51
|
Rothmund-Thomson syndrome helicase, RECQ4: on the crossroad between DNA replication and repair. DNA Repair (Amst) 2010; 9:325-30. [PMID: 20096650 DOI: 10.1016/j.dnarep.2010.01.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
RECQ proteins are conserved DNA helicases in both prokaryotes and eukaryotes. The importance of the RECQ family helicases in human health is demonstrated by their roles as cancer suppressors that are vital for preserving genome integrity. Mutations in one of the RECQ family proteins, RECQ4, not only result in developmental abnormalities and cancer predispositions, but are also linked to premature aging. Therefore, defining the function and regulation of the RECQ4 protein is fundamental to our understanding of both the aging process and cancer pathogenesis. This review will summarize the clinical effect of RECQ4 in human health, and discuss the recent progress and debate in defining the complex molecular function of RECQ4 in DNA metabolism.
Collapse
|
52
|
Abstract
Five human RecQ helicases (WRN, BLM, RECQ4, RECQ5, RECQ1) exist in humans. Of these, three are genetically linked to diseases of premature aging and/or cancer. Neither RECQ1 nor RECQ5 has yet been implicated in a human disease. However, cellular studies and genetic analyses of model organisms indicate that RECQ1 (and RECQ5) play an important role in the maintenance of genomic stability. Biochemical studies of purified RECQ1 protein demonstrate that the enzyme catalyzes DNA unwinding and strand annealing, and these activities are likely to be important for its role in DNA repair. RECQ1 also physically and functionally interacts with proteins involved in genetic recombination. In this review, we will summarize our current knowledge of RECQ1 roles in cellular nucleic acid metabolism and propose avenues of investigation for future studies.
Collapse
|
53
|
Cotton RT, Li D, Scherer SE, Muzny DM, Hodges SE, Catania RL, Witkiewicz AK, Brody JR, Kennedy EP, Yeo CJ, Brunicardi FC, Gibbs RA, Gingras MC, Fisher WE. Single nucleotide polymorphism in RECQL and survival in resectable pancreatic adenocarcinoma. HPB (Oxford) 2009; 11:435-44. [PMID: 19768149 PMCID: PMC2742614 DOI: 10.1111/j.1477-2574.2009.00089.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2009] [Accepted: 05/07/2009] [Indexed: 12/12/2022]
Abstract
BACKGROUND RECQL is a DNA helicase involved in DNA mismatch repair. The RECQL polymorphism, 3' untranslated region (UTR) A159C, was previously associated with overall survival of patients with resectable pancreatic adenocarcinoma treated with neoadjuvant chemoradiation. In the present study, we examined RECQL for somatic mutations and other polymorphisms and compared these findings with the outcome in patients who received adjuvant or neoadjuvant chemoradiation. We hypothesized that RECQL (i) would be mutated in cancer, (ii) would have polymorphisms linked to the 3'UTR A159C and that either or both events would affect function. We also hypothesized that (iii) these changes would be associated with survival in both cohorts of patients. MATERIAL AND METHODS We sequenced RECQL's 15 exons and surrounding sequences in paired blood and tumour DNA of 39 patients. The 3'UTR A159C genotype was determined in blood DNA samples from 176 patients with resectable pancreatic adenocarcinoma treated with adjuvant (53) or neoadjuvant (123) chemoradiation. Survival was calculated using the Kaplan-Meier method, with log rank comparisons between groups. The relative impact of genotype on time to overall survival was performed using the Cox proportional hazards model. RESULTS Somatic mutations were found in UTRs and intronic regions but not in exonic coding regions of the RECQL gene. Two single nucleotide polymorphisms (SNPs), located in introns 2 and 11, were found to be part of the same haplotype block as the RECQL A159C SNP and showed a similar association with overall survival. No short-term difference in survival between treatment strategies was found. We identified a subgroup of patients responsive to neoadjuvant therapy in which the 159 A allele conferred strikingly improved long-term survival. DISCUSSION The RECQL 3'UTR A159C SNP is not linked with other functional SNPs within RECQL but may function as a site for regulatory molecules. The mechanism of action needs to be clarified further.
