51
|
Vaiserman AM. Aging-modulating treatments: from reductionism to a system-oriented perspective. Front Genet 2014; 5:446. [PMID: 25566328 PMCID: PMC4271728 DOI: 10.3389/fgene.2014.00446] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 12/04/2014] [Indexed: 11/13/2022] Open
Affiliation(s)
- Alexander M. Vaiserman
- Laboratory of Epigenetics, D. F. Chebotarev State Institute of Gerontology NAMS of UkraineKiev, Ukraine
| |
Collapse
|
52
|
Hashmi MZ, Shen H, Zhu S, Yu C, Shen C. Growth, bioluminescence and shoal behavior hormetic responses to inorganic and/or organic chemicals: a review. ENVIRONMENT INTERNATIONAL 2014; 64:28-39. [PMID: 24361513 DOI: 10.1016/j.envint.2013.11.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 11/25/2013] [Accepted: 11/26/2013] [Indexed: 06/03/2023]
Abstract
A biphasic dose response, termed hormesis, is characterized by beneficial effects of a chemical at a low dose and harmful effects at a high dose. This biphasic dose response phenomenon has the potential to strongly alter toxicology in a broad range. The present review focuses on the progress of research into hormetic responses in terms of growth (in plants, birds, algae and humans), bioluminescence, and shoal behavior as end points. The paper describes how both inorganic and organic chemicals at a low dose show stimulatory responses while at higher doses are inhibitory. The article highlights how factors such as symbiosis, density-dependent factors, time, and contrasting environmental factors (availability of nutrients, temperature, light, etc.) affect both the range and amplitude of hormetic responses. Furthermore, the possible underlying mechanisms are also discussed and we suggest that, for every end point, different hormetic mechanisms may exist. The occurrences of varying interacting receptor systems or receptor systems affecting the assessment of hormesis for each endpoint are discussed. The present review suggests that a hormetic model should be adopted for toxicological evaluations instead of the older threshold and linear non-threshold models.
Collapse
Affiliation(s)
- Muhammad Zaffar Hashmi
- Department of Environmental Engineering, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Hui Shen
- Department of Environmental Engineering, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Shenhai Zhu
- Department of Environmental Engineering, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Chunna Yu
- Center for Biomedicine and Health, Hangzhou Normal University, Hangzhou 311121, People's Republic of China
| | - Chaofeng Shen
- Department of Environmental Engineering, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China.
| |
Collapse
|
53
|
Farahmand SK, Samini F, Samini M, Samarghandian S. Safranal ameliorates antioxidant enzymes and suppresses lipid peroxidation and nitric oxide formation in aged male rat liver. Biogerontology 2012. [DOI: 10.1007/s10522-012-9409-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
54
|
Rattan SIS, Kryzch V, Schnebert S, Perrier E, Nizard C. Hormesis-based anti-aging products: a case study of a novel cosmetic. Dose Response 2012; 11:99-108. [PMID: 23548988 DOI: 10.2203/dose-response.11-054.rattan] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Application of hormesis in aging research and interventions is becoming increasingly attractive and successful. The reason for this is the realization that mild stress-induced activation of one or more stress response (SR) pathways, and its consequent stimulation of repair mechanisms, is effective in reducing the age-related accumulation of molecular damage. For example, repeated heat stress-induced synthesis of heat shock proteins has been shown to have a variety of anti-aging effects on growth and other cellular and biochemical characteristics of normal human skin fibroblasts, keratinocytes and endothelial cells undergoing aging in vitro. Therefore, searching for potential hormetins - conditions and compounds eliciting SR-mediated hormesis - is drawing attention of not only the researchers but also the industry involved in developing healthcare products, including nutriceuticals, functional foods and cosmeceuticals. Here we present the example of a skin care cosmetic as one of the first successful product developments incorporating the ideas of hormesis. This was based on the studies to analyse the molecular effects of active ingredients extracted from the roots of the Chinese herb Sanchi (Panax notoginseng) on gene expression at the level of mRNAs and proteins in human skin cells. The results showed that the ginsenosides extracted from Sanchi induced the transcription of stress genes and increased the synthesis of stress proteins, especially the heat shock protein HSP1A1 or Hsp70, in normal human keratinocytes and dermal fibroblasts. Furthermore, this extract also has significant positive effects against facial wrinkles and other symptoms of facial skin aging as tested clinically, which may be due to its hormetic mode of action by stress-induced synthesis of chaperones involved in protein repair and removal of abnormal proteins. Acceptance of such a hormesis-based product by the wider public could be instrumental in the social recognition of the concept of hormesis as the beneficial effects of mild stress of choice, and will encourage the development of novel health care products with physical, nutritional and mental hormetins.
