51
|
Huang YC, Lee IL, Tsai YF, Saito S, Lin YC, Chiou SS, Tsai EM, K. Yokoyama K. Role of Jun dimerization protein 2 (JDP2) in cellular senescence. Inflamm Regen 2010. [DOI: 10.2492/inflammregen.30.507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Yu-Chang Huang
- Center of Excellence for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - I-Liang Lee
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
| | - Yu-Fang Tsai
- Center of Excellence for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shigeo Saito
- Center of Excellence for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Saito laboratory of Cell Technology, Yaita, Tochigi, Japan
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ying-Chu Lin
- Center of Excellence for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shyh-Shin Chiou
- Department of Pediatrics, Kaohsiung Medical University, Kaohsiung, Taiwan
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Eing-Mei Tsai
- Center of Excellence for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Gynecology, Kaohsiung Medical University, Kaohsiung, Taiwan
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Kazunari K. Yokoyama
- Center of Excellence for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Molecular Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Gene Engineering Division, RIKEN BioResource Center, Tsukuba, Ibaraki, Japan
| |
Collapse
|
52
|
Westhoff JH, Schildhorn C, Jacobi C, Hömme M, Hartner A, Braun H, Kryzer C, Wang C, von Zglinicki T, Kränzlin B, Gretz N, Melk A. Telomere shortening reduces regenerative capacity after acute kidney injury. J Am Soc Nephrol 2009; 21:327-36. [PMID: 19959722 DOI: 10.1681/asn.2009010072] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Telomeres of most somatic cells progressively shorten, compromising the regenerative capacity of human tissues during aging and chronic diseases and after acute injury. Whether telomere shortening reduces renal regeneration after acute injury is unknown. Here, renal ischemia-reperfusion injury led to greater impairment of renal function and increased acute and chronic histopathologic damage in fourth-generation telomerase-deficient mice compared with both wild-type and first-generation telomerase-deficient mice. Critically short telomeres, increased expression of the cell-cycle inhibitor p21, and more apoptotic renal cells accompanied the pronounced damage in fourth-generation telomerase-deficient mice. These mice also demonstrated significantly reduced proliferative capacity in tubular, glomerular, and interstitial cells. These data suggest that critical telomere shortening in the kidney leads to increased senescence and apoptosis, thereby limiting regenerative capacity in response to injury.
Collapse
Affiliation(s)
- Jens H Westhoff
- Children's Hospital, Medical School Hannover, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Tissue regenerative delays and synthetic lethality in adult mice after combined deletion of Atr and Trp53. Nat Genet 2009; 41:1144-9. [PMID: 19718024 PMCID: PMC2823374 DOI: 10.1038/ng.441] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Accepted: 07/28/2009] [Indexed: 12/16/2022]
Abstract
Trp53 loss of function has previously been shown to rescue tissue maintenance and developmental defects resulting from DNA damage or DNA-repair gene mutations. Here, we report that p53 deficiency severely exacerbates tissue degeneration caused by mosaic deletion of the essential genome maintenance regulator Atr. Combined loss of Atr and p53 (Trp53(-/-)Atr(mKO)) led to severe defects in hair follicle regeneration, localized inflammation (Mac1(+)Gr1(+) infiltrates), accelerated deterioration of the intestinal epithelium and synthetic lethality in adult mice. Tissue degeneration in Trp53(-/-)Atr(mKO) mice was characterized by the accumulation of cells maintaining high levels of DNA damage. Moreover, the elevated frequency of these damaged cells in both progenitor and downstream compartments in Trp53(-/-)Atr(mKO) skin coincided with delayed compensatory tissue renewal from residual ATR-expressing cells. Together, our results indicate that the combined loss of Atr and Trp53 in adult mice leads to the accumulation of highly damaged cells, which, consequently, impose a barrier to regeneration from undamaged progenitors.
