Oriented Porous Materials
- Luoyang Normal University
- Luoyang
- China
| | - Mengdi You
- College of Chemistry and Chemical Engineering
- Henan Key Laboratory of Function Oriented Porous Materials
- Luoyang Normal University
- Luoyang
- China
| | - Xun Feng
- College of Chemistry and Chemical Engineering
- Henan Key Laboratory of Function Oriented Porous Materials
- Luoyang Normal University
- Luoyang
- China
| |
Collapse
|
84
|
Zeng X, Hu J, Zhang M, Wang F, Wu L, Hou X. Visual Detection of Fluoride Anions Using Mixed Lanthanide Metal–Organic Frameworks with a Smartphone. Anal Chem 2019; 92:2097-2102. [DOI: 10.1021/acs.analchem.9b04598] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
85
|
Othong J, Boonmak J, Promarak V, Kielar F, Youngme S. Sonochemical Synthesis of Carbon Dots/Lanthanoid MOFs Hybrids for White Light-Emitting Diodes with High Color Rendering. ACS APPLIED MATERIALS & INTERFACES 2019; 11:44421-44429. [PMID: 31674176 DOI: 10.1021/acsami.9b13814] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Although lanthanoid metal-organic frameworks (Ln-MOFs) have been widely developed for white light-emitting diodes (WLEDs), the color rendering index (CRI) values are still lower than 80. To overcome this limitation, a series of CDs/Ln-MOFs hybrids, namely, CDs-2@Ln-MOF, CDs-3@Ln-MOF, and CDs-4@Ln-MOF containing blue-emitting CDs and yellow-emitting bimetallic [(Eu1.22Tb0.78(1,4-phda)3(H2O)](H2O)2 were prepared via sonication at room temperature to restrict the self-quenching of CDs in composite materials. The as-synthesized composite materials were investigated by Fourier transform infrared, powder X-ray diffraction, transmission electron microscopy, scanning electron microscopy, and photoluminescence. The luminescent color of the materials can be adjusted by varying the amount of CDs and excitation wavelengths. The resulting CDs-3@Ln-MOF achieved excellent CRI up to 93 with the ideal Commission International ed'Eclairage coordinate (0.334, 0.334) and appropriate correlated color temperature (CCT) (5443 K). In addition, the tunable multicolored luminescence based on single and bimetallic EuxTb2-x(1,4-phda)3(H2O)](H2O)2, x = 0, 0.73, 1.22, 1.57, 1.94, and 2, were applied as the luminescent security inks for anti-counterfeiting application through encoding/decoding and rewritable data.
Collapse
Affiliation(s)
- Jintana Othong
- Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science , Khon Kaen University , Khon Kaen 40002 , Khon Kaen Province , Thailand
| | - Jaursup Boonmak
- Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science , Khon Kaen University , Khon Kaen 40002 , Khon Kaen Province , Thailand
| | - Vinich Promarak
- Department of Materials Science and Engineering, School of Molecular Science and Engineering , Vidyasirimedhi Institute of Science and Technology , Wangchan, Rayong 21210 , Rayong Province , Thailand
| | - Filip Kielar
- Department of Chemistry , Naresuan University , Phitsanulok 65000 , Phitsanulok Province , Thailand
| | - Sujittra Youngme
- Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science , Khon Kaen University , Khon Kaen 40002 , Khon Kaen Province , Thailand
| |
Collapse
|
86
|
Rajak R, Saraf M, Verma SK, Kumar R, Mobin SM. Dy(III)-Based Metal-Organic Framework as a Fluorescent Probe for Highly Selective Detection of Picric Acid in Aqueous Medium. Inorg Chem 2019; 58:16065-16074. [PMID: 31718173 DOI: 10.1021/acs.inorgchem.9b02611] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A dysprosium metal-organic framework, {[Dy(μ2-FcDCA)1.5(MeOH)(H2O)]·0.5H2O}n (1), where FcDCA = 1,1'-ferrocene dicarboxylic acid, was prepared by slow-diffusion technique at room temperature. The crystal structure analysis of 1 by single-crystal X-ray diffraction reveals different binding modes of FcDCA linkers coordinated with Dy(III) metal ions, which forms continuous porous two-dimensional (2D) infinite framework. The resulting 2D layers are linked by π···π interactions to build three-dimensional (3D) supramolecular framework. Observably, this thermally stable 3D architecture was topologically simplified as a three-connected uninodal net with fes topology. Furthermore, the practical applicability of 1 was investigated as a fluorescence sensor for the sensitive detection of picric acid in aqueous medium with an impressive detection limit of 0.71 μM with quenching constant (KSV) quantified to be 8.55 × 104 M-1. The distinguished selectivity in the presence of other nitroaromatics suggests the possible incorporation of 1 in real-world futuristic diagnostic kits. Additionally, the electrochemical behavior of 1 exhibits reversible in nature attributed to the ferrocene/ferrocenium cation.