Collapse
Affiliation(s)
- Suresh I S Rattan
- Laboratory of Cellular Ageing, Department of Molecular Biology and Genetics, Aarhus University, Denmark
| | | | | | | | | |
Collapse
|
55
|
Rattan SIS. Biogerontology: from here to where? The Lord Cohen Medal Lecture-2011. Biogerontology 2011; 13:83-91. [DOI: 10.1007/s10522-011-9354-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 08/18/2011] [Indexed: 01/09/2023]
|
56
|
Hayes DP. Resveratrol and vitamin D: significant potential interpretative problems arising from their mutual processes, interactions and effects. Med Hypotheses 2011; 77:765-72. [PMID: 21840648 DOI: 10.1016/j.mehy.2011.07.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Accepted: 07/17/2011] [Indexed: 12/19/2022]
Abstract
The hypothesis is formulated and presented that resveratrol and vitamin D have important mutual processes, interactions and induced effects that if not taken into account could seriously jeopardize the interpretation of their current and future preclinical, epidemiological and clinical studies. In support of this hypothesis, evidence is presented that resveratrol and vitamin D mutually share some of the same biochemical processes and mechanisms as well as the fact that they can each affect some of the same diseases and maladies.
Collapse
Affiliation(s)
- Daniel P Hayes
- The Brooklyn Hospital Center, 121 DeKalb Avenue, Brooklyn, NY 11201, USA.
| |
Collapse
|
57
|
Abstract
We present a graphical approach, which we believe can help to integrate nutrition into the broader biological sciences, and introduce generality into the applied nutritional sciences. This ‘Geometric Framework’ takes account of the fact that animals need multiple nutrients in changing amounts and balance, and that nutrients come packaged in foods that are often hard to find, dangerous to subdue and costly to process. We then show how the Geometric Framework has been used to understand the links between nutrition and relevant aspects of the biology of individual animals. These aspects include the physiological mechanisms that direct the nutritional interactions of the animal with its environment, and the fitness consequences of these interactions. Having considered the implications of diet for individuals, we show that these effects can translate into the collective behaviour of groups and societies, and in turn ramify throughout food webs to influence the structure of ecosystems.
Collapse
|
58
|
Abstract
There is increasing evidence that some non-essential substances or environmental stressors can have stimulatory or beneficial effects at low exposure levels while being toxic at higher levels, and that environmental 'priming' of certain physiological processes can result in their improved functioning in later life. These kinds of nonlinear dose-response relationships are referred to as hormetic responses and have been described across a wide range of organisms (from bacteria to vertebrates), in response to exposure to at least 1000 different chemical and environmental stressors. Although most work in this area has been in the fields of toxicology and human health, the concept of hormesis also has general applicability in ecology and evolutionary biology as it provides an important conceptual link between environmental conditions and organism function - both at the time of initial exposure to stressors and later in life. In this review, we discuss and clarify the different ways in which the term hormesis is used and provide a framework that we hope will be useful for ecologists interested in the fitness consequences of exposure to stressors. By using ecologically relevant examples from the existing literature, we show that hormesis is connected with both acclimation and phenotypic plasticity, and may play an important role in allowing animals to adjust to changing environments.
