51
|
Liu P, Wang CM, Li L, Sun F, Liu P, Yue GH. Mapping QTLs for oil traits and eQTLs for oleosin genes in jatropha. BMC PLANT BIOLOGY 2011; 11:132. [PMID: 21958236 PMCID: PMC3195091 DOI: 10.1186/1471-2229-11-132] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 09/29/2011] [Indexed: 05/08/2023]
Abstract
BACKGROUND The major fatty acids in seed oil of jatropha, a biofuel crop, are palmitic acid (C16:0), stearic acid (C18:0), oleic acid (C18:1) and linoleic acid (C18:2). High oleic acid and total oil content are desirable for jatropha breeding. Until now, little was known about the genetic bases of these oil traits in jatropha. In this study, quantitative trait locus (QTL) and expression QTL analyses were applied to identify genetic factors that are relevant to seed oil traits in jatropha. RESULTS Composite interval mapping identified 18 QTL underlying the oil traits. A highly significant QTL qC18:1-1 was detected at one end of linkage group (LG) 1 with logarithm of the odd (LOD) 18.4 and percentage of variance explained (PVE) 36.0%. Interestingly, the QTL qC18:1-1 overlapped with qC18:2-1, controlling oleic acid and linoleic acid compositions. Among the significant QTL controlling total oil content, qOilC-4 was mapped on LG4 a relatively high significant level with LOD 5.0 and PVE 11.1%. Meanwhile, oleosins are the major composition in oil body affecting oil traits; we therefore developed SNP markers in three oleosin genes OleI, OleII and OleIII, which were mapped onto the linkage map. OleI and OleIII were mapped on LG5, closing to QTLs controlling oleic acid and stearic acid. We further determined the expressions of OleI, OleII and OleIII in mature seeds from the QTL mapping population, and detected expression QTLs (eQTLs) of the three genes on LGs 5, 6 and 8 respectively. The eQTL of OleIII, qOleIII-5, was detected on LG5 with PVE 11.7% and overlapped with QTLs controlling stearic acid and oleic acid, implying a cis- or trans-element for the OleIII affecting fatty acid compositions. CONCLUSION We identified 18 QTLs underlying the oil traits and 3 eQTLs of the oleosin acid genes. The QTLs and eQTLs, especially qC18:1-1, qOilC-4 and qOleIII-5 with contribution rates (R2) higher than 10%, controlling oleic acid, total oil content and oleosin gene expression respectively, will provide indispensable data for initiating molecular breeding to improve seed oil traits in jatropha, the key crop for biodiesel production.
Collapse
Affiliation(s)
- Peng Liu
- Molecular Population Genetics Group, Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, 117604 Singapore
| | - Chun Ming Wang
- Molecular Population Genetics Group, Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, 117604 Singapore
| | - Lei Li
- Molecular Population Genetics Group, Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, 117604 Singapore
| | - Fei Sun
- Molecular Population Genetics Group, Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, 117604 Singapore
| | - Peng Liu
- Molecular Population Genetics Group, Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, 117604 Singapore
| | - Gen Hua Yue
- Molecular Population Genetics Group, Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, 117604 Singapore
| |
Collapse
|
52
|
Smooker AM, Wells R, Morgan C, Beaudoin F, Cho K, Fraser F, Bancroft I. The identification and mapping of candidate genes and QTL involved in the fatty acid desaturation pathway in Brassica napus. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2011; 122:1075-90. [PMID: 21184048 DOI: 10.1007/s00122-010-1512-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Accepted: 12/04/2010] [Indexed: 05/19/2023]
Abstract
We constructed a linkage map for the population QDH, which was derived from a cross between an oilseed rape cultivar and a resynthesised Brassica napus. The linkage map included ten markers linked to loci orthologous to those encoding fatty acid biosynthesis genes in Arabidopsis thaliana. The QDH population contains a high level of allelic variation, particularly in the C genome. We conducted quantitative trait locus (QTL) analyses, using field data obtained over 3 years, for the fatty acid composition of seed oil. The population segregates for the two major loci controlling erucic acid content, on linkage groups A8 and C3, which quantitatively affect the content of other fatty acids and is a problem generally encountered when crossing "wild" germplasm with cultivated "double low" oilseed rape cultivars. We assessed three methods for QTL analysis, interval mapping, multiple QTL mapping and single marker regression analysis of the subset of lines with low erucic acid. We found the third of these methods to be most appropriate for our main purpose, which was the study of the genetic control of the desaturation of 18-carbon fatty acids. This method enabled us to decouple the effect of the segregation of the erucic acid-controlling loci and identify 34 QTL for fatty acid content of seed oil, 14 in the A genome and 20 in the C genome. The QTL indicate the presence of 13 loci with novel alleles inherited from the progenitors of the resynthesised B. napus that might be useful for modulating the content or extent of desaturation of polyunsaturated fatty acids, only one of which coincides with the anticipated position of a candidate gene, an orthologue of FAD2.