Collapse
|
87
|
Su Y, Zhang Y, Wang Z, Gao W, Jia P, Zhang D, Yang C, Li Y, Zhao Y. Excitation-Dependent Long-Life Luminescent Polymeric Systems under Ambient Conditions. Angew Chem Int Ed Engl 2019; 59:9967-9971. [PMID: 31618506 DOI: 10.1002/anie.201912102] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Indexed: 11/08/2022]
Abstract
Organic room temperature luminescent materials present a unique phosphorescence emission with a long lifetime. However, many of these materials only emit single blue or green color in spite of external stimulation, and their color tunability is limited. Herein, we report a rational design to extend the emission color range from blue to red by controlling the doping of simple pyrene derivatives into a robust polymer matrix. The integration of these pyrene molecules into the polymer films enhances the intersystem crossing pathway, decreases the first triplet level of the system, and ensures the films show a sensitive response to excitation energy, finally yielding excitation-dependent long-life luminescent polymeric systems under ambient conditions. These materials were used to construct anti-counterfeiting patterns with multicolor interconversion, presenting a promising application potential in the field of information security.
Collapse
Affiliation(s)
- Yan Su
- School of Materials Science and Engineering, Chongqing University of Technology, Chongqing, 400054, P. R. China
| | - Yongfeng Zhang
- School of Materials Science and Engineering, Chongqing University of Technology, Chongqing, 400054, P. R. China
| | - Zhonghao Wang
- School of Materials Science and Engineering, Chongqing University of Technology, Chongqing, 400054, P. R. China
| | - Weichen Gao
- School of Materials Science and Engineering, Chongqing University of Technology, Chongqing, 400054, P. R. China
| | - Peng Jia
- School of Materials Science and Engineering, Chongqing University of Technology, Chongqing, 400054, P. R. China
| | - Dan Zhang
- School of Materials Science and Engineering, Chongqing University of Technology, Chongqing, 400054, P. R. China
| | - Chaolong Yang
- School of Materials Science and Engineering, Chongqing University of Technology, Chongqing, 400054, P. R. China.,Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Youbing Li
- School of Materials Science and Engineering, Chongqing University of Technology, Chongqing, 400054, P. R. China
| | - Yanli Zhao
- School of Materials Science and Engineering, Chongqing University of Technology, Chongqing, 400054, P. R. China.,Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| |
Collapse
|
88
|
Su Y, Zhang Y, Wang Z, Gao W, Jia P, Zhang D, Yang C, Li Y, Zhao Y. Excitation‐Dependent Long‐Life Luminescent Polymeric Systems under Ambient Conditions. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201912102] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Yan Su
- School of Materials Science and EngineeringChongqing University of Technology Chongqing 400054 P. R. China
| | - Yongfeng Zhang
- School of Materials Science and EngineeringChongqing University of Technology Chongqing 400054 P. R. China
| | - Zhonghao Wang
- School of Materials Science and EngineeringChongqing University of Technology Chongqing 400054 P. R. China
| | - Weichen Gao
- School of Materials Science and EngineeringChongqing University of Technology Chongqing 400054 P. R. China
| | - Peng Jia
- School of Materials Science and EngineeringChongqing University of Technology Chongqing 400054 P. R. China
| | - Dan Zhang
- School of Materials Science and EngineeringChongqing University of Technology Chongqing 400054 P. R. China
| | - Chaolong Yang
- School of Materials Science and EngineeringChongqing University of Technology Chongqing 400054 P. R. China
- Division of Chemistry and Biological ChemistrySchool of Physical and Mathematical SciencesNanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| | - Youbing Li
- School of Materials Science and EngineeringChongqing University of Technology Chongqing 400054 P. R. China
| | - Yanli Zhao
- School of Materials Science and EngineeringChongqing University of Technology Chongqing 400054 P. R. China
- Division of Chemistry and Biological ChemistrySchool of Physical and Mathematical SciencesNanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| |
Collapse
|
89
|