Collapse
Affiliation(s)
- David Costantini
- Division of Ecology and Evolutionary Biology, Faculty of Biomedical and Life Sciences, University of Glasgow, Graham Kerr Building, Glasgow G12 8QQ, UK.
| | | | | |
Collapse
|
59
|
Kyriazis M. Nonlinear Stimulation and Hormesis in Human Aging: Practical Examples and Action Mechanisms. Rejuvenation Res 2010; 13:445-52. [DOI: 10.1089/rej.2009.0996] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
60
|
Nakamura YK, Omaye ST. Lipophilic compound-mediated gene expression and implication for intervention in reactive oxygen species (ROS)-related diseases: mini-review. Nutrients 2010; 2:725-36. [PMID: 22254050 PMCID: PMC3257678 DOI: 10.3390/nu2070725] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Revised: 07/02/2010] [Accepted: 07/05/2010] [Indexed: 12/31/2022] Open
Abstract
In addition to exhibiting antioxidant properties, conjugated linoleic acid (CLA) and vitamin E may modulate gene expression of endogenous antioxidant enzymes. Depending on cellular microenvironments, such modulation reflects either antioxidant or prooxidant outcomes. Although epidemiological/experimental studies have indicated that CLA and vitamin E have health promoting properties, recent findings from clinical trials have been inconclusive. Discrepancies between the results found from prospective studies and recent clinical trials might be attributed to concentration-dependent cellular microenvironment alterations. We give a perspective of possible molecular mechanisms of actions of these lipophilic compounds and their implications for interventions of reactive oxygen species (ROS)-related diseases.
Collapse
Affiliation(s)
- Yukiko K Nakamura
- Department of Nutrition, University of Nevada, Reno, Nevada 89557-0208, USA.
| | | |
Collapse
|
61
|
Hranitz JM, Abramson CI, Carter RP. Ethanol increases HSP70 concentrations in honeybee (Apis mellifera L.) brain tissue. Alcohol 2010; 44:275-82. [PMID: 20488642 DOI: 10.1016/j.alcohol.2010.02.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2009] [Revised: 11/20/2009] [Accepted: 02/10/2010] [Indexed: 11/19/2022]
Abstract
Previous research on the honeybee ethanol model established how acute ethanol exposure altered function at different levels of organization: behavior and learning, ecology, and physiology. The purpose of this study was to evaluate whether ethanol doses that affect honeybee behavior also induce a significant stress response, measured by heat shock protein 70 (HSP70) concentrations, in honeybee brain tissues. Experiment 1 examined how pretreatment handling influenced brain HSP70 concentrations in three pretreatment groups of bees; immediately after being collected, after being harnessed and fed, and after 22-24h in a harness. HSP70 concentrations did not differ among pretreatment groups within replicates, although we observed significantly different HSP70 concentrations between the two replicates. Experiment 2 investigated the relationship between ethanol dose and brain HSP70 concentrations. Bees were placed in seven experimental groups, the three pretreatment groups as in Experiment 1 and four ethanol-fed groups. Bees in ethanol treatments were fed 1.5M sucrose (control) and 1.5M sucrose-ethanol solutions containing 2.5, 5, and 10% ethanol, allowed to sit for 4h, and dissected brains were assayed for HSP70. We observed ethanol-induced increases in honeybee brain HSP70 concentrations from the control group through the 5% ethanol group. Only bees in the 5% ethanol group had HSP70 concentrations significantly higher than the control group. The inverted U-shaped ethanol dose-HSP70 concentration response curve indicated that ingestion of 2.5% ethanol and 5% ethanol stimulated the stress response, whereas ingestion of 10% ethanol inhibited the stress response. Doses that show maximum HSP70 concentration (5% ethanol) or HSP70 inhibition (10% ethanol) correspond to those (> or =5% ethanol) that also impaired honeybees in previous studies. We conclude that acute ethanol intoxication by solutions containing > or =5% ethanol causes significant ethanol-induced stress in brain tissue that impairs honeybee behavior and associative learning.