Collapse
Affiliation(s)
- A M Smooker
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Colney, Norwich, NR4 7UH, UK
| | | | | | | | | | | | | |
Collapse
|
53
|
Jagannath A, Sodhi YS, Gupta V, Mukhopadhyay A, Arumugam N, Singh I, Rohatgi S, Burma PK, Pradhan AK, Pental D. Eliminating expression of erucic acid-encoding loci allows the identification of "hidden" QTL contributing to oil quality fractions and oil content in Brassica juncea (Indian mustard). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2011; 122:1091-103. [PMID: 21188349 DOI: 10.1007/s00122-010-1515-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Accepted: 12/08/2010] [Indexed: 05/03/2023]
Abstract
Oil content and oil quality fractions (viz., oleic, linoleic and linolenic acid) are strongly influenced by the erucic acid pathway in oilseed Brassicas. Low levels of erucic acid in seed oil increases oleic acid content to nutritionally desirable levels, but also increases the linoleic and linolenic acid fractions and reduces oil content in Indian mustard (Brassica juncea). Analysis of phenotypic variability for oil quality fractions among a high-erucic Indian variety (Varuna), a low-erucic east-European variety (Heera) and a zero-erucic Indian variety (ZE-Varuna) developed by backcross breeding in this study indicated that lower levels of linoleic and linolenic acid in Varuna are due to substrate limitation caused by an active erucic acid pathway and not due to weaker alleles or enzyme limitation. To identify compensatory loci that could be used to increase oil content and maintain desirable levels of oil quality fractions under zero-erucic conditions, we performed Quantitative Trait Loci (QTL) mapping for the above traits on two independent F1 doubled haploid (F1DH) mapping populations developed from a cross between Varuna and Heera. One of the populations comprised plants segregating for erucic acid content (SE) and was used earlier for construction of a linkage map and QTL mapping of several yield-influencing traits in B. juncea. The second population consisted of zero-erucic acid individuals (ZE) for which, an Amplified Fragment Length Polymorphism (AFLP)-based framework linkage map was constructed in the present study. By QTL mapping for oil quality fractions and oil content in the ZE population, we detected novel loci contributing to the above traits. These loci did not co-localize with mapped locations of the fatty acid desaturase 2 (FAD2), fatty acid desaturase 3 (FAD3) or fatty acid elongase (FAE) genes unlike those of the SE population wherein major QTL were found to coincide with mapped locations of the FAE genes. Some of the new loci identified in the ZE population could be detected as 'weak' contributors (with LOD < 2.5) in the SE population in which their contribution to the traits was "masked" due to pleiotropic effects of erucic acid genes. The novel loci identified in this study could now be used to improve oil quality parameters and oil content in B. juncea under zero-erucic conditions.
Collapse
Affiliation(s)
- Arun Jagannath
- University of Delhi South Campus, New Delhi, 110021, India
| | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Analysis of QTLs for erucic acid and oil content in seeds on A8 chromosome and the linkage drag between the alleles for the two traits in Brassica napus. J Genet Genomics 2010; 37:231-40. [DOI: 10.1016/s1673-8527(09)60041-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Revised: 02/11/2010] [Accepted: 02/24/2010] [Indexed: 01/14/2023]
|
55
|
Ramli US, Salas JJ, Quant PA, Harwood JL. Use of metabolic control analysis to give quantitative information on control of lipid biosynthesis in the important oil crop, Elaeis guineensis (oilpalm). THE NEW PHYTOLOGIST 2009; 184:330-339. [PMID: 19656305 DOI: 10.1111/j.1469-8137.2009.02962.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
* Oil crops are a very important commodity. Although many genes and enzymes involved in lipid accumulation have been identified, much less is known of regulation of the overall process. To address the latter we have applied metabolic control analysis to lipid synthesis in the important crop, oilpalm (Elaeis guineensis). * Top-down metabolic control analysis (TDCA) was applied to callus cultures capable of accumulating appreciable triacylglycerol. The biosynthetic pathway was divided into two blocks, connected by the intermediate acyl-CoAs. Block A comprised enzymes for fatty acid synthesis and Block B comprised enzymes of lipid assembly. * Double manipulation TDCA used diflufenican and bromooctanoate to inhibit Block A and Block B, respectively, giving Block flux control coefficients of 0.61 and 0.39. Monte Carlo simulations provided extra information from previously-reported single manipulation TDCA data, giving Block flux control coefficients of 0.65 and 0.35 for A and B. * These experiments are the first time that double manipulation TDCA has been applied to lipid biosynthesis in any organism. The data show that approaching two-thirds of the total control of carbon flux to lipids in oilpalm cultures lies with the fatty acid synthesis block of reactions. This quantitative information will assist future, informed, genetic manipulation of oilpalm.
