51
|
Smith JA, Daniel R. Following the path of the virus: the exploitation of host DNA repair mechanisms by retroviruses. ACS Chem Biol 2006; 1:217-26. [PMID: 17163676 DOI: 10.1021/cb600131q] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Numerous host cellular cofactors are involved in the life cycle of retroviruses. Importantly, DNA repair machinery of infected cells is activated by retroviruses and retroviral vectors during the process of integration and host cell DNA repair proteins are employed to create a fully integrated provirus. The full delineation of these repair mechanisms that are triggered by retroviruses also has implications outside of the field of retrovirology. It will undoubtedly be of interest to developers of gene therapy and will also further facilitate our understanding of DNA repair and cancer. This review gives a brief summary of the accomplishments in the field of DNA repair and retroviral integration and the opportunities that this area of science provides with regards to the elucidation of repair mechanisms, in the context of retroviral infection.
Collapse
Affiliation(s)
- Johanna A Smith
- Division of Infectious Diseases--Center for Human Virology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, Pennsylvania 19107, USA
| | | |
Collapse
|
52
|
Abstract
Retroviral DNA integration creates a discontinuity in the host cell chromatin and repair of this damage is required to complete the integration process. As integration and repair are essential for both viral replication and cell survival, it is possible that specific interactions with the host DNA repair systems might provide new cellular targets for human immunodeficiency virus therapy. Various genetic, pharmacological, and biochemical studies have provided strong evidence that postintegration DNA repair depends on components of the nonhomologous end-joining (NHEJ) pathway (DNA-PK (DNA-dependent protein kinase), Ku, Xrcc4, DNA ligase IV) and DNA damage-sensing pathways (Atr (Atm and Rad related), gamma-H2AX). Furthermore, deficiencies in NHEJ components result in susceptibility to apoptotic cell death following retroviral infection. Here, we review these findings and discuss other ways that retroviral DNA intermediates may interact with the host DNA damage signaling and repair pathways.
Collapse
Affiliation(s)
- A M Skalka
- Fox Chase Cancer Center, Institute for Cancer Research, 333 Cottman Avenue, Philadelphia, PA 19111-2497, USA.
| | | |
Collapse
|
53
|
Lloyd AG, Tateishi S, Bieniasz PD, Muesing MA, Yamaizumi M, Mulder LCF. Effect of DNA repair protein Rad18 on viral infection. PLoS Pathog 2006; 2:e40. [PMID: 16710452 PMCID: PMC1463017 DOI: 10.1371/journal.ppat.0020040] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2005] [Accepted: 03/30/2006] [Indexed: 11/18/2022] Open
Abstract
Host factors belonging to the DNA repair machineries are assumed to aid retroviruses in the obligatory step of integration. Here we describe the effect of DNA repair molecule Rad18, a component of the post-replication repair pathway, on viral infection. Contrary to our expectations, cells lacking Rad18 were consistently more permissive to viral transduction as compared to Rad18(+/+) controls. Remarkably, such susceptibility was integration independent, since retroviruses devoid of integration activity also showed enhancement of the initial steps of infection. Moreover, the elevated sensitivity of the Rad18(-/-) cells was also observed with adenovirus. These data indicate that Rad18 suppresses viral infection in a non-specific fashion, probably by targeting incoming DNA. Furthermore, considering data published recently, it appears that the interactions between DNA repair components with incoming viruses, often result in inhibition of the infection rather than cooperation toward its establishment.