Collapse
|
54
|
p53 deletion impairs clearance of chromosomal-instable stem cells in aging telomere-dysfunctional mice. Nat Genet 2009; 41:1138-43. [DOI: 10.1038/ng.426] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Accepted: 06/29/2009] [Indexed: 12/31/2022]
|
55
|
A 'higher order' of telomere regulation: telomere heterochromatin and telomeric RNAs. EMBO J 2009; 28:2323-36. [PMID: 19629032 PMCID: PMC2722253 DOI: 10.1038/emboj.2009.197] [Citation(s) in RCA: 150] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Accepted: 06/24/2009] [Indexed: 01/20/2023] Open
Abstract
Protection of chromosome ends from DNA repair and degradation activities is mediated by specialized protein complexes bound to telomere repeats. Recently, it has become apparent that epigenetic regulation of the telomric chromatin template critically impacts on telomere function and telomere-length homeostasis from yeast to man. Across all species, telomeric repeats as well as the adjacent subtelomeric regions carry features of repressive chromatin. Disruption of this silent chromatin environment results in loss of telomere-length control and increased telomere recombination. In turn, progressive telomere loss reduces chromatin compaction at telomeric and subtelomeric domains. The recent discoveries of telomere chromatin regulation during early mammalian development, as well as during nuclear reprogramming, further highlights a central role of telomere chromatin changes in ontogenesis. In addition, telomeres were recently shown to generate long, non-coding RNAs that remain associated to telomeric chromatin and will provide new insights into the regulation of telomere length and telomere chromatin. In this review, we will discuss the epigenetic regulation of telomeres across species, with special emphasis on mammalian telomeres. We will also discuss the links between epigenetic alterations at mammalian telomeres and telomere-associated diseases.
Collapse
|
56
|
Matheu A, Maraver A, Collado M, Garcia-Cao I, Cañamero M, Borras C, Flores JM, Klatt P, Viña J, Serrano M. Anti-aging activity of the Ink4/Arf locus. Aging Cell 2009; 8:152-61. [PMID: 19239418 DOI: 10.1111/j.1474-9726.2009.00458.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The proteins encoded by the Ink4/Arf locus, p16Ink4a, p19Arf and p15Ink4b are major tumour suppressors that oppose aberrant mitogenic signals. The expression levels of the locus are progressively increased during aging and genome-wide association studies have linked the locus to a number of aging-associated diseases and frailty in humans. However, direct measurement of the global impact of the Ink4/Arf locus on organismal aging and longevity was lacking. In this work, we have examined the fertility, cancer susceptibility, aging and longevity of mice genetically modified to carry one (Ink4/Arf-tg) or two (Ink4/Arf-tg/tg) intact additional copies of the locus. First, increased gene dosage of Ink4/Arf impairs the production of male germ cells, and in the case of Ink4/Arf-tg/tg mice results in a Sertoli cell-only-like syndrome and a complete absence of sperm. Regarding cancer, there is a lower incidence of aging-associated cancer proportional to the Ink4/Arf gene dosage. Interestingly, increased Ink4/Arf gene dosage resulted in lower scores in aging markers and in extended median longevity. The increased survival was also observed in cancer-free mice indicating that cancer protection and delayed aging are separable activities of the Ink4/Arf locus. In contrast to these results, mice carrying one or two additional copies of the p53 gene (p53-tg and p53-tg/tg) had a normal longevity despite their increased cancer protection. We conclude that the Ink4/Arf locus has a global anti-aging effect, probably by favouring quiescence and preventing unnecessary proliferation.