Collapse
Affiliation(s)
- Ronald T Cotton
- Department of Molecular and Human Genetics, Human Genome Sequencing CenterHouston, TX,Michael DeBakey Department of Surgery and Elkins Pancreas Center, Baylor College of MedicineHouston, TX
| | - Donghui Li
- Department of Gastrointestinal Medical Oncology, The University of Texas M.D. Anderson Cancer CenterHouston, TX
| | - Steven E Scherer
- Department of Molecular and Human Genetics, Human Genome Sequencing CenterHouston, TX
| | - Donna M Muzny
- Department of Molecular and Human Genetics, Human Genome Sequencing CenterHouston, TX
| | - Sally E Hodges
- Michael DeBakey Department of Surgery and Elkins Pancreas Center, Baylor College of MedicineHouston, TX
| | - Robbi L Catania
- Department of Molecular and Human Genetics, Human Genome Sequencing CenterHouston, TX,Michael DeBakey Department of Surgery and Elkins Pancreas Center, Baylor College of MedicineHouston, TX
| | - Agnieszka K Witkiewicz
- Department of Surgery, Jefferson Center for Pancreatic, Biliary and Related CancersPhiladelphia, PA, USA,Department of Pathology, Kimmel Cancer Center, Thomas Jefferson UniversityPhiladelphia, PA, USA
| | - Jonathan R Brody
- Department of Surgery, Jefferson Center for Pancreatic, Biliary and Related CancersPhiladelphia, PA, USA
| | - Eugene P Kennedy
- Department of Surgery, Jefferson Center for Pancreatic, Biliary and Related CancersPhiladelphia, PA, USA
| | - Charles J Yeo
- Department of Surgery, Jefferson Center for Pancreatic, Biliary and Related CancersPhiladelphia, PA, USA
| | - F Charles Brunicardi
- Michael DeBakey Department of Surgery and Elkins Pancreas Center, Baylor College of MedicineHouston, TX
| | - Richard A Gibbs
- Department of Molecular and Human Genetics, Human Genome Sequencing CenterHouston, TX
| | - Marie-Claude Gingras
- Department of Molecular and Human Genetics, Human Genome Sequencing CenterHouston, TX,Michael DeBakey Department of Surgery and Elkins Pancreas Center, Baylor College of MedicineHouston, TX
| | - William E Fisher
- Michael DeBakey Department of Surgery and Elkins Pancreas Center, Baylor College of MedicineHouston, TX
| |
Collapse
|
54
|
Rizzo A, Salvati E, Porru M, D’Angelo C, Stevens MF, D’Incalci M, Leonetti C, Gilson E, Zupi G, Biroccio A. Stabilization of quadruplex DNA perturbs telomere replication leading to the activation of an ATR-dependent ATM signaling pathway. Nucleic Acids Res 2009; 37:5353-64. [PMID: 19596811 PMCID: PMC2760797 DOI: 10.1093/nar/gkp582] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Functional telomeres are required to maintain the replicative ability of cancer cells and represent putative targets for G-quadruplex (G4) ligands. Here, we show that the pentacyclic acridinium salt RHPS4, one of the most effective and selective G4 ligands, triggers damages in cells traversing S phase by interfering with telomere replication. Indeed, we found that RHPS4 markedly reduced BrdU incorporation at telomeres and altered the dynamic association of the telomeric proteins TRF1, TRF2 and POT1, leading to chromosome aberrations such as telomere fusions and telomere doublets. Analysis of the molecular damage pathway revealed that RHPS4 induced an ATR-dependent ATM signaling that plays a functional role in the cellular response to RHPS4 treatment. We propose that RHPS4, by stabilizing G4 DNA at telomeres, impairs fork progression and/or telomere processing resulting in telomere dysfunction and activation of a replication stress response pathway. The detailed understanding of the molecular mode of action of this class of compounds makes them attractive tools to understand telomere biology and provides the basis for a rational use of G4 ligands for the therapy of cancer.