Collapse
Affiliation(s)
- Aliza G Lloyd
- The Aaron Diamond AIDS Research Center, The Rockefeller University, New York, New York, United States of America
| | - Satoshi Tateishi
- Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Paul D Bieniasz
- The Aaron Diamond AIDS Research Center, The Rockefeller University, New York, New York, United States of America
| | - Mark A Muesing
- The Aaron Diamond AIDS Research Center, The Rockefeller University, New York, New York, United States of America
| | - Masaru Yamaizumi
- Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Lubbertus C. F Mulder
- The Aaron Diamond AIDS Research Center, The Rockefeller University, New York, New York, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
54
|
Jacque JM, Stevenson M. The inner-nuclear-envelope protein emerin regulates HIV-1 infectivity. Nature 2006; 441:641-5. [PMID: 16680152 DOI: 10.1038/nature04682] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2006] [Accepted: 02/28/2006] [Indexed: 01/13/2023]
Abstract
Primate lentiviruses such as human immunodeficiency type 1 (HIV-1) have the capacity to infect non-dividing cells such as tissue macrophages. In the process, viral complementary DNA traverses the nuclear envelope to integrate within chromatin. Given the intimate association between chromatin and the nuclear envelope, we examined whether HIV-1 appropriates nuclear envelope components during infection. Here we show that emerin, an integral inner-nuclear-envelope protein, is necessary for HIV-1 infection. Infection of primary macrophages lacking emerin was abortive in that viral cDNA localized to the nucleus but integration into chromatin was inefficient, and conversion of viral cDNA to non-functional episomal cDNA increased. HIV-1 cDNA associated with emerin in vivo, and the interaction of viral cDNA with chromatin was dependent on emerin. Barrier-to-autointegration factor (BAF), the LEM (LAP, emerin, MAN) binding partner of emerin, was required for the association of viral cDNA with emerin and for the ability of emerin to support virus infection. Therefore emerin, which bridges the interface between the inner nuclear envelope and chromatin, may be necessary for chromatin engagement by viral cDNA before integration.
Collapse
Affiliation(s)
- Jean-Marc Jacque
- Program in Molecular Medicine, University of Massachusetts Medical School, 373 Plantation Street, Suite 319, Worcester, Massachusetts 01605, USA
| | | |
Collapse
|
55
|
Wang HC, Chou WC, Shieh SY, Shen CY. Ataxia telangiectasia mutated and checkpoint kinase 2 regulate BRCA1 to promote the fidelity of DNA end-joining. Cancer Res 2006; 66:1391-400. [PMID: 16452194 DOI: 10.1158/0008-5472.can-05-3270] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Homologous recombination (HR) and nonhomologous end-joining (NHEJ) are the two mechanisms responsible for repairing DNA double-strand breaks (DSBs) and act in either a collaborative or competitive manner in mammalian cells. DSB repaired by NHEJ may be more complicated than the simple joining of the ends of DSB, because, if nucleotides were lost, it would result in error-prone repair. This has led to the proposal that a subpathway of precise NHEJ exists that can repair DSBs with higher fidelity; this is supported by recent findings that the expression of the HR gene, BRCA1, is causally linked to in vitro and in vivo precise NHEJ activity. To further delineate this mechanism, the present study explored the connection between NHEJ and the cell-cycle checkpoint proteins, ataxia telangiectasia mutated (ATM) and checkpoint kinase 2 (Chk2), known to be involved in activating BRCA1, and tested the hypothesis that ATM and Chk2 promote precise end-joining by BRCA1. Support for this hypothesis came from the observations that (a) knockdown of ATM and Chk2 expression affected end-joining activity; (b) in BRCA1-defective cells, precise end-joining activity was not restored by a BRCA1 mutant lacking the site phosphorylated by Chk2 but was restored by wild-type BRCA1 or a mutant mimicking phosphorylation by Chk2; (c) Chk2 mutants lacking kinase activity or with a mutation at a site phosphorylated by ATM had a dominant negative effect on precise end-joining in BRCA1-expressing cells. These results suggest that the other two HR regulatory proteins, ATM and Chk2, act jointly to regulate the activity of BRCA1 in controlling the fidelity of DNA end-joining by precise NHEJ.