Utochnikova V. The use of luminescent spectroscopy to obtain information about the composition and the structure of lanthanide coordination compounds. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.07.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
90
|
Yin HQ, Wang XY, Yin XB. Rotation Restricted Emission and Antenna Effect in Single Metal-Organic Frameworks. J Am Chem Soc 2019; 141:15166-15173. [PMID: 31492054 DOI: 10.1021/jacs.9b06755] [Citation(s) in RCA: 230] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Aggregation induced-emission (AIE) and antenna effects are important luminescence behaviors. Thus, investigating their emission mechanisms and revealing their behaviors have become critical but challenging. Here we design and prepare metal-organic frameworks (MOFs) with an AIE ligand (i.e., tetrakis(4-carboxyphenyl)pyrazine (L1)) and Ln3+ ions (including Eu3+, Tb3+, and Gd3+). The emission from L1 is gradually enhanced during the formation of the MOFs because coordination restricts the intramolecular rotation. Thus, the emission is called as coordination-induced emission (CIE) with the same restriction of intramolecular rotation mechanism as AIE. Meanwhile, benzene rings twist to adapt to the MOFs' rigid structure, so the emission blueshifts gradually, as an additional evidence of CIE. Both AIE and CIE are "rotation-restricted emission (RRE)". Eu3+ ions exhibit the strongest emission with gradually enhanced intensity during the formation of L1-Eu MOF. Combined with emission properties from Tb3+ and Gd3+ ions, the antenna effect is verified. We also validate the conditions for the efficient sensitization of Ln3+ ions experimentally and refresh the threshold value of the energy gap between triplet state of a ligand and excited state of Ln3+ ions to 3000 cm-1. Thus, RRE and antenna effects are revealed and validated simultaneously. Because CIE of L1 and antenna effect emission from Eu3+ ions are enhanced simultaneously as strong dual emissions, ratiometric fluorescence detection is realized with the detection of arginine as a model. Our results incorporate AIE and CIE into RRE, which provides explicit information for the construction and application of emission systems with AIE ligands as building blocks. MOFs are also extended to explore the emission mechanism and the energy transfer between ligands and metal ions.
Collapse
Affiliation(s)
- Hua-Qing Yin
- State Key Laboratory of Medicinal Chemical Biology and Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry , Nankai University , Tianjin 300071 , P. R. China
| | - Xin-Yao Wang
- State Key Laboratory of Medicinal Chemical Biology and Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry , Nankai University , Tianjin 300071 , P. R. China
| | - Xue-Bo Yin
- State Key Laboratory of Medicinal Chemical Biology and Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry , Nankai University , Tianjin 300071 , P. R. China
| |
Collapse
|
91
|
Cheng W, Zeng X, Chen H, Li Z, Zeng W, Mei L, Zhao Y. Versatile Polydopamine Platforms: Synthesis and Promising Applications for Surface Modification and Advanced Nanomedicine. ACS NANO 2019; 13:8537-8565. [PMID: 31369230 DOI: 10.1021/acsnano.9b04436] [Citation(s) in RCA: 505] [Impact Index Per Article: 84.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
As a mussel-inspired material, polydopamine (PDA), possesses many properties, such as a simple preparation process, good biocompatibility, strong adhesive property, easy functionalization, outstanding photothermal conversion efficiency, and strong quenching effect. PDA has attracted increasingly considerable attention because it provides a simple and versatile approach to functionalize material surfaces for obtaining a variety of multifunctional nanomaterials. In this review, recent significant research developments of PDA including its synthesis and polymerization mechanism, physicochemical properties, different nano/microstructures, and diverse applications are summarized and discussed. For the sections of its applications in surface modification and biomedicine, we mainly highlight the achievements in the past few years (2016-2019). The remaining challenges and future perspectives of PDA-based nanoplatforms are discussed rationally at the end. This timely and overall review should be desirable for a wide range of scientists and facilitate further development of surface coating methods and the production of PDA-based materials.