Collapse
Affiliation(s)
- John M Hranitz
- Department of Biological and Allied Health Sciences, Bloomsburg University of Pennsylvania, 17815, USA.
| | | | | |
Collapse
|
62
|
Dickman JR, Koenig RT, Ji LL. American ginseng supplementation induces an oxidative stress in postmenopausal women. J Am Coll Nutr 2010; 28:219-28. [PMID: 19828907 DOI: 10.1080/07315724.2009.10719773] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
OBJECTIVE To determine whether American ginseng (Panax Quinquefolium) confers antioxidant protection to postmenopausal women at rest and after a mild aerobic exercise session. METHODS In this double-blinded parallel study, 12 female subjects (age range 55-75) consumed two capsules, containing 500 mg of dry American ginseng whole-root powder, everyday for 4 months, whereas 13 female control subjects of the same age range consumed two placebo capsules. Before and after the supplementation regimen each subject performed 30 minutes of treadmill walking on a 5% grade incline at an estimated 60% of VO(2)max. RESULTS Ginseng supplementation had no effect on heart rate, blood pressure, plasma blood glucose, or lactate concentration at rest or immediately after exercise tests. The ginseng supplemented group displayed a higher resting plasma glutathione disulfide (GSSG) concentration and lower glutathione (GSH):GSSG ratio, as well as a lower resting total antioxidant content (TAC). Plasma GSSG concentration decreased, whereas the GSH:GSSG ratio and TAC increased after exercise in all subjects. Furthermore, plasma malondialdehyde and urine 8-hydroxydeoxyguanosine concentrations were elevated in the ginseng-supplemented group. Erythrocyte superoxide dismutase and GSH reductase activities were increased after ginseng supplementation. The 30-minute treadmill walking, however, did not alter these changes. CONCLUSIONS These data suggest that chronic American ginseng supplementation at the given dose can cause an oxidative stress in postmenopausal women, as reflected by the elevated oxidative damage markers and the increased erythrocyte antioxidant enzyme activity.
Collapse
Affiliation(s)
- Jonathan R Dickman
- Department Of Kinesiology, University Of Wisconsin - Madison, Madison, Wisconsin, USA
| | | | | |
Collapse
|
63
|
Abstract
Nutritional hormesis has the potential to serve as a pro-healthy aging intervention by reducing the susceptibility of the elderly to various chronic degenerative diseases and thereby extending human healthspan. Supportive evidence for nutritional hormesis arising from essential nutrients (vitamins and minerals), dietary pesticides (natural and synthetic), dioxin and other herbicides, and acrylamide will be reviewed and discussed.
Collapse
Affiliation(s)
- Daniel P Hayes
- The Brooklyn Hospital Center, 121 DeKalb Avenue, Brooklyn, NY 11201, USA.
| |
Collapse
|
64
|
|
65
|
Hormesis, aging and longevity. Biochim Biophys Acta Gen Subj 2009; 1790:1030-9. [DOI: 10.1016/j.bbagen.2009.01.004] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Revised: 01/14/2009] [Accepted: 01/15/2009] [Indexed: 12/31/2022]
|
66
|
Raubenheimer D, Simpson SJ. Nutritional PharmEcology: Doses, nutrients, toxins, and medicines. Integr Comp Biol 2009; 49:329-37. [PMID: 21665823 DOI: 10.1093/icb/icp050] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The synthesis of pharmacological techniques and concepts into ecology holds considerable promise for gaining new insights into old questions, uncovering new priorities for research and, ultimately, for consolidating a new sub-discipline within the ecological sciences-PharmEcology. We argue that this potential will best be realized if the boundaries of PharmEcology are drawn broadly to encompass not only toxins and medicines, but also nutrients. The hub of our argument is that PharmEcology shares with the established discipline of nutritional ecology an organismal focus, at the core of which is the notion of evolutionary function. From this functional viewpoint the dividing lines between chemicals traditionally considered as "toxins," "medicines," and "nutrients" are often thin, vague, heavily contingent and non-stationary, and thus provide a poor footing for an emerging sub-discipline. We build our argument around three points: nutrients and toxins are not so different, medicines and nutrients are not so different, and even in cases in which nutrients, medicines and toxins can be categorically distinguished, the biological actions of these compounds are heavily interdependent.