Collapse
Affiliation(s)
- Umi S Ramli
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| | - Joaquin J Salas
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| | - Patti A Quant
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - John L Harwood
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| |
Collapse
|
56
|
Singh R, Tan SG, Panandam JM, Rahman RA, Ooi LCL, Low ETL, Sharma M, Jansen J, Cheah SC. Mapping quantitative trait loci (QTLs) for fatty acid composition in an interspecific cross of oil palm. BMC PLANT BIOLOGY 2009; 9:114. [PMID: 19706196 PMCID: PMC2757029 DOI: 10.1186/1471-2229-9-114] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Accepted: 08/26/2009] [Indexed: 05/04/2023]
Abstract
BACKGROUND Marker Assisted Selection (MAS) is well suited to a perennial crop like oil palm, in which the economic products are not produced until several years after planting. The use of DNA markers for selection in such crops can greatly reduce the number of breeding cycles needed. With the use of DNA markers, informed decisions can be made at the nursery stage, regarding which individuals should be retained as breeding stock, which are satisfactory for agricultural production, and which should be culled. The trait associated with oil quality, measured in terms of its fatty acid composition, is an important agronomic trait that can eventually be tracked using molecular markers. This will speed up the production of new and improved oil palm planting materials. RESULTS A map was constructed using AFLP, RFLP and SSR markers for an interspecific cross involving a Colombian Elaeis oleifera (UP1026) and a Nigerian E. guinneensis (T128). A framework map was generated for the male parent, T128, using Joinmap ver. 4.0. In the paternal (E. guineensis) map, 252 markers (199 AFLP, 38 RFLP and 15 SSR) could be ordered in 21 linkage groups (1815 cM). Interval mapping and multiple-QTL model (MQM) mapping (also known as composite interval mapping, CIM) were used to detect quantitative trait loci (QTLs) controlling oil quality (measured in terms of iodine value and fatty acid composition). At a 5% genome-wide significance threshold level, QTLs associated with iodine value (IV), myristic acid (C14:0), palmitic acid (C16:0), palmitoleic acid (C16:1), stearic acid (C18:0), oleic acid (C18:1) and linoleic acid (C18:2) content were detected. One genomic region on Group 1 appears to be influencing IV, C14:0, C16:0, C18:0 and C18:1 content. Significant QTL for C14:0, C16:1, C18:0 and C18:1 content was detected around the same locus on Group 15, thus revealing another major locus influencing fatty acid composition in oil palm. Additional QTL for C18:0 was detected on Group 3. A minor QTL for C18:2 was detected on Group 2. CONCLUSION This study describes the first successful detection of QTLs for fatty acid composition in oil palm. These QTLs constitute useful tools for application in breeding programmes.