Collapse
Affiliation(s)
- Angela Rizzo
- Department of Experimental Chemotherapy, Regina Elena Cancer Institute, Via delle Messi d’Oro 156, 00158 Rome, Italy, Laboratory of Molecular Biology of the Cell, CNRS, Ecole Normale Supérieure de Lyon, UMR5239, IFR128, 46 allée d'Italie, 69364 Lyon, France, Center for Biomolecular Sciences, School of Pharmacy, University of Nottingham, University Park, NG7 2RD Nottingham, UK and Department of Oncology, Pharmacological Research Institute ‘Mario Negri’, Via La Masa 19, 20156 Milan, Italy
| | - Erica Salvati
- Department of Experimental Chemotherapy, Regina Elena Cancer Institute, Via delle Messi d’Oro 156, 00158 Rome, Italy, Laboratory of Molecular Biology of the Cell, CNRS, Ecole Normale Supérieure de Lyon, UMR5239, IFR128, 46 allée d'Italie, 69364 Lyon, France, Center for Biomolecular Sciences, School of Pharmacy, University of Nottingham, University Park, NG7 2RD Nottingham, UK and Department of Oncology, Pharmacological Research Institute ‘Mario Negri’, Via La Masa 19, 20156 Milan, Italy
| | - Manuela Porru
- Department of Experimental Chemotherapy, Regina Elena Cancer Institute, Via delle Messi d’Oro 156, 00158 Rome, Italy, Laboratory of Molecular Biology of the Cell, CNRS, Ecole Normale Supérieure de Lyon, UMR5239, IFR128, 46 allée d'Italie, 69364 Lyon, France, Center for Biomolecular Sciences, School of Pharmacy, University of Nottingham, University Park, NG7 2RD Nottingham, UK and Department of Oncology, Pharmacological Research Institute ‘Mario Negri’, Via La Masa 19, 20156 Milan, Italy
| | - Carmen D’Angelo
- Department of Experimental Chemotherapy, Regina Elena Cancer Institute, Via delle Messi d’Oro 156, 00158 Rome, Italy, Laboratory of Molecular Biology of the Cell, CNRS, Ecole Normale Supérieure de Lyon, UMR5239, IFR128, 46 allée d'Italie, 69364 Lyon, France, Center for Biomolecular Sciences, School of Pharmacy, University of Nottingham, University Park, NG7 2RD Nottingham, UK and Department of Oncology, Pharmacological Research Institute ‘Mario Negri’, Via La Masa 19, 20156 Milan, Italy
| | - Malcolm F. Stevens
- Department of Experimental Chemotherapy, Regina Elena Cancer Institute, Via delle Messi d’Oro 156, 00158 Rome, Italy, Laboratory of Molecular Biology of the Cell, CNRS, Ecole Normale Supérieure de Lyon, UMR5239, IFR128, 46 allée d'Italie, 69364 Lyon, France, Center for Biomolecular Sciences, School of Pharmacy, University of Nottingham, University Park, NG7 2RD Nottingham, UK and Department of Oncology, Pharmacological Research Institute ‘Mario Negri’, Via La Masa 19, 20156 Milan, Italy
| | - Maurizio D’Incalci
- Department of Experimental Chemotherapy, Regina Elena Cancer Institute, Via delle Messi d’Oro 156, 00158 Rome, Italy, Laboratory of Molecular Biology of the Cell, CNRS, Ecole Normale Supérieure de Lyon, UMR5239, IFR128, 46 allée d'Italie, 69364 Lyon, France, Center for Biomolecular Sciences, School of Pharmacy, University of Nottingham, University Park, NG7 2RD Nottingham, UK and Department of Oncology, Pharmacological Research Institute ‘Mario Negri’, Via La Masa 19, 20156 Milan, Italy
| | - Carlo Leonetti
- Department of Experimental Chemotherapy, Regina Elena Cancer Institute, Via delle Messi d’Oro 156, 00158 Rome, Italy, Laboratory of Molecular Biology of the Cell, CNRS, Ecole Normale Supérieure de Lyon, UMR5239, IFR128, 46 allée d'Italie, 69364 Lyon, France, Center for Biomolecular Sciences, School of Pharmacy, University of Nottingham, University Park, NG7 2RD Nottingham, UK and Department of Oncology, Pharmacological Research Institute ‘Mario Negri’, Via La Masa 19, 20156 Milan, Italy
| | - Eric Gilson
- Department of Experimental Chemotherapy, Regina Elena Cancer Institute, Via delle Messi d’Oro 156, 00158 Rome, Italy, Laboratory of Molecular Biology of the Cell, CNRS, Ecole Normale Supérieure de Lyon, UMR5239, IFR128, 46 allée d'Italie, 69364 Lyon, France, Center for Biomolecular Sciences, School of Pharmacy, University of Nottingham, University Park, NG7 2RD Nottingham, UK and Department of Oncology, Pharmacological Research Institute ‘Mario Negri’, Via La Masa 19, 20156 Milan, Italy