Collapse
Affiliation(s)
- Wei Cheng
- Institute of Pharmaceutics, School of Pharmaceutical Sciences (Shenzhen) , Sun Yat-sen University , Guangzhou 510275 , China
| | - Xiaowei Zeng
- Institute of Pharmaceutics, School of Pharmaceutical Sciences (Shenzhen) , Sun Yat-sen University , Guangzhou 510275 , China
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , 637371 Singapore
| | - Hongzhong Chen
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , 637371 Singapore
| | - Zimu Li
- Institute of Pharmaceutics, School of Pharmaceutical Sciences (Shenzhen) , Sun Yat-sen University , Guangzhou 510275 , China
| | - Wenfeng Zeng
- Institute of Pharmaceutics, School of Pharmaceutical Sciences (Shenzhen) , Sun Yat-sen University , Guangzhou 510275 , China
| | - Lin Mei
- Institute of Pharmaceutics, School of Pharmaceutical Sciences (Shenzhen) , Sun Yat-sen University , Guangzhou 510275 , China
| | - Yanli Zhao
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , 637371 Singapore
- School of Materials Science and Engineering , Nanyang Technological University , 50 Nanyang Avenue , 639798 Singapore
| |
Collapse
|
92
|
Su Y, Zhang D, Jia P, Gao W, Li Y, Bai Z, Liu X, Deng Q, Xu J, Yang C. Highly selective and sensitive long fluorescence lifetime polyurethane foam sensor based on Tb-complex as chromophore for the detection of H 2PO 4- in water. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 217:86-92. [PMID: 30927575 DOI: 10.1016/j.saa.2019.03.078] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/21/2019] [Accepted: 03/22/2019] [Indexed: 06/09/2023]
Abstract
Developing novel rare-earth complexes to rapidly and reliably sensing anions in pure water is highly challenging. Here, a series of long fluorescence lifetime polyurethane foam bonded Tb(BAA)3 chromophore porous material (Tb-PUFs) have been designed and synthesized via a simple one-step co-polycondensation reaction as an efficient fluorescent sensor for H2PO4- in pure water. All Tb-PUFs exhibited strong green emission and long fluorescence lifetime in water, which was ascribed to Tb-complex can be dispersed very well in polyurethane foam, effectively avoiding the emission quenching of Tb3+ ions caused by water molecules vibration. The titration experimental results showed that precursor Tb(BAA)3 can effective recognize F-, CH3COO-, and H2PO4- in DMSO solution. Interestingly, Tb-PUFs can only selectively recognize H2PO4- in pure water, this phenomenon can be explained that H2PO4- is acidic, and can occur deprotonation with -NH group of ligand BAA, thus making the fluorescence quenching effect was more sensitive for H2PO4- in pure water. In addition, the sensing ability of Tb-PUFs for H2PO4- is highly reversible by washing them with deionized water for three times. In a word, all results implied that Tb-PUFs was an excellent candidate for H2PO4- ions detection selectively in pure water.
Collapse
Affiliation(s)
- Yan Su
- School of Materials Science and Engineering, Chongqing University of Technology, Chongqing 400054, PR China
| | - Dan Zhang
- School of Materials Science and Engineering, Chongqing University of Technology, Chongqing 400054, PR China
| | - Peng Jia
- School of Materials Science and Engineering, Chongqing University of Technology, Chongqing 400054, PR China
| | - Weichen Gao
- School of Materials Science and Engineering, Chongqing University of Technology, Chongqing 400054, PR China
| | - Youbing Li
- School of Materials Science and Engineering, Chongqing University of Technology, Chongqing 400054, PR China
| | - Zhuyu Bai
- School of Materials Science and Engineering, Chongqing University of Technology, Chongqing 400054, PR China
| | - Xin Liu
- School of Materials Science and Engineering, Chongqing University of Technology, Chongqing 400054, PR China
| | - Qunying Deng
- School of Materials Science and Engineering, Chongqing University of Technology, Chongqing 400054, PR China
| | - Jing Xu
- College of Chemical Engineering and Materials, Quanzhou Normal University.