Collapse
Affiliation(s)
- Rajinder Singh
- Advanced Biotechnology and Breeding Centre, Biology Division, Malaysian Palm Oil Board (MPOB), No. 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor DE, Malaysia
| | - Soon G Tan
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Jothi M Panandam
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Rahimah Abdul Rahman
- Advanced Biotechnology and Breeding Centre, Biology Division, Malaysian Palm Oil Board (MPOB), No. 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor DE, Malaysia
| | - Leslie CL Ooi
- Advanced Biotechnology and Breeding Centre, Biology Division, Malaysian Palm Oil Board (MPOB), No. 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor DE, Malaysia
| | - Eng-Ti L Low
- Advanced Biotechnology and Breeding Centre, Biology Division, Malaysian Palm Oil Board (MPOB), No. 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor DE, Malaysia
| | - Mukesh Sharma
- Research Department, United Plantations Berhad, Jenderata Estate, 36009, Teluk Intan, Perak, Malaysia
- Asian Agri Group, Research & Development Centre, PO Box 35, Kebun Bahilang' Tebing Tinggi Deli 20600, North Sumatera, Indonesia
| | - Johannes Jansen
- Biometris, Wageningen University and Research Centre, P.O. Box 100, 6700 AC Wageningen, the Netherlands
| | - Suan-Choo Cheah
- Advanced Biotechnology and Breeding Centre, Biology Division, Malaysian Palm Oil Board (MPOB), No. 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor DE, Malaysia
- Asiatic Centre for Genome Technology Sdn Bhd (ACGT), Lot L3-I-1, Enterprise 4, Technology Park Malaysia, 57000 Kuala Lumpur, Malaysia
| |
Collapse
|
57
|
Weselake RJ, Taylor DC, Rahman MH, Shah S, Laroche A, McVetty PBE, Harwood JL. Increasing the flow of carbon into seed oil. Biotechnol Adv 2009; 27:866-878. [PMID: 19625012 DOI: 10.1016/j.biotechadv.2009.07.001] [Citation(s) in RCA: 170] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Revised: 07/07/2009] [Accepted: 07/08/2009] [Indexed: 01/13/2023]
Abstract
The demand for vegetable oils for food, fuel (bio-diesel) and bio-product applications is increasing rapidly. In Canada alone, it is estimated that a 50 to 75% increase in canola oil production will be required to meet the demand for seed oil in the next 7-10years. Plant breeding and genetics have demonstrated that seed oil content is a quantitative trait based on a number of contributing factors including embryo genetic effects, cytoplasmic effects, maternal genetic effects, and genotype-environment interactions. Despite the involvement of numerous quantitative trait loci in determining seed oil content, genetic engineering to over-express/repress specific genes encoding enzymes and other proteins involved in the flow of carbon into seed oil has led to the development of transgenic lines with significant increases in seed oil content. Proteins encoded by these genes include enzymes catalyzing the production of building blocks for oil assembly, enzymes involved in oil assembly, enzymes regulating metabolic carbon partitioning between oil, carbohydrate and secondary metabolite fractions, and transcription factors which orchestrate metabolism at a more general level.
Collapse
Affiliation(s)
- Randall J Weselake
- Agricultural Lipid Biotechnology Program; Department of Agricultural, Food & Nutritional Science; University of Alberta, Edmonton, Alberta, Canada T6G 2P5.
| | - David C Taylor
- Plant Biotechnology Institute, National Research Council, Saskatoon, Saskatchewan, Canada S7N 0W9
| | - M Habibur Rahman
- Agricultural Lipid Biotechnology Program; Department of Agricultural, Food & Nutritional Science; University of Alberta, Edmonton, Alberta, Canada T6G 2P5
| | - Saleh Shah
- Plant Biotechnology Unit, Alberta Research Council, Vegreville, Alberta, Canada T9C 1T4
| | - André Laroche
- Agriculture and Agri-food Canada, Lethbridge, Alberta, Canada T1J 4B1
| | - Peter B E McVetty
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2
| | - John L Harwood
- Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3AX, Wales, UK
| |
Collapse
|
58
|
Genotype Analysis and QTL Mapping for Tolerance to Low Temperature in Germination by Introgression Lines in Soybean. ZUOWU XUEBAO 2009. [DOI: 10.3724/sp.j.1006.2009.01268] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
59
|
Hao W, Zhu MZ, Gao JP, Sun SY, Lin HX. Identification of quantitative trait loci for rice quality in a population of chromosome segment substitution lines. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2009; 51:500-12. [PMID: 19508361 DOI: 10.1111/j.1744-7909.2009.00822.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The demand for high quality rice represents a major issue in rice production. The primary components of rice grain quality include appearance, eating, cooking, physico-chemical, milling and nutritional qualities. Most of these traits are complex and controlled by quantitative trait loci (QTLs), so the genetic characterization of these traits is more difficult than that of traits controlled by a single gene. The detection and genetic identification of QTLs can provide insights into the genetic mechanisms underlying quality traits. Chromosome segment substitution lines (CSSLs) are effective tools used in mapping QTLs. In this study, we constructed 154 CSSLs from backcross progeny (BC(3)F(2)) derived from a cross between 'Koshihikari' (an Oryza sativa L. ssp. japonica variety) as the recurrent parent and 'Nona Bokra' (an O. sativa L. ssp. indica variety) as the donor parent. In this process, we carried out marker-assisted selection by using 102 cleaved amplified polymorphic sequence and simple sequence repeat markers covering most of the rice genome. Finally, this set of CSSLs was used to identify QTLs for rice quality traits. Ten QTLs for rice appearance quality traits were detected and eight QTLs concerned physico-chemical traits. These results supply the foundation for further genetic studies and breeding for the improvement of grain quality.