Collapse
Affiliation(s)
- Ander Matheu
- Tumor Suppression Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Martinez P, Siegl-Cachedenier I, Flores JM, Blasco MA. MSH2 deficiency abolishes the anticancer and pro-aging activity of short telomeres. Aging Cell 2009; 8:2-17. [PMID: 18986375 DOI: 10.1111/j.1474-9726.2008.00441.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Mutations in the mismatch repair (MMR) pathway occur in human colorectal cancers with microsatellite instability. Mounting evidence suggests that cell-cycle arrest in response to a number of cellular stresses, including telomere shortening, is a potent anticancer barrier. The telomerase-deficient mouse model illustrates the anticancer effect of cell-cycle arrest provoked by short telomeres. Here, we describe a role for the MMR protein, MSH2, in signaling cell-cycle arrest in a p21/p53-dependent manner in response to short telomeres in the context of telomerasedeficient mice. In particular, progressively shorter telomeres at successive generations of MSH2(-/-) Terc(-/--) mice did not suppress cancer in these mice, indicating that MSH2 deficiency abolishes the tumor suppressor activity of short telomeres. Interestingly, MSH2 deficiency prevented degenerative pathologies in the gastrointestinal tract of MSH2(-/-) Terc(-/-) mice concomitant with a rescue of proliferative defects. The abolishment of the anticancer and pro-aging effects of short telomeres provoked by MSH2 abrogation was independent of changes in telomere length. These results highlight a role for MSH2 in the organismal response to dysfunctional telomeres, which in turn may be important in the pathobiology of human cancers bearing mutations in the MMR pathway.
Collapse
|
58
|
Battling cancer on many fronts. Meeting on New Battlefields in Human Cancer--Attacking in Many Fronts. EMBO Rep 2009; 9:853-8. [PMID: 18688257 DOI: 10.1038/embor.2008.140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2008] [Accepted: 06/23/2008] [Indexed: 11/08/2022] Open
|
59
|
TRF1 controls telomere length and mitotic fidelity in epithelial homeostasis. Mol Cell Biol 2009; 29:1608-25. [PMID: 19124610 DOI: 10.1128/mcb.01339-08] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
TRF1 is a component of the shelterin complex at mammalian telomeres; however, a role for TRF1 in telomere biology in the context of the organism is unclear. In this study, we generated mice with transgenic TRF1 expression targeted to epithelial tissues (K5TRF1 mice). K5TRF1 mice have shorter telomeres in the epidermis than wild-type controls do, and these are rescued in the absence of the XPF nuclease, indicating that TRF1 acts as a negative regulator of telomere length by controlling XPF activity at telomeres, similar to what was previously described for TRF2-overexpressing mice (K5TRF2 mice). K5TRF1 cells also show increased end-to-end chromosomal fusions, multitelomeric signals, and increased telomere recombination, indicating an impact of TRF1 on telomere integrity, again similar to the case in K5TRF2 cells. Intriguingly, K5TRF1 cells, but not K5TRF2 cells, show increased mitotic spindle aberrations. TRF1 colocalizes with the spindle assembly checkpoint proteins BubR1 and Mad2 at mouse telomeres, indicating a link between telomeres and the mitotic spindle. Together, these results demonstrate that TRF1, like TRF2, negatively regulates telomere length in vivo by controlling the action of the XPF nuclease at telomeres; in addition, TRF1 has a unique role in the mitotic spindle checkpoint.
Collapse
|
60
|
Cell intrinsic and extrinsic mechanisms of stem cell aging depend on telomere status. Exp Gerontol 2009; 44:75-82. [DOI: 10.1016/j.exger.2008.06.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2008] [Revised: 06/24/2008] [Accepted: 06/25/2008] [Indexed: 12/16/2022]
|
61
|
Tomás-Loba A, Flores I, Fernández-Marcos PJ, Cayuela ML, Maraver A, Tejera A, Borrás C, Matheu A, Klatt P, Flores JM, Viña J, Serrano M, Blasco MA. Telomerase reverse transcriptase delays aging in cancer-resistant mice. Cell 2008; 135:609-22. [PMID: 19013273 DOI: 10.1016/j.cell.2008.09.034] [Citation(s) in RCA: 310] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2008] [Revised: 06/18/2008] [Accepted: 09/15/2008] [Indexed: 12/28/2022]
Abstract
Telomerase confers limitless proliferative potential to most human cells through its ability to elongate telomeres, the natural ends of chromosomes, which otherwise would undergo progressive attrition and eventually compromise cell viability. However, the role of telomerase in organismal aging has remained unaddressed, in part because of the cancer-promoting activity of telomerase. To circumvent this problem, we have constitutively expressed telomerase reverse transcriptase (TERT), one of the components of telomerase, in mice engineered to be cancer resistant by means of enhanced expression of the tumor suppressors p53, p16, and p19ARF. In this context, TERT overexpression improves the fitness of epithelial barriers, particularly the skin and the intestine, and produces a systemic delay in aging accompanied by extension of the median life span. These results demonstrate that constitutive expression of Tert provides antiaging activity in the context of a mammalian organism.