| | - Gabriella Zupi
- Department of Experimental Chemotherapy, Regina Elena Cancer Institute, Via delle Messi d’Oro 156, 00158 Rome, Italy, Laboratory of Molecular Biology of the Cell, CNRS, Ecole Normale Supérieure de Lyon, UMR5239, IFR128, 46 allée d'Italie, 69364 Lyon, France, Center for Biomolecular Sciences, School of Pharmacy, University of Nottingham, University Park, NG7 2RD Nottingham, UK and Department of Oncology, Pharmacological Research Institute ‘Mario Negri’, Via La Masa 19, 20156 Milan, Italy
| | - Annamaria Biroccio
- Department of Experimental Chemotherapy, Regina Elena Cancer Institute, Via delle Messi d’Oro 156, 00158 Rome, Italy, Laboratory of Molecular Biology of the Cell, CNRS, Ecole Normale Supérieure de Lyon, UMR5239, IFR128, 46 allée d'Italie, 69364 Lyon, France, Center for Biomolecular Sciences, School of Pharmacy, University of Nottingham, University Park, NG7 2RD Nottingham, UK and Department of Oncology, Pharmacological Research Institute ‘Mario Negri’, Via La Masa 19, 20156 Milan, Italy
- *To whom correspondence should be addressed. Tel: +39 06 52662569; Fax: +39 06 52662505;
| |
Collapse
|
55
|
Molecular profiling of breast cancer cell lines defines relevant tumor models and provides a resource for cancer gene discovery. PLoS One 2009; 4:e6146. [PMID: 19582160 PMCID: PMC2702084 DOI: 10.1371/journal.pone.0006146] [Citation(s) in RCA: 574] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2009] [Accepted: 06/02/2009] [Indexed: 01/09/2023] Open
Abstract
Background Breast cancer cell lines have been used widely to investigate breast cancer pathobiology and new therapies. Breast cancer is a molecularly heterogeneous disease, and it is important to understand how well and which cell lines best model that diversity. In particular, microarray studies have identified molecular subtypes–luminal A, luminal B, ERBB2-associated, basal-like and normal-like–with characteristic gene-expression patterns and underlying DNA copy number alterations (CNAs). Here, we studied a collection of breast cancer cell lines to catalog molecular profiles and to assess their relation to breast cancer subtypes. Methods Whole-genome DNA microarrays were used to profile gene expression and CNAs in a collection of 52 widely-used breast cancer cell lines, and comparisons were made to existing profiles of primary breast tumors. Hierarchical clustering was used to identify gene-expression subtypes, and Gene Set Enrichment Analysis (GSEA) to discover biological features of those subtypes. Genomic and transcriptional profiles were integrated to discover within high-amplitude CNAs candidate cancer genes with coordinately altered gene copy number and expression. Findings Transcriptional profiling of breast cancer cell lines identified one luminal and two basal-like (A and B) subtypes. Luminal lines displayed an estrogen receptor (ER) signature and resembled luminal-A/B tumors, basal-A lines were associated with ETS-pathway and BRCA1 signatures and resembled basal-like tumors, and basal-B lines displayed mesenchymal and stem/progenitor-cell characteristics. Compared to tumors, cell lines exhibited similar patterns of CNA, but an overall higher complexity of CNA (genetically simple luminal-A tumors were not represented), and only partial conservation of subtype-specific CNAs. We identified 80 high-level DNA amplifications and 13 multi-copy deletions, and the resident genes with concomitantly altered gene-expression, highlighting known and novel candidate breast cancer genes. Conclusions Overall, breast cancer cell lines were genetically more complex than tumors, but retained expression patterns with relevance to the luminal-basal subtype distinction. The compendium of molecular profiles defines cell lines suitable for investigations of subtype-specific pathobiology, cancer stem cell biology, biomarkers and therapies, and provides a resource for discovery of new breast cancer genes.