Collapse
Affiliation(s)
- Wei Hao
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | | | | | | | | |
Collapse
|
60
|
Fu SX, Cheng H, Qi C. Microarray analysis of gene expression in seeds of Brassica napus planted in Nanjing (altitude: 8.9 m), Xining (altitude: 2261.2 m) and Lhasa (altitude: 3658 m) with different oil content. Mol Biol Rep 2009; 36:2375-86. [PMID: 19219639 DOI: 10.1007/s11033-009-9460-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Accepted: 02/02/2009] [Indexed: 10/21/2022]
Abstract
The regulation of seed oil synthesis in rapeseed is largely unknown. In this study, Arabidopsis microarray was used to analyze the gene differential expression of the immature seeds 30 days after flowering of a high oil Brassica napus, H105, whose oil content was 46.04 +/- 1.42, 53.94 +/- 1.35 and 53.09 +/- 1.35% when planted in Nanjing (altitude: 8.9 m), Xining (altitude: 2261.2 m) and Lhasa (altitude: 3658 m), respectively. Transcript levels of 363 genes and 421 genes were altered twofold or more for H105 planted in Xining and Lhasa compared to that in Nanjing, respectively. Together, there were 53 common up-regulated and 42 common down-regulated expression transcripts shared by H105 planted in Xining and Lhasa compared to that in Nanjing. Some important genes, such as sucrose synthase, pyruvate kinase and 6-phosphogluconate dehydrogenase which related to sugar metabolism were identified common up-regulated in higher oil content H105. These results revealed the expressional disciplinarian of correlative genes, and provided important information of the molecular genetic mechanism of oil content difference of rapeseed. In addition, these differential expression genes could be suitable as targets for genetic improvement of seed oil content.
Collapse
Affiliation(s)
- San-Xiong Fu
- Nanjing Sub-Center (Rapeseed) of National Center of Oilseeds Crop Improvement, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | | | | |
Collapse
|
61
|
Nesi N, Delourme R, Brégeon M, Falentin C, Renard M. Genetic and molecular approaches to improve nutritional value of Brassica napus L. seed. C R Biol 2008; 331:763-71. [PMID: 18926490 DOI: 10.1016/j.crvi.2008.07.018] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Oilseed rape (Brassica napus L.) is a major oil crop that also supplies proteins for the feed industry. In order to reduce total cost production, the objective is to increase oil yield while reducing crop inputs (especially nitrogen and pesticides). Concomitantly, it is necessary to anticipate specific uses (e.g., fatty acid composition) and to ensure the valorisation of the by-products (rapeseed meal). By the past, improvement of seed quality focused on fatty acid balance and low seed glucosinolate content. Current goals include the breeding of yellow-seeded rapeseed lines with high content of seed oil. The use of molecular tools and the exploitation of Arabidopsis knowledge will be presented and discussed.
Collapse
Affiliation(s)
- Nathalie Nesi
- INRA-Agrocampus Rennes-University of Rennes1 Joint Laboratory, UMR118, Plant Genetics and Biotechnologies, BP 35327, 35653 Le Rheu cedex, France.