Collapse
Affiliation(s)
- Antonia Tomás-Loba
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre CNIO, Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Abstract
Genetically modified animals represent a resource of immense potential for cancer research. Classically, genetic modifications in mice were obtained through selected breeding experiments or treatments with powerful carcinogens capable of inducing random mutagenesis. A new era began in the early 1980s when genetic modifications by inserting foreign DNA genes into the cells of an animal allowed for the development of transgenic mice. Since that moment, genetic modifications have been able to be made in a predetermined way. Gene targeting emerged later as a method of in vivo mutagenesis whereby the sequence of a predetermined gene is selectively modified within an intact cell. In this review we focus on how genetically modified mice can be created to study tumour development, and how these models have contributed to an understanding of the genetic alterations involved in human cancer. We also discuss the strengths and weaknesses of the different mouse models for identifying cancer genes, and understanding the consequences of their alterations in order to obtain the maximum benefit for cancer patients.
Collapse
|
63
|
Abstract
Arf and p53 are regarded among the most relevant tumor suppressors based on their ubiquitous and frequent inactivation in human cancer. The Arf/p53 pathway protects cells against several types of damage and this is the basis of its tumor suppressor activity. Interestingly, aging is a process associated with the accumulation of damage derived from chronic stresses of small magnitude. In agreement with its damage protection role, it has been recently described that the Arf/p53 pathway not only protects mammalian organisms from cancer but also from aging. However, there is also evidence that p53, under certain circumstances, such as when constitutively active, can induce aging. We discuss here the current evidence linking the Arf/p53 pathway to the process of aging and present a unified model.
Collapse
Affiliation(s)
- Ander Matheu
- Tumor Suppression Group, Spanish National Cancer Research Center, Madrid, Spain
| | | | | |
Collapse
|
64
|
Cheok CF, Lane DP. New developments in small molecules targeting p53 pathways in anticancer therapy. Drug Dev Res 2008. [DOI: 10.1002/ddr.20261] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
65
|
|
66
|
Jeyapalan JC, Sedivy JM. Cellular senescence and organismal aging. Mech Ageing Dev 2008; 129:467-74. [PMID: 18502472 DOI: 10.1016/j.mad.2008.04.001] [Citation(s) in RCA: 256] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2007] [Revised: 03/27/2008] [Accepted: 04/06/2008] [Indexed: 01/22/2023]
Abstract
Cellular senescence, first observed and defined using in vitro cell culture studies, is an irreversible cell cycle arrest which can be triggered by a variety of factors. Emerging evidence suggests that cellular senescence acts as an in vivo tumor suppression mechanism by limiting aberrant proliferation. It has also been postulated that cellular senescence can occur independently of cancer and contribute to the physiological processes of normal organismal aging. Recent data have demonstrated the in vivo accumulation of senescent cells with advancing age. Some characteristics of senescent cells, such as the ability to modify their extracellular environment, could play a role in aging and age-related pathology. In this review, we examine current evidence that links cellular senescence and organismal aging.
Collapse
Affiliation(s)
- Jessie C Jeyapalan
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
| | | |
Collapse
|
67
|
Aging by epigenetics--a consequence of chromatin damage? Exp Cell Res 2008; 314:1909-17. [PMID: 18423606 DOI: 10.1016/j.yexcr.2008.02.023] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2008] [Revised: 02/28/2008] [Accepted: 02/28/2008] [Indexed: 01/09/2023]
Abstract
Chromatin structure is not fixed. Instead, chromatin is dynamic and is subject to extensive developmental and age-associated remodeling. In some cases, this remodeling appears to counter the aging and age-associated diseases, such as cancer, and extend organismal lifespan. However, stochastic non-deterministic changes in chromatin structure might, over time, also contribute to the break down of nuclear, cell and tissue function, and consequently aging and age-associated diseases.