| | - Chaolong Yang
- School of Materials Science and Engineering, Chongqing University of Technology, Chongqing 400054, PR China.
| |
Collapse
|
93
|
Xu W, Chen H, Xia Z, Ren C, Han J, Sun W, Wei Q, Xie G, Chen S. A Robust TbIII-MOF for Ultrasensitive Detection of Trinitrophenol: Matched Channel Dimensions and Strong Host–Guest Interactions. Inorg Chem 2019; 58:8198-8207. [DOI: 10.1021/acs.inorgchem.9b01008] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Wenfeng Xu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710127, China
| | - Hanhua Chen
- College of Chemistry & Chemical Engineering, Xi’an Shiyou University, Xi’an 710065, China
| | - Zhengqiang Xia
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710127, China
| | - Chongting Ren
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710127, China
| | - Jing Han
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710127, China
| | - Wujuan Sun
- College of Chemistry & Chemical Engineering, Xi’an Shiyou University, Xi’an 710065, China
| | - Qing Wei
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710127, China
| | - Gang Xie
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710127, China
| | - Sanping Chen
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710127, China
| |
Collapse
|
94
|
Rosário J, da Luz LL, Geris R, Ramalho JGS, da Silva AF, Júnior SA, Malta M. Photoluminescent organisms: how to make fungi glow through biointegration with lanthanide metal-organic frameworks. Sci Rep 2019; 9:7302. [PMID: 31086220 PMCID: PMC6513872 DOI: 10.1038/s41598-019-43835-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 05/02/2019] [Indexed: 12/15/2022] Open
Abstract
We show that filamentous fungi can emit green or red light after the accumulation of particulate lanthanide metal-organic frameworks over the cell wall. These new biohybrids present photoluminescence properties that are unaffected by the components of the cell wall. In addition, the fungal cells internalise lanthanide metal-organic framework particles, storing them into organelles, thereby making these materials promising for applications in living imaging studies.
Collapse
Affiliation(s)
- Jeferson Rosário
- Institute of Chemistry, Federal University of Bahia, Campus Ondina, Salvador, BA, Brazil
| | - Leonis L da Luz
- Department of Fundamental Chemistry, Federal University of Pernambuco, Cidade Universitária, Recife, PE, Brazil
| | - Regina Geris
- Institute of Chemistry, Federal University of Bahia, Campus Ondina, Salvador, BA, Brazil
| | - Jéssica G S Ramalho
- Institute of Physics, Federal University of Bahia, Campus Ondina, Salvador, BA, Brazil
| | - Antônio F da Silva
- Institute of Physics, Federal University of Bahia, Campus Ondina, Salvador, BA, Brazil
| | - Severino Alves Júnior
- Department of Fundamental Chemistry, Federal University of Pernambuco, Cidade Universitária, Recife, PE, Brazil.
| | - Marcos Malta
- Institute of Chemistry, Federal University of Bahia, Campus Ondina, Salvador, BA, Brazil.
| |
Collapse
|
95
|
Su Y, Zhang D, Jia P, Gao W, Li Y, He J, Wang C, Zheng X, Yang Q, Yang C. Bonded-luminescent foam based on europium complexes as a reversible copper (II) ions sensor in pure water. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.01.034] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
96
|
Farahani YD, Safarifard V. A luminescent metal-organic framework with pre-designed functionalized ligands as an efficient fluorescence sensing for Fe3+ ions. J SOLID STATE CHEM 2019. [DOI: 10.1016/j.jssc.2018.12.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
97
|
Moradi E, Rahimi R, Safarifard V. Sonochemically synthesized microporous metal–organic framework representing unique selectivity for detection of Fe3+ ions. Polyhedron 2019. [DOI: 10.1016/j.poly.2018.11.062] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
98
|
White-Light-Emitting Decoding Sensing for Eight Frequently-Used Antibiotics Based on a Lanthanide Metal-Organic Framework. Polymers (Basel) 2019; 11:polym11010099. [PMID: 30960083 PMCID: PMC6402005 DOI: 10.3390/polym11010099] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 12/26/2018] [Accepted: 01/04/2019] [Indexed: 01/08/2023] Open
Abstract