| | | | | | | | | |
Collapse
|
62
|
Fu FY, Liu LZ, Chai YR, Chen L, Yang T, Jin MY, Ma AF, Yan XY, Zhang ZS, Li JN. Localization of QTLs for seed color using recombinant inbred lines of Brassica napus in different environments. Genome 2008; 50:840-54. [PMID: 17893725 DOI: 10.1139/g07-068] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Yellow seed is one of the most important traits of Brassica napus L. Efficient selection of the yellow-seed trait is one of the most important objectives in oilseed rape breeding. Two recombinant inbred line (RIL) populations (RIL-1 and RIL-2) were analyzed for 2 years at 2 locations. Four hundred and twenty SSR, RAPD, and SRAP marker loci covering 1744 cM were mapped in 26 linkage groups of RIL-1, while 265 loci covering 1135 cM were mapped in 20 linkage groups of RIL-2. A total of 19 QTLs were detected in the 2 populations. A major QTL was detected adjacent to the same marker (EM11ME20/200) in both maps in both years. This major QTL could explain 53.71%, 39.34%, 42.42%, 30.18%, 24.86%, and 15.08% of phenotypic variation in 6 combinations (location x year x population). BLASTn analysis of the sequences of the markers flanking the major QTL revealed that the homologous region corresponding to this major QTL was anchored between genes At5g44440 and At5g49640 of Arabidopsis thaliana chromosome 5 (At C5). Based on comparative genomic analysis, the bifunctional gene TT10 is nearest to the homologue of EM11ME20/200 on At C5 and can be considered an important candidate gene for the major QTL identified here. Besides providing an effective strategy for marker-assisted selection of the yellow-seed trait in B. napus, our results also provide important clues for cloning of the candidate gene corresponding to this major QTL.
Collapse
Affiliation(s)
- Fu-You Fu
- Chongqing Rapeseed Technology Research Center, Chongqing Key Laboratory of Crop Quality Improvement, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing, 400716, PRC.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
ZHANG JF, QI CK, PU HM, CHEN S, CHEN F, GAO JQ, CHEN XJ, GU H, FU SZ. QTL Identification for Fatty Acid Content in Rapeseed (Brassica napus L.). ACTA ACUST UNITED AC 2008. [DOI: 10.1016/s1875-2780(08)60003-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
64
|
Ramchiary N, Padmaja KL, Sharma S, Gupta V, Sodhi YS, Mukhopadhyay A, Arumugam N, Pental D, Pradhan AK. Mapping of yield influencing QTL in Brassica juncea: implications for breeding of a major oilseed crop of dryland areas. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2007; 115:807-17. [PMID: 17646960 DOI: 10.1007/s00122-007-0610-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2006] [Accepted: 07/07/2007] [Indexed: 05/16/2023]
Abstract
Quantitative trait loci (QTL) analysis of yield influencing traits was carried out in Brassica juncea (AABB) using a doubled haploid (DH) mapping population of 123 lines derived from a cross between Varuna (a line representing the Indian gene pool) and Heera (representing the east European gene pool) to identify potentially useful alleles from both the parents. The existing AFLP based map of B. juncea was further saturated with RFLP and SSR markers which led to the identification of the linkage groups belonging to the A (B. rapa) and B (B. nigra) genome components of B. juncea. For QTL dissection, the DH lines were evaluated at three different environments and phenotyped for 12 quantitative traits. A total of 65 QTL spread over 13 linkage groups (LG) were identified from the three environments. QTL analysis showed that the A genome has contributed more than the B genome to productivity (68% of the total QTL detected) suggesting a more prominent role of the A genome towards domestication of this crop. The east European line, Heera, carried favorable alleles for 42% of the detected QTL and the remaining 58% were in the Indian gene pool line, Varuna. We observed clustering of major QTL in a few linkage groups, particularly in J7 and J10 of the A genome, with QTL of different traits having agronomically antagonistic allelic effects co-mapping to the same genetic interval. QTL analysis also identified some well-separated QTL which could be readily transferred between the two pools. Based on the QTL analysis, we propose that improvement in yield could be achieved more readily by heterosis breeding rather than by pure line breeding.