Collapse
Affiliation(s)
- Hui-Chun Wang
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | | | | | | |
Collapse
|
56
|
Yoder K, Sarasin A, Kraemer K, McIlhatton M, Bushman F, Fishel R. The DNA repair genes XPB and XPD defend cells from retroviral infection. Proc Natl Acad Sci U S A 2006; 103:4622-7. [PMID: 16537383 PMCID: PMC1450221 DOI: 10.1073/pnas.0509828103] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Reverse transcription of retroviral RNA genomes produce a double-stranded linear cDNA molecule. A host degradation system prevents a majority of the cDNA molecules from completing the obligatory genomic integration necessary for pathogenesis. We demonstrate that the human TFIIH complex proteins XPB (ERCC3) and XPD (ERCC2) play a principal role in the degradation of retroviral cDNA. DNA repair-deficient XPB and XPD mutant cell lines exhibited an increase in transduction efficiency by both HIV- and Moloney murine leukemia virus-based retroviral vectors. Replicating Moloney murine leukemia virus viral production was greater in XPB or XPD mutant cells but not XPA mutant cells. Quantitative PCR showed an increase in total cDNA molecules, integrated provirus, and 2LTR circles in XPB and XPD mutant cells. In the presence of a reverse transcription inhibitor, the HIV cDNA appeared more stable in mutant XPB or XPD cells. These studies implicate the nuclear DNA repair proteins XPB and XPD in a cellular defense against retroviral infection.
Collapse
Affiliation(s)
- Kristine Yoder
- *Department of Molecular Virology, Immunology, and Medical Genetics, and Ohio State University Comprehensive Cancer Center, Ohio State University College of Medicine, Columbus, OH 43210
| | - Alain Sarasin
- Institut Gustave Roussy, Centre National de la Recherche Scientifique, 94805 Villejuif Cedex, France
| | - Kenneth Kraemer
- Basic Research Laboratory, National Cancer Institute, Bethesda, MD 20892; and
| | - Michael McIlhatton
- *Department of Molecular Virology, Immunology, and Medical Genetics, and Ohio State University Comprehensive Cancer Center, Ohio State University College of Medicine, Columbus, OH 43210
| | - Frederic Bushman
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104
| | - Richard Fishel
- *Department of Molecular Virology, Immunology, and Medical Genetics, and Ohio State University Comprehensive Cancer Center, Ohio State University College of Medicine, Columbus, OH 43210
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
57
|
Adachi N, Iiizumi S, Koyama H. Evidence for a role of vertebrate Rad52 in the repair of topoisomerase II-mediated DNA damage. DNA Cell Biol 2005; 24:388-93. [PMID: 15941391 DOI: 10.1089/dna.2005.24.388] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
DNA topoisomerase II (Top2) inhibitors are useful as anticancer agents, mostly by virtue of their ability to induce DNA double-strand breaks (DSBs). These DSBs are repaired almost exclusively by Rad52-dependent homologous recombination (HR) in yeast. However, we have recently shown that in vertebrate cells such lesions are primarily repaired by nonhomologous end-joining, but not HR. This finding, taken together with previous observations that disruption of RAD52 does not severely affect HR in vertebrate cells, makes it highly unlikely that Rad52 contributes to the repair of Top2-mediated DNA damage. However, in this paper we show that chicken cells lacking Rad52 do exhibit increased sensitivity to the Top2 inhibitor VP-16. Remarkably, the level of hypersensitivity of RAD52-null cells was comparable to that of RAD54-null cells, albeit only at high doses. Our data thus provide the first demonstration of a major repair defect associated with loss of Rad52 in vertebrate cells.
Collapse
Affiliation(s)
- Noritaka Adachi
- Kihara Institute for Biological Research, Graduate School of Integrated Science, Yokohama City University, Yokohama, Japan.
| | | | | |
Collapse
|
58
|
|
59
|
Lau A, Swinbank KM, Ahmed PS, Taylor DL, Jackson SP, Smith GCM, O'Connor MJ. Suppression of HIV-1 infection by a small molecule inhibitor of the ATM kinase. Nat Cell Biol 2005; 7:493-500. [PMID: 15834407 DOI: 10.1038/ncb1250] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2004] [Accepted: 03/29/2005] [Indexed: 01/14/2023]
Abstract
Chemotherapy that is used to treat human immunodeficiency virus type-1 (HIV-1) infection focuses primarily on targeting virally encoded proteins. However, the combination of a short retroviral life cycle and high mutation rate leads to the selection of drug-resistant HIV-1 variants. One way to address this problem is to inhibit non-essential host cell proteins that are required for viral replication. Here we show that the activity of HIV-1 integrase stimulates an ataxia-telangiectasia-mutated (ATM)-dependent DNA damage response, and that a deficiency of this ATM kinase sensitizes cells to retrovirus-induced cell death. Consistent with these observations, we demonstrate that a novel and specific small molecule inhibitor of ATM kinase activity, KU-55933, is capable of suppressing the replication of both wild-type and drug-resistant HIV-1.