Collapse
|
56
|
Aygün O, Xu X, Liu Y, Takahashi H, Kong SE, Conaway RC, Conaway JW, Svejstrup JQ. Direct inhibition of RNA polymerase II transcription by RECQL5. J Biol Chem 2009; 284:23197-203. [PMID: 19570979 PMCID: PMC2749093 DOI: 10.1074/jbc.m109.015750] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
DNA helicases of the RECQ family are important for maintaining genome integrity, from bacteria to humans. Although progress has been made in understanding the biochemical role of some human RECQ helicases, that of RECQL5 remains elusive. We recently reported that RECQL5 interacts with RNA polymerase II (RNAPII), pointing to a role for the protein in transcription. Here, we show that RECQL5 inhibits both initiation and elongation in transcription assays reconstituted with highly purified general transcription factors and RNAPII. Such inhibition is not observed with the related, much more active RECQL1 helicase or with a version of RECQL5 that has normal helicase activity but is impaired in its ability to interact with RNAPII. Indeed, RECQL5 helicase activity is not required for inhibition. We discuss our findings in light of the fact that RECQ5−/− mice have elevated levels of DNA recombination and a higher incidence of cancer.
Collapse
Affiliation(s)
- Ozan Aygün
- Mechanisms of Transcription Laboratory, Clare Hall Laboratories, Cancer Research UK, London Research Institute, Blanche Lane, South Mimms, Hertfordshire EN6 3LD, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
57
|
Singh DK, Ahn B, Bohr VA. Roles of RECQ helicases in recombination based DNA repair, genomic stability and aging. Biogerontology 2009; 10:235-52. [PMID: 19083132 PMCID: PMC2713741 DOI: 10.1007/s10522-008-9205-z] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2008] [Accepted: 11/24/2008] [Indexed: 12/28/2022]
Abstract
The maintenance of the stability of genetic material is an essential feature of every living organism. Organisms across all kingdoms have evolved diverse and highly efficient repair mechanisms to protect the genome from deleterious consequences of various genotoxic factors that might tend to destabilize the integrity of the genome in each generation. One such group of proteins that is actively involved in genome surveillance is the RecQ helicase family. These proteins are highly conserved DNA helicases, which have diverse roles in multiple DNA metabolic processes such as DNA replication, recombination and DNA repair. In humans, five RecQ helicases have been identified and three of them namely, WRN, BLM and RecQL4 have been linked to genetic diseases characterized by genome instability, premature aging and cancer predisposition. This helicase family plays important roles in various DNA repair pathways including protecting the genome from illegitimate recombination during chromosome segregation in mitosis and assuring genome stability. This review mainly focuses on various roles of human RecQ helicases in the process of recombination-based DNA repair to maintain genome stability and physiological consequences of their defects in the development of cancer and premature aging.