Collapse
Affiliation(s)
- N Ramchiary
- Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India
| | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Qiu D, Morgan C, Shi J, Long Y, Liu J, Li R, Zhuang X, Wang Y, Tan X, Dietrich E, Weihmann T, Everett C, Vanstraelen S, Beckett P, Fraser F, Trick M, Barnes S, Wilmer J, Schmidt R, Li J, Li D, Meng J, Bancroft I. A comparative linkage map of oilseed rape and its use for QTL analysis of seed oil and erucic acid content. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2006; 114:67-80. [PMID: 17033785 DOI: 10.1007/s00122-006-0411-2] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2006] [Accepted: 09/08/2006] [Indexed: 05/12/2023]
Abstract
We have developed a new DH mapping population for oilseed rape, named TNDH, using genetically and phenotypically diverse parental lines. We used the population in the construction of a high stringency genetic linkage map, consisting of 277 loci, for use in quantitative genetic analysis. A proportion of the markers had been used previously in the construction of linkage maps for Brassica species, thus permitting the alignment of maps. The map includes 68 newly developed Sequence Tagged Site (STS) markers targeted to the homologues of defined genes of A. thaliana. The use of these markers permits the alignment of our linkage map with the A. thaliana genome sequence. An additional 74 loci (31 newly developed STS markers and 43 loci defined by SSR and RFLP markers that had previously been used in published linkage maps) were added to the map. These markers increased the resolution of alignment of the newly constructed linkage map with existing Brassica linkage maps and the A. thaliana genome sequence. We conducted field trials with the TNDH population at two sites, and over 2 years, and identified reproducible QTL for seed oil content and erucic acid content. The results provide new insights into the genetic control of seed oil and erucic acid content in oilseed rape, and demonstrate the utility of the linkage map and population.
Collapse
Affiliation(s)
- D Qiu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 1 Shizishan, 430070, Wuhan, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Delourme R, Falentin C, Huteau V, Clouet V, Horvais R, Gandon B, Specel S, Hanneton L, Dheu JE, Deschamps M, Margale E, Vincourt P, Renard M. Genetic control of oil content in oilseed rape (Brassica napus L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2006; 113:1331-45. [PMID: 16960716 DOI: 10.1007/s00122-006-0386-z] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2006] [Accepted: 07/31/2006] [Indexed: 05/11/2023]
Abstract
In oilseed rape (Brassica napus L.) like in most oleaginous crops, seed oil content is the main qualitative determinant that confers its economic value to the harvest. Increasing seed oil content is then still an important objective in oilseed rape breeding. In the objective to get better knowledge on the genetic determinism of seed oil content, a genetic study was undertaken in two genetic backgrounds. Two populations of 445 and a 242 doubled haploids (DH) derived from the crosses "Darmor-bzh" x "Yudal" (DY) and "Rapid" x "NSL96/25" (RNSL), respectively, were genotyped and evaluated for oil content in different trials. QTL mapping in the two populations indicate that additive effects are the main factors contributing to variation in oil content. A total of 14 and 10 genomic regions were involved in seed oil content in DY and RNSL populations, respectively, of which five and two were consistently revealed across the three trials performed for each population. Most of the QTL detected were not colocalised to QTL involved in flowering time. Few epistatic QTL involved regions that carry additive QTL in one or the other population. Only one QTL located on linkage group N3 was potentially common to the two populations. The comparisons of the QTL location in this study and in the literature showed that: (i) some of the QTL were more consistently revealed across different genetic backgrounds. The QTL on N3 was revealed in all the studies and the QTL on N1, N8 and N13 were revealed in three studies out of five, (ii) some of the QTL were specific to one genetic background with potentially some original alleles, (iii) some QTL were located in homeologous regions, and (iv) some of the regions carrying QTL for oil content in oilseed rape and in Arabidopsis could be collinear. These results show the possibility to combine favourable alleles at different QTL to increase seed oil content and to use Arabidopsis genomic data to derive markers for oilseed rape QTL and identify candidate genes, as well as the interest to combine information from different segregating populations in order to build a consolidated map of QTL involved in a specific trait.
Collapse
Affiliation(s)
- R Delourme
- UMR INRA Agrocampus Rennes, Amélioration des Plantes et Biotechnologies Végétales, BP 35327, 35653, Le Rheu Cedex, France.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Li RJ, Wang HZ, Mao H, Lu YT, Hua W. Identification of differentially expressed genes in seeds of two near-isogenic Brassica napus lines with different oil content. PLANTA 2006; 224:952-62. [PMID: 16575595 DOI: 10.1007/s00425-006-0266-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2005] [Accepted: 03/09/2006] [Indexed: 05/08/2023]
Abstract
The regulation of seed oil synthesis in rapeseed is largely unknown. In this study, we compared the gene expression during seed development between two lines of Brassica napus with a 10% difference in oil content. We isolated the immature seeds 15 and 25 days after flowering at periods preceding and including the major accumulation of storage oils and proteins. The differentially expressed gene clones between the two rape lines were isolated by subtractive suppression hybridization (SSH). All SSH clones were arrayed and screened by dot blot hybridization, followed by RT-PCR analysis for selected clones. A total of 217 cDNA clones corresponding to 30 genes were found to have a high expression in seeds with high oil content. Six genes were highly expressed in seeds with low oil content. Northern blot and enzyme activity analysis demonstrated a change in expression pattern of several genes. The results provide information on gene-encoding factors responsible for the regulation of oil synthesis. The possible role of these genes in seeds is discussed. The genes in this study may be suitable as novel targets for genetic improvement of seed oil content and may also provide molecular markers for studies of rape breeding.