Collapse
|
68
|
Flores I, Canela A, Vera E, Tejera A, Cotsarelis G, Blasco MA. The longest telomeres: a general signature of adult stem cell compartments. Genes Dev 2008; 22:654-67. [PMID: 18283121 DOI: 10.1101/gad.451008] [Citation(s) in RCA: 273] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Identification of adult stem cells and their location (niches) is of great relevance for regenerative medicine. However, stem cell niches are still poorly defined in most adult tissues. Here, we show that the longest telomeres are a general feature of adult stem cell compartments. Using confocal telomere quantitative fluorescence in situ hybridization (telomapping), we find gradients of telomere length within tissues, with the longest telomeres mapping to the known stem cell compartments. In mouse hair follicles, we show that cells with the longest telomeres map to the known stem cell compartments, colocalize with stem cell markers, and behave as stem cells upon treatment with mitogenic stimuli. Using K15-EGFP reporter mice, which mark hair follicle stem cells, we show that GFP-positive cells have the longest telomeres. The stem cell compartments in small intestine, testis, cornea, and brain of the mouse are also enriched in cells with the longest telomeres. This constitutes the description of a novel general property of adult stem cell compartments. Finally, we make the novel finding that telomeres shorten with age in different mouse stem cell compartments, which parallels a decline in stem cell functionality, suggesting that telomere loss may contribute to stem cell dysfunction with age.
Collapse
Affiliation(s)
- Ignacio Flores
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre, Madrid E-28029, Spain
| | | | | | | | | | | |
Collapse
|
69
|
Ju Z, Rudolph L. Telomere dysfunction and stem cell ageing. Biochimie 2008; 90:24-32. [DOI: 10.1016/j.biochi.2007.09.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2007] [Accepted: 09/10/2007] [Indexed: 02/08/2023]
|
70
|
Shawi M, Autexier C. Telomerase, senescence and ageing. Mech Ageing Dev 2007; 129:3-10. [PMID: 18215413 DOI: 10.1016/j.mad.2007.11.007] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2007] [Revised: 11/23/2007] [Accepted: 11/30/2007] [Indexed: 10/22/2022]
Abstract
Telomeres serve to camouflage chromosome ends from the DNA damage response machinery. Telomerase activity is required to maintain telomeres. One consequence of telomere dysfunction is cellular senescence, a permanent growth arrest state. We review the key regulators of cellular senescence and recent in vivo evidence which supports p53-dependent senescence induced by short telomeres as a potent tumor suppressor pathway. The in vivo link between cellular senescence and tumor regression is also discussed. The relationship between short telomere length and ageing or disease states in various cells of the body is increasingly reported. Paradoxically, the introduction of telomerase is proposed as a method to combat ageing via cell therapy and a possible method to regenerate tissue, while telomerase inhibition and telomere shortening is suggested as a possible therapy to defeat cancers with intact p53. Researchers thus face the challenge of understanding the complex processes which regulate the potential benefits of both telomerase inhibition and activation.
Collapse
Affiliation(s)
- May Shawi
- Department of Medicine, Division of Experimental Medicine, McGill University, Canada
| | | |
Collapse
|
71
|
Siegl-Cachedenier I, Flores I, Klatt P, Blasco MA. Telomerase reverses epidermal hair follicle stem cell defects and loss of long-term survival associated with critically short telomeres. ACTA ACUST UNITED AC 2007; 179:277-90. [PMID: 17954610 PMCID: PMC2064764 DOI: 10.1083/jcb.200704141] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Organ homeostasis and organismal survival are related to the ability of stem cells to sustain tissue regeneration. As a consequence of accelerated telomerase shortening, telomerase-deficient mice show defective tissue regeneration and premature death. This suggests a direct impact of telomere length and telomerase activity on stem cell biology. We recently found that short telomeres impair the ability of epidermal stem cells to mobilize out of the hair follicle (HF) niche, resulting in impaired skin and hair growth and in the suppression of epidermal stem cell proliferative capacity in vitro. Here, we demonstrate that telomerase reintroduction in mice with critically short telomeres is sufficient to correct epidermal HF stem cell defects. Additionally, telomerase reintroduction into these mice results in a normal life span by preventing degenerative pathologies in the absence of increased tumorigenesis.