Collapse
Affiliation(s)
- Alan Lau
- KuDOS Pharmaceuticals Limited, 327 Cambridge Science Park, Milton Road, Cambridge CB4 0WG, UK
| | | | | | | | | | | | | |
Collapse
|
60
|
van Veelen LR, Essers J, van de Rakt MWMM, Odijk H, Pastink A, Zdzienicka MZ, Paulusma CC, Kanaar R. Ionizing radiation-induced foci formation of mammalian Rad51 and Rad54 depends on the Rad51 paralogs, but not on Rad52. Mutat Res 2005; 574:34-49. [PMID: 15914205 DOI: 10.1016/j.mrfmmm.2005.01.020] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2004] [Revised: 12/08/2004] [Accepted: 01/10/2005] [Indexed: 12/22/2022]
Abstract
Homologous recombination is of major importance for the prevention of genomic instability during chromosome duplication and repair of DNA damage, especially double-strand breaks. Biochemical experiments have revealed that during the process of homologous recombination the RAD52 group proteins, including Rad51, Rad52 and Rad54, are involved in an essential step: formation of a joint molecule between the broken DNA and the intact repair template. Accessory proteins for this reaction include the Rad51 paralogs and BRCA2. The significance of homologous recombination for the cell is underscored by the evolutionary conservation of the Rad51, Rad52 and Rad54 proteins from yeast to humans. Upon treatment of cells with ionizing radiation, the RAD52 group proteins accumulate at the sites of DNA damage into so-called foci. For the yeast Saccharomyces cerevisiae, foci formation of Rad51 and Rad54 is abrogated in the absence of Rad52, while Rad51 foci formation does occur in the absence of the Rad51 paralog Rad55. By contrast, we show here that in mammalian cells, Rad52 is not required for foci formation of Rad51 and Rad54. Furthermore, radiation-induced foci formation of Rad51 and Rad54 is impaired in all Rad51 paralog and BRCA2 mutant cell lines tested, while Rad52 foci formation is not influenced by a mutation in any of these recombination proteins. Despite their evolutionary conservation and biochemical similarities, S. cerevisiae and mammalian Rad52 appear to differentially contribute to the DNA-damage response.
Collapse
Affiliation(s)
- Lieneke R van Veelen
- Department of Cell Biology and Genetics, Erasmus MC, University Medical Center, P.O. Box 1738, 3000 DR Rotterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
61
|
Lloyd JA, McGrew DA, Knight KL. Identification of Residues Important for DNA Binding in the Full-length Human Rad52 Protein. J Mol Biol 2005; 345:239-49. [PMID: 15571718 DOI: 10.1016/j.jmb.2004.10.065] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2004] [Revised: 10/21/2004] [Accepted: 10/21/2004] [Indexed: 01/08/2023]
Abstract
Human Rad52 (HsRad52) is a DNA-binding protein (418 residues) that promotes the catalysis of DNA double strand break repair by the Rad51 recombinase. HsRad52 self-associates to form ring-shaped oligomers as well as higher order complexes of these rings. Analysis of the structural and functional organization of protein domains suggests that many of the determinants of DNA binding lie within the N-terminal 85 residues. Crystal structures of two truncation mutants, HsRad52(1-212) and HsRad52(1-209) support the idea that this region makes up an important part of the DNA binding domain. Here, we report the results of saturating alanine scanning mutagenesis of the N-terminal domain of full-length HsRad52 in which we identify residues that are likely involved in direct contact with single-stranded DNA (ssDNA). Our results largely agree with the position of side-chains seen in the crystal structures but also suggest that certain DNA binding and cross-subunit interactions differ between the 11 subunit ring in the crystal structures of the truncation mutant proteins versus the seven subunit ring formed by full-length HsRad52.
Collapse
Affiliation(s)
- Janice A Lloyd
- Department of Biochemistry and Molecular Pharmacology, Aaron Lazare Research Building, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605-2324, USA
| | | | | |
Collapse
|