Collapse
Affiliation(s)
- Dharmendra Kumar Singh
- Laboratory of Molecular Gerontology, Biomedical Research Center, National Institute on Aging, NIH, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| | - Byungchan Ahn
- Department of Life Sciences, University of Ulsan, Ulsan 680-749, South Korea
| | - Vilhelm A. Bohr
- Laboratory of Molecular Gerontology, Biomedical Research Center, National Institute on Aging, NIH, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| |
Collapse
|
58
|
Abe T, Goda K, Futami K, Furuichi Y. Detection of siRNA administered to cells and animals by using a fluorescence intensity distribution analysis polarization system. Nucleic Acids Res 2009; 37:e56. [PMID: 19282452 PMCID: PMC2673448 DOI: 10.1093/nar/gkp131] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Small interfering RNA (siRNA) has excellent pharmacological features and is expected to be used for therapeutic drug development. To this end, however, new RNA technology needs to be established so that extremely small amounts (less than 1 pmol) of siRNA can be detected in organs of experimental animals and in human blood to facilitate pharmacokinetics studies. An important feature is that this new technology is not dependent on radioisotopes and can detect siRNA molecules identical to those used for drug development in preclinical tests with experimental animals or in clinical tests with humans. We report a convenient method that can detect small amounts of siRNA. The method uses high-power confocal microscopic analysis of fluorescence polarization in DNA probes that are bound to one of the strands of siRNA and directly quantitates the copy number of siRNA molecule after extraction from specimens. A pharmacokinetic study to examine the blood retention time of siRNA/cationic liposomes in mice showed that this straightforward method is consistent with the other reverse transcriptase polymerase chain reaction amplification-based method. We believe that the entire process is simple and applicable for a high-throughput analysis, which provides excellent technical support for fundamental research on RNA interference and development of siRNA drugs.
Collapse
Affiliation(s)
- Takashi Abe
- Micro-imaging Systems Division, Olympus Corporation, Tokyo, Japan
| | | | | | | |
Collapse
|
59
|
Aggarwal M, Brosh RM. WRN helicase defective in the premature aging disorder Werner syndrome genetically interacts with topoisomerase 3 and restores the top3 slow growth phenotype of sgs1 top3. Aging (Albany NY) 2009; 1:219-33. [PMID: 20157511 PMCID: PMC2806000 DOI: 10.18632/aging.100020] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Accepted: 02/02/2009] [Indexed: 11/25/2022]
Abstract
Werner syndrome (WS) is a premature aging disorder characterized by genomic instability. The WRN gene defective in WS encodes a protein with both helicase and exonuclease activities that interacts with proteins implicated in DNA metabolism. To understand its genetic functions, we examined the ability of human WRN to rescue phenotypes associated with sgs1, the sole RecQ helicase in Saccharomyces cerevisiae. WRN failed to rescue sgs1 sensitivity to the DNA damaging agent methylmethane sulfonate or replication inhibitor hydroxyurea, suggesting divergent functions of human and yeast RecQ helicases. However, physiological expression of WRN in sgs1 top3 restored top3 slow growth phenotype, whereas no effect on growth was observed with wild-type or sgs1 strains. Slow growth of WRN-transformed sgs1 top3 correlated with an elevated population of large-budded cells with undivided nuclei, indicating restoration of cell cycle delay in late S/G2 characteristic of top3. WRN helicase but not exonuclease activity was genetically required for restoration of top3 growth phenotype, demonstrating separation of function of WRN catalytic activities. A naturally occurring missense polymorphism in WRN that interferes with helicase activity abolished its ability to restore top3 slow growth phenotype. Proposed roles of WRN in genetic pathways important for the suppression of genomic instability are discussed.