Collapse
Affiliation(s)
- Irene Siegl-Cachedenier
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Center, Madrid, E-28029, Spain
| | | | | | | |
Collapse
|
72
|
Abstract
Telomere shortening occurs concomitant with organismal aging, and it is accelerated in the context of human diseases associated with mutations in telomerase, such as some cases of dyskeratosis congenita, idiopathic pulmonary fibrosis and aplastic anemia. People with these diseases, as well as Terc-deficient mice, show decreased lifespan coincidental with a premature loss of tissue renewal, which suggests that telomerase is rate-limiting for tissue homeostasis and organismal survival. These findings have gained special relevance as they suggest that telomerase activity and telomere length can directly affect the ability of stem cells to regenerate tissues. If this is true, stem cell dysfunction provoked by telomere shortening may be one of the mechanisms responsible for organismal aging in both humans and mice. Here, we will review the current evidence linking telomere shortening to aging and stem cell dysfunction.
Collapse
Affiliation(s)
- Maria A Blasco
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre, 3 Melchor Fernandez Almagro, 28019 Madrid, Spain.
| |
Collapse
|
73
|
Rodier F, Campisi J, Bhaumik D. Two faces of p53: aging and tumor suppression. Nucleic Acids Res 2007; 35:7475-84. [PMID: 17942417 PMCID: PMC2190721 DOI: 10.1093/nar/gkm744] [Citation(s) in RCA: 269] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2007] [Revised: 09/05/2007] [Accepted: 09/05/2007] [Indexed: 01/03/2023] Open
Abstract
The p53 tumor suppressor protein, often termed guardian of the genome, integrates diverse physiological signals in mammalian cells. In response to stress signals, perhaps the best studied of which is the response to DNA damage, p53 becomes functionally active and triggers either a transient cell cycle arrest, cell death (apoptosis) or permanent cell cycle arrest (cellular senescence). Both apoptosis and cellular senescence are potent tumor suppressor mechanisms that irreversibly prevent damaged cells from undergoing neoplastic transformation. However, both processes can also deplete renewable tissues of proliferation-competent progenitor or stem cells. Such depletion, in turn, can compromise the structure and function of tissues, which is a hallmark of aging. Moreover, whereas apoptotic cells are by definition eliminated from tissues, senescent cells can persist, acquire altered functions, and thus alter tissue microenvironments in ways that can promote both cancer and aging phenotypes. Recent evidence suggests that increased p53 activity can, at least under some circumstances, promote organismal aging. Here, we discuss the role of p53 as a key regulator of the DNA damage responses, and discuss how p53 integrates the outcome of the DNA damage response to optimally balance tumor suppression and longevity.
Collapse
Affiliation(s)
- Francis Rodier
- Buck Institute for Age Research, 8001 Redwood Boulevard, Novato, CA 94945 and Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Judith Campisi
- Buck Institute for Age Research, 8001 Redwood Boulevard, Novato, CA 94945 and Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Dipa Bhaumik
- Buck Institute for Age Research, 8001 Redwood Boulevard, Novato, CA 94945 and Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| |
Collapse
|
74
|
Abstract
The p53 tumour suppressor plays an undisputed role in cancer. p53's tumour suppressive activity stems from its ability to respond to a variety of stresses to trigger cell cycle arrest, apoptosis or senescence, thereby protecting against malignant transformation. An increasing body of evidence suggests that p53 also drives organismal ageing. Although genetic models with altered p53 function display age-related phenotypes and thus provide in vivo evidence that p53 contributes to the ageing process, p53's role in organismal ageing remains controversial. Anti-cancer therapies that target p53 and reactivate or enhance its activity are considered good alternatives for treating various neoplasms. Therefore, it is important to determine whether these clinical approaches compromise tissue homeostasis and contribute to ageing. This review presents a number of models with altered p53 function and discusses how these models implicate p53 as part of a molecular network that integrates tumour suppression and ageing.