Collapse
Affiliation(s)
- David Raubenheimer
- Institute of Natural Sciences and New Zealand Institute for Advanced Study, Massey University, Albany, New Zealand.
| | | |
Collapse
|
67
|
Rattan SIS, Fernandes RA, Demirovic D, Dymek B, Lima CF. Heat stress and hormetin-induced hormesis in human cells: effects on aging, wound healing, angiogenesis, and differentiation. Dose Response 2008; 7:90-103. [PMID: 19343114 DOI: 10.2203/dose-response.08-014.rattan] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Accumulation of molecular damage and increased molecular heterogeneity are hallmarks of cellular aging. Mild stress-induced hormesis can be an effective way for reducing the accumulation of molecular damage, and thus slowing down aging from within. We have shown that repeated mild heat stress (RMHS) has anti-aging effects on growth and various other cellular and biochemical characteristics of normal human skin fibroblasts and keratinocytes undergoing aging in vitro. RMHS given to human cells increased the basal levels of various chaperones, reduced the accumulation of damaged proteins, stimulated proteasomal activities, increased the cellular resistance to other stresses, enhanced the levels of various antioxidant enzymes, enhanced the activity and amounts of sodium-potassium pump, and increased the phosphorylation-mediated activities of various stress kinases. We have now observed novel hormetic effects of mild heat stress on improving the wound healing capacity of skin fibroblasts and on enhancing the angiogenic ability of endothelial cells. We have also tested potential hormetins, such as curcumin and rosmarinic acid in bringing about their beneficial effects in human cells by inducing stress response pathways involving heat shock proteins and hemeoxygenase HO-1. These data further support the view that mild stress-induced hormesis can be applied for the modulation, intervention and prevention of aging and age-related impairments.
Collapse
Affiliation(s)
- Suresh I S Rattan
- Laboratory of Cellular Ageing, Department of Molecular Biology, University of Aarhus, Gustav Wieds Vej 10C, Aarhus-C, Denmark.
| | | | | | | | | |
Collapse
|
68
|
Hayes DP. Adverse effects of nutritional inadequacy and excess: a hormetic model. Am J Clin Nutr 2008; 88:578S-581S. [PMID: 18689405 DOI: 10.1093/ajcn/88.2.578s] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
I address and explain the increased risk of adverse effects from nutrients by using the paradigm of hormesis, the biological and toxicological concept that small quantities have opposite effects from large quantities. To provide necessary background, I categorize, depict, discuss, and contrast hormetic and other dose-response relations. I review some of the different hormetic mechanisms that others have proposed. I then use the hormetic paradigm to explain adverse effects from essential nutrients, including vitamin D. The hormesis paradigm could be useful to nutritional scientists in their consideration of nutritional adverse effects.
Collapse
Affiliation(s)
- Daniel P Hayes
- New York City Department of Health and Mental Hygiene, New York, NY, USA.