Collapse
Affiliation(s)
- Rong-Jun Li
- Institute of Oil Crops Research, Chinese Academy of Agriculture Sciences, Wuhan 430062, China
| | | | | | | | | |
Collapse
|
68
|
Abstract
Backcrossing is a well-known and long established breeding scheme where a characteristic is introgressed from a donor parent into the genomic background of a recurrent parent. The various uses of backcrossing in modern genetics, particularly with the help of molecular markers, are reviewed here. Selection in backcross programmes is used to either improve the genetic value of plant and animal populations or fine map quantitative trait loci. Both cases are helpful in our understanding of the genetic bases of quantitative traits variation.
Collapse
Affiliation(s)
- Frédéric Hospital
- INRA, UMR de Génétique Végétale, Ferme du Moulon, 91190 Gif-sur-Yvette, France.
| |
Collapse
|
69
|
Ramli US, Salas JJ, Quant PA, Harwood JL. Metabolic control analysis reveals an important role for diacylglycerol acyltransferase in olive but not in oil palm lipid accumulation. FEBS J 2005; 272:5764-70. [PMID: 16279941 DOI: 10.1111/j.1742-4658.2005.04964.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We applied metabolic control analysis to the Kennedy pathway for triacylglycerol formation in tissue cultures from the important oil crops, olive (Olea europaea L.) and oil palm (Elaeis guineensis Jacq.). When microsomal fractions were incubated at 30 degrees C rather than 20 degrees C, there was an increase in triacylglycerol labelling. This increase was accompanied by a build up of diacylglycerol (DAG) radioactivity in olive but not in oil palm, suggesting that the activity of DAG acyltransferase (DAGAT) was becoming limiting in olive. We used 2-bromooctanoate as a specific inhibitor of DAGAT and showed that the enzyme had a flux control coefficient under the experimental conditions of 0.74 in olive but only 0.12 in oil palm. These data revealed important differences in the regulation of lipid biosynthesis in cultures from different plants and suggest that changes in the endogenous activity of DAGAT is unlikely to affect oil accumulation in oil palm crops.
Collapse
Affiliation(s)
- Umi S Ramli
- School of Biosciences, University of Cardiff, UK
| | | | | | | |
Collapse
|
70
|
Hobbs DH, Flintham JE, Hills MJ. Genetic control of storage oil synthesis in seeds of Arabidopsis. PLANT PHYSIOLOGY 2004; 136:3341-9. [PMID: 15466222 PMCID: PMC523393 DOI: 10.1104/pp.104.049486] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2004] [Revised: 07/30/2004] [Accepted: 07/30/2004] [Indexed: 05/18/2023]
Abstract
Quantitative trait loci (QTL) that control seed oil content and fatty acid composition were studied using a recombinant inbred population derived from a cross between the Arabidopsis ecotypes Landsberg erecta and Cape Verdi Islands. Multiple QTL model mapping identified two major and two minor QTL that account for 43% of the variation in oil content in the population. The most significant QTL is at the bottom of chromosome 2 and accounts for 17% of the genetic variation. Two other significant QTL, located on the upper and lower arms of chromosome 1, account for a further 19% of the genetic variation. A QTL near to the top of chomosome 3 is epistatic to that on the upper arm of chromosome 1. There are strong QTL for linoleic (18:2) and linolenic (18:3) acids contents that colocate with the FAD3 locus, another for oleic acid (18:1) that colocates with FAD2 and other less significant QTL for palmitic (16:0), stearic (18:0), and eicosaenoic (20:1) acids. The presence of the QTL for seed oil content on chromosome 2 was confirmed by the generation of lines that contain a 22-cM region of Landsberg erecta DNA at the bottom of chromosome 2 in a background containing Cape Verdi Islands in other regions of the genome that had been shown to influence oil content in the QTL analysis.
Collapse
Affiliation(s)
- Douglas H Hobbs
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH United Kingdom
| | | | | |
Collapse
|