Collapse
Affiliation(s)
- C Papazoglu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | | |
Collapse
|
75
|
Abstract
Cellular senescence, a state of irreversible growth arrest, can be triggered by multiple mechanisms including telomere shortening, the epigenetic derepression of the INK4a/ARF locus, and DNA damage. Together these mechanisms limit excessive or aberrant cellular proliferation, and so the state of senescence protects against the development of cancer. Recent evidence suggests that cellular senescence also may be involved in aging.
Collapse
Affiliation(s)
- Manuel Collado
- Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | | | | |
Collapse
|
76
|
Abstract
Cancer and ageing are both fuelled by the accumulation of cellular damage. Consequently, those mechanisms that protect cells from damage simultaneously provide protection against cancer and ageing. By contrast, cancer and longevity require a durable cell proliferation potential and, therefore, those mechanisms that limit indefinite proliferation provide cancer protection but favour ageing. The overall balance between these convergent and divergent mechanisms guarantees fitness and a cancer-free life until late adulthood for most individuals.
Collapse
Affiliation(s)
- Manuel Serrano
- Spanish National Cancer Research Centre (CNIO), 3 Melchor Fernandez Almagro Street, Madrid E-28029, Spain.
| | | |
Collapse
|
77
|
Matheu A, Maraver A, Klatt P, Flores I, Garcia-Cao I, Borras C, Flores JM, Viña J, Blasco MA, Serrano M. Delayed ageing through damage protection by the Arf/p53 pathway. Nature 2007; 448:375-9. [PMID: 17637672 DOI: 10.1038/nature05949] [Citation(s) in RCA: 392] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2007] [Accepted: 05/22/2007] [Indexed: 12/17/2022]
Abstract
The tumour-suppressor pathway formed by the alternative reading frame protein of the Cdkn2a locus (Arf) and by p53 (also called Trp53) plays a central part in the detection and elimination of cellular damage, and this constitutes the basis of its potent cancer protection activity. Similar to cancer, ageing also results from the accumulation of damage and, therefore, we have reasoned that Arf/p53 could have anti-ageing activity by alleviating the load of age-associated damage. Here we show that genetically manipulated mice with increased, but otherwise normally regulated, levels of Arf and p53 present strong cancer resistance and have decreased levels of ageing-associated damage. These observations extend the protective role of Arf/p53 to ageing, revealing a previously unknown anti-ageing mechanism and providing a rationale for the co-evolution of cancer resistance and longevity.
Collapse
Affiliation(s)
- Ander Matheu
- Tumor Suppression Group, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Abstract
At first glance, cancer and ageing would seem to be unlikely bedfellows. Yet the origins for this improbable union can actually be traced back to a sequence of tragic--and some say unethical--events that unfolded more than half a century ago. Here we review the series of key observations that has led to a complex but growing convergence between our understanding of the biology of ageing and the mechanisms that underlie cancer.
Collapse
Affiliation(s)
- Toren Finkel
- Cardiology Branch, NIH, NHLBI, Building 10/CRC 5-3330, 10 Center Drive, Bethesda, Maryland 20892, USA.
| | | | | |
Collapse
|
79
|
Abstract
Over the years, p53 has been shown to sit at the centre of an increasingly complex web of incoming stress signals and outgoing effector pathways. The number and diversity of stress signals that lead to p53 activation illustrates the breadth of p53's remit - responding to a wide variety of potentially oncogenic insults to prevent tumour development. Interestingly, different stress signals can use different and independent pathways to activate p53, and there is some evidence that different stress signals can mediate different responses. How each of the responses to p53 contributes to inhibition of malignant progression is beginning to be clarified, with the hope that identification of responses that are key to tumour suppression will allow a more focused and effective search for new therapeutic targets. In this review, we will highlight some recently identified roles for p53 in tumour suppression, and discuss some of the numerous mechanisms through which p53 can be regulated and activated.