| |
Collapse
|
69
|
Son TG, Camandola S, Mattson MP. Hormetic dietary phytochemicals. Neuromolecular Med 2008; 10:236-46. [PMID: 18543123 DOI: 10.1007/s12017-008-8037-y] [Citation(s) in RCA: 223] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2008] [Accepted: 05/06/2008] [Indexed: 01/23/2023]
Abstract
Compelling evidence from epidemiological studies suggests beneficial roles of dietary phytochemicals in protecting against chronic disorders such as cancer, and inflammatory and cardiovascular diseases. Emerging findings suggest that several dietary phytochemicals also benefit the nervous system and, when consumed regularly, may reduce the risk of disorders such as Alzheimer's and Parkinson's diseases. The evidence supporting health benefits of vegetables and fruits provide a rationale for identification of the specific phytochemicals responsible, and for investigation of their molecular and cellular mechanisms of action. One general mechanism of action of phytochemicals that is emerging from recent studies is that they activate adaptive cellular stress response pathways. From an evolutionary perspective, the noxious properties of such phytochemicals play an important role in dissuading insects and other pests from eating the plants. However at the subtoxic doses ingested by humans that consume the plants, the phytochemicals induce mild cellular stress responses. This phenomenon has been widely observed in biology and medicine, and has been described as 'preconditioning' or 'hormesis.' Hormetic pathways activated by phytochemicals may involve kinases and transcription factors that induce the expression of genes that encode antioxidant enzymes, protein chaperones, phase-2 enzymes, neurotrophic factors, and other cytoprotective proteins. Specific examples of such pathways include the sirtuin-FOXO pathway, the NF-kappaB pathway, and the Nrf-2/ARE pathway. In this article, we describe the hormesis hypothesis of phytochemical actions with a focus on the Nrf2/ARE signaling pathway as a prototypical example of a neuroprotective mechanism of action of specific dietary phytochemicals.
Collapse
Affiliation(s)
- Tae Gen Son
- Laboratory of Neurosciences, National Institute on Aging, Intramural Research Program, 5600 Nathan Shock Drive, Baltimore, MD 21224, USA
| | | | | |
Collapse
|
70
|
Lefcort H, Freedman Z, House S, Pendleton M. Hormetic effects of heavy metals in aquatic snails: is a little bit of pollution good? ECOHEALTH 2008; 5:10-17. [PMID: 18648792 DOI: 10.1007/s10393-008-0158-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2007] [Revised: 10/04/2007] [Accepted: 11/15/2007] [Indexed: 05/26/2023]
Abstract
Hormesis is the term to describe a stimulatory effects associated with a low dose of a potentially toxic substance or stress. We had anecdotal evidence of hormetic effects in some of our previous experiments concerning the influence of heavy metals on aquatic snail growth and recruitment. We therefore repeated a version of an earlier experiment but this time we expanded our low-dose treatments and increased our sample size. We also explored if metals had a hormetic effect on algae periphyton. We raised snails in outdoor mini-ecosystems containing lead, zinc, and cadmium-contaminated soil from an Environmental Protection Agency Superfund site in the Silver Valley of northern Idaho. The snails came from two sites. One population (Physella columbiana) has evolved for 120 years in the presence of heavy metals and one (Lymnaea palustris) has not. We found that P. columbiana exhibited hormesis with snails exposed to small amounts of metals exhibiting more reproduction and growth than snails not exposed to metals. Naturally occurring Oscillatoria algae also exhibited a hormetic effect of heavy metals but L. palustris did not display hormesis. Large doses negatively impacted all three species. Overall the levels of cadmium, lead, and zinc measured in the tissues of the snails were inversely correlated to the number of snails recruited into the tub populations. Only in comparisons of the lowest metal treatment to the control treatment is a positive effect detected. Indirect effects on competing species of snails, periphyton, and also fishermen, may be less favorable.
Collapse
Affiliation(s)
- Hugh Lefcort
- Biology Department, Gonzaga University, 502 E. Boone Avenue, Spokane, WA 99258, USA.
| | | | | | | |
Collapse
|
71
|
The path traveled and the path ahead for the allostatic framework: A rejoinder on the framework's importance and the need for further work related to theory, data, and measurement. Soc Sci Med 2008. [DOI: 10.1016/j.socscimed.2007.09.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
72
|
Abstract
Radiation-induced DNA damage clusters have been proposed and are usually considered to pose the threat of serious biological damage. This has been attributed to DNA repair debilitation or cessation arising from the complexity of cluster damage. It will be shown here, contrary to both previous suggestions and perceived wisdom, that radiation induced damage clusters contribute to non-problematic risks in the low-dose, low-LET regime. The very complexity of cluster damage which inhibits and/or compromises DNA repair will ultimately be responsible for the elimination and/or diminution of precancerous and cancerous cells.