Developing multi-selective luminescence sensing technology to differentiate serial compounds is very important but challenging. White-light-emitting decoding sensing based on lanthanide metal-organic frameworks (Ln-MOFs) is a promising candidate for multi-selective luminescence sensing application. In this work, three isomorphic Ln-MOFs based on H3dcpcpt (3-(3,5-dicarboxylphenyl)-5-(4-carboxylphenl)-1H-1,2,4-triazole) ligand, exhibiting red, blue, and green emission, respectively, have been synthesized by solvothermal reactions. The isostructural mixed Eu/Gd/Tb-dcpcpt is fabricated via the in-situ doping of different Ln3+ ions into the host framework, which can emit white light upon the excitation at 320 nm. It is noteworthy that this white-light-emitting complex could serve as a convenient luminescent platform for distinguishing eight frequently-used antibiotics: five through luminescence-color-changing processes (tetracycline hydrochloride, yellow; nitrofurazone, orange; nitrofurantoin, orange; sulfadiazine, blue; carbamazepine, blue) and three through luminescence quenching processes (metronidazole, dimetridazole, and ornidazole). Moreover, a novel method, 3D decoding map, has been proposed to realize multi-selective luminescence sensing applications. This triple-readout map features unique characteristics on luminescence color and mechanism. The mechanism has been systematically interpreted on the basis of the structural analysis, energy transfer and allocation process, and peak fitting analysis for photoluminescence spectra. This approach presents a promising strategy to explore luminescent platforms capable of effectively sensing serial compounds.
Collapse
|
99
|
Abbas Z, Dasari S, Beltrán-Leiva MJ, Cantero-López P, Páez-Hernández D, Arratia-Pérez R, Butcher RJ, Patra AK. Luminescent europium(iii) and terbium(iii) complexes of β-diketonate and substituted terpyridine ligands: synthesis, crystal structures and elucidation of energy transfer pathways. NEW J CHEM 2019. [DOI: 10.1039/c9nj02838b] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A series of coordinatively saturated LnIII complexes: [Ln(R-TPY)(TTA)3] (1–6) were designed and structurally characterized and plausible energy transfer (ET) pathways determined using a theoretical method.
Collapse
Affiliation(s)
- Zafar Abbas
- Department of Chemistry
- Indian Institute of Technology Kanpur
- Kanpur 208016
- India
| | - Srikanth Dasari
- Department of Chemistry
- Indian Institute of Technology Kanpur
- Kanpur 208016
- India
| | - María J. Beltrán-Leiva
- Relativistic Molecular Physics (ReMoPh) Group
- Ph.D. Program in Molecular Physical Chemistry
- Universidad Andrés Bello
- Santiago 8370146
- Chile
| | - Plinio Cantero-López
- Relativistic Molecular Physics (ReMoPh) Group
- Ph.D. Program in Molecular Physical Chemistry
- Universidad Andrés Bello
- Santiago 8370146
- Chile
| | - Dayán Páez-Hernández
- Relativistic Molecular Physics (ReMoPh) Group
- Ph.D. Program in Molecular Physical Chemistry
- Universidad Andrés Bello
- Santiago 8370146
- Chile
| | - Ramiro Arratia-Pérez
- Relativistic Molecular Physics (ReMoPh) Group
- Ph.D. Program in Molecular Physical Chemistry
- Universidad Andrés Bello
- Santiago 8370146
- Chile
| | | | - Ashis K. Patra
- Department of Chemistry
- Indian Institute of Technology Kanpur
- Kanpur 208016
- India
| |
Collapse
|
100
|
Li B, Wang W, Hong Z, El-Sayed ESM, Yuan D. Ratiometric fluorescence detection of trace water in an organic solvent based on bimetallic lanthanide metal–organic frameworks. Chem Commun (Camb) 2019; 55:6926-6929. [DOI: 10.1039/c9cc02324k] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A highly sensitive sensor Tb97.11Eu2.89-L1, which is an excellent water-sensing material for detecting trace water in an organic solvent, is reported.
Collapse
Affiliation(s)
- Beibei Li
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
- China
| | - Wenjing Wang
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
- China
| | - Zixiao Hong
- Institute of Urban Environment
- Chinese Academy of Sciences
- Xiamen
- China
| | - El-Sayed M. El-Sayed
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
- China
| | - Daqiang Yuan
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
- China
| |
Collapse
|