Collapse
Affiliation(s)
- H F Horn
- The Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Glasgow, UK
| | | |
Collapse
|
80
|
Fuster JJ, Sanz-González SM, Moll UM, Andrés V. Classic and novel roles of p53: prospects for anticancer therapy. Trends Mol Med 2007; 13:192-9. [PMID: 17383232 DOI: 10.1016/j.molmed.2007.03.002] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2006] [Revised: 02/15/2007] [Accepted: 03/15/2007] [Indexed: 02/06/2023]
Abstract
The tumor suppressor p53 is a transcription factor that is frequently inactivated in human tumors. Therefore, restoring its function has been considered an attractive approach to restrain cancer. Typically, p53-dependent growth arrest, senescence and apoptosis of tumor cells have been attributed to transcriptional activity of nuclear p53. Notably, wild-type p53 gain-of-function enhances cancer resistance in the mouse, but it also accelerates aging in some models, possibly due to altered p53 activity. Therefore, the emerging evidence of mitochondrial transcription-independent activities of p53 has raised high expectations. Here, we review new developments in transcription-dependent and transcription-independent p53 functions, recent advances in targeting p53 for cancer treatment and the pitfalls of moving from the laboratory research to the clinical setting.
Collapse
Affiliation(s)
- José J Fuster
- Vascular Biology Unit, Instituto de Biomedicina de Valencia (IBV-CSIC), Spanish Council for Scientific Research, 46010 Valencia, Spain
| | | | | | | |
Collapse
|
81
|
Blanco R, Muñoz P, Flores JM, Klatt P, Blasco MA. Telomerase abrogation dramatically accelerates TRF2-induced epithelial carcinogenesis. Genes Dev 2007; 21:206-20. [PMID: 17234886 PMCID: PMC1770903 DOI: 10.1101/gad.406207] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
TRF2 is a telomere-binding protein with roles in telomere protection and telomere-length regulation. The fact that TRF2 is up-regulated in some human tumors suggests a role of TRF2 in cancer. Mice that overexpress TRF2 in the skin, K5TRF2 mice, show critically short telomeres and are susceptible to UV-induced carcinogenesis as a result of deregulated XPF/ERCC1 activity, a nuclease involved in UV damage repair. Here we demonstrate that, when in combination with telomerase deficiency, TRF2 acts as a very potent oncogene in vivo. In particular, we show that telomerase deficiency dramatically accelerates TRF2-induced epithelial carcinogenesis in K5TRF2/Terc-/- mice, coinciding with increased chromosomal instability and DNA damage. Telomere recombination is also increased in these mice, suggesting that TRF2 favors the activation of alternative telomere maintenance mechanisms. Together, these results demonstrate that TRF2 increased expression is a potent oncogenic event that along with telomerase deficiency accelerates carcinogenesis, coincidental with a derepression of telomere recombination. These results are of particular relevance given that TRF2 is up-regulated in some human cancers. Furthermore, these data suggest that telomerase inhibition might not be effective to cease the growth of TRF2-overexpressing tumors.
Collapse
Affiliation(s)
- Raquel Blanco
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Madrid 28029, Spain
| | - Purificación Muñoz
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Madrid 28029, Spain
| | - Juana M. Flores
- Animal Surgery and Medicine Department, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid 28040, Spain
| | - Peter Klatt
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Madrid 28029, Spain
| | - María A. Blasco
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Madrid 28029, Spain
- Corresponding author.E-MAIL ; FAX 34-917328028
| |
Collapse
|
82
|
Abstract
The role that telomere biology may play in the human ageing process is of a significant interest to many laboratories around the world. In this, the first of a series of yearly reviews on telomeres and ageing, I review a small selection of papers published between July 2005 and June 2006 that maybe of direct relevance to the gerontology research community.
Collapse
Affiliation(s)
- Duncan M Baird
- Department of Pathology, Cardiff University, Heath Park, Cardiff CF14 4XN, UK.
| |
Collapse
|