Collapse
Affiliation(s)
- Daniel P Hayes
- Office of Radiological Health, New York City Department of Health & Mental Hygiene, 2 Lafayette Street, New York, NY 10007, USA.
| |
Collapse
|
73
|
Abstract
Hormesis in aging is represented by mild stress-induced stimulation of protective mechanisms in cells and organisms resulting in biologically beneficial effects. Single or multiple exposure to low doses of otherwise harmful agents, such as irradiation, food limitation, heat stress, hypergravity, reactive oxygen species and other free radicals have a variety of anti-aging and longevity-extending hormetic effects. Detailed molecular mechanisms that bring about the hormetic effects are being increasingly understood, and comprise a cascade of stress response and other pathways of maintenance and repair. Although the extent of immediate hormetic effects after exposure to a particular stress may only be moderate, the chain of events following initial hormesis leads to biologically amplified effects that are much larger, synergistic and pleiotropic. A consequence of hormetic amplification is an increase in the homeodynamic space of a living system in terms of increased defence capacity and reduced load of damaged macromolecules. Hormetic strengthening of the homeodynamic space provides wider margins for metabolic fluctuation, stress tolerance, adaptation and survival. Hormesis thus counter-balances the progressive shrinkage of the homeodynamic space, which is the ultimate cause of aging, diseases and death. Healthy aging may be achieved by hormesis through mild and periodic, but not severe or chronic, physical and mental challenges, and by the use of nutritional hormesis incorporating mild stress-inducing molecules called hormetins. The established scientific foundations of hormesis are ready to pave the way for new and effective approaches in aging research and intervention.
Collapse
Affiliation(s)
- Suresh I S Rattan
- Laboratory of Cellular Ageing, Department of Molecular Biology, University of Aarhus, Aarhus-C, Denmark.
| |
Collapse
|
74
|
|
75
|
Neuroprotective effect of STAZN, a novel azulenyl nitrone antioxidant, in focal cerebral ischemia in rats: dose-response and therapeutic window. Brain Res 2007; 1180:101-10. [PMID: 17945201 DOI: 10.1016/j.brainres.2007.05.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2007] [Revised: 05/10/2007] [Accepted: 05/14/2007] [Indexed: 12/31/2022]
Abstract
Stilbazulenyl nitrone (STAZN) is a potent antioxidant that, in a rat model of transient focal cerebral ischemia, confers significant enduring functional and morphological neuroprotection. This study investigated the influence of dose and time of administration on the neuroprotective effects of STAZN in the intraluminal suture model of middle cerebral artery occlusion (MCAo). Dose response: At 2 and 4 h after the onset of MCAo, animals received intravenously either STAZN (low dose=0.07 mg/kg, n=8; medium dose=0.7 mg/kg, n=9; high dose=3.5 mg/kg, n=9), an equivalent volume of vehicle (30% Solutol HS15 and 70% isotonic saline, 0.37 ml/kg, n=5) or saline (0.37 ml/kg, n=5). Only the medium dose improved scores (p<0.05) on a standardized neurobehavioral test at 1, 2 and 3 days after MCAo. Only the medium dose reduced the total infarction (51%, p=0.014) compared to controls. These results indicate that STAZN exhibits maximal neuroprotection at the 0.7 mg/kg dose. Therapeutic window: STAZN (0.6 mg/kg) dissolved in dimethylsulfoxide was given intra-peritoneally at 2 and 4 h (n=11), 3 and 5 h (n=10), 4 and 6 h (n=10) or 5 and 7 h (n=7) after the onset of MCAo. Additional doses were given at 24 and 48 h. Vehicle (dimethylsulfoxide, 2.0 ml/kg, n=6) was administered at 3, 5, 24 and 48 h. STAZN treatment initiated at 2 or 3 h after the onset of MCAo improved neurological scores (p<0.001) and reduced total infarction (42.2%, p<0.05) compared to controls.
Collapse
|