Collapse
Affiliation(s)
- Monika Aggarwal
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, NIH, NIH Biomedical Research Center, 251 Bayview Blvd, Suite 100, Rm #06B125, Baltimore, MD 21224, USA
| | | |
Collapse
|
60
|
Association of human DNA helicase RecQ5beta with RNA polymerase II and its possible role in transcription. Biochem J 2008; 413:505-16. [PMID: 18419580 DOI: 10.1042/bj20071392] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Although RecQ5beta is a ssDNA (single-stranded DNA)-stimulated ATPase and an ATP-dependent DNA helicase with strand-annealing activities, its cellular function remains to be explored. In the present paper, we used immunopurification and MS-based analyses to show that human DNA helicase RecQ5beta is associated with at least four RNAP II (RNA polymerase II) subunits. RecQ5beta was also present in complexes immunoprecipitated using three different antibodies against the large subunit of RNAP II, or in complexes immunoprecipitated using an anti-FLAG antibody against either FLAG-RNAP II 33 kDa subunit or FLAG-Pin1. Different regions of the non-helicase domain of the RecQ5beta molecule were associated with hypophosphorylated and hyperphosphorylated forms of the RNAP II large subunit independently of DNA and RNA. RecQ5beta was also found in nuclear chromatin fractions and associated with the coding regions of the LDL (low-density lipoprotein) receptor and beta-actin genes. Knockdown of the RecQ5beta transcript increased the transcription of those genes. The results of the present study suggest that RecQ5beta has suppressive roles in events associated with RNAP II-dependent transcription.
Collapse
|
61
|
Oishi M, Nagasaki Y, Nishiyama N, Itaka K, Takagi M, Shimamoto A, Furuichi Y, Kataoka K. Enhanced growth inhibition of hepatic multicellular tumor spheroids by lactosylated poly(ethylene glycol)-siRNA conjugate formulated in PEGylated polyplexes. ChemMedChem 2008; 2:1290-7. [PMID: 17546711 DOI: 10.1002/cmdc.200700076] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
PEGylated polyplexes (lac-PEGylated polyplexes) composed of poly(L-lysine) and lactosylated poly(ethylene glycol)-small interfering RNA conjugate, which inhibits the RecQL1 gene product, were revealed to show an appreciable growth inhibition of multicellular HuH-7 spheroids (human hepatocarcinoma cell lines) for up to 21 days (IC(50)=6 nM); this system used as an in vitro three-dimensional (3D) model mimicking the in vivo biology of tumors. The PEGylated polyplexes thus prepared had a size of approximately 110 nm with clustered lactose moieties on their periphery as targeting ligands for the asialoglycoprotein-receptor-expressing HuH-7 cells. In contrast, OligofectAMINE/siRNA (cationic lipoplex) was observed to have almost no growth-inhibitory effect against HuH-7 spheroids, even though the lipoplex showed a stronger growth-inhibitory effect than the lac-PEGylated polyplexes on conventional monolayer-cultured HuH-7 cells. The FITC-tagged conjugate in the lac-PEGylated polyplexes showed smooth penetration into the HuH-7 spheroids compared with that in the lipoplexes, as observed by confocal fluorescence-scanning microscopy. This indicates that the small size of approximately 100 nm and the reduced nonspecific interaction due to the nonionic and hydrophilic lactosylated PEG layer contributes to the smooth penetration of the PEGylated polyplexes into the spheroid interior, eventually facilitating their uptake into the cells composing the spheroids. Cellular apoptosis indicating programmed cell death was also observed in the HuH-7 spheroids treated with the PEGylated polyplexes, revealing that the observed growth inhibition was indeed induced by the RNAi of the RecQL1 siRNA. These data suggest that the smart PEGylated polyplexes can indeed penetrate into the multiple cell layers of 3D tumor masses in vivo, exerting therapeutic effects through the RNAi.
Collapse
Affiliation(s)
- Motoi Oishi
- Tsukuba Research Center for Interdisciplinary Materials Science (TIMS), University of Tsukuba, 1-1-1 Ten-noudai, Tsukuba, Ibaraki 305-8573, Japan
| | | | | | | | | | | | | | | |
Collapse
|
62
|
Cabral REC, Queille S, Bodemer C, de Prost Y, Neto JBC, Sarasin A, Daya-Grosjean L. Identification of new RECQL4 mutations in Caucasian Rothmund-Thomson patients and analysis of sensitivity to a wide range of genotoxic agents. Mutat Res 2008; 643:41-7. [PMID: 18616953 DOI: 10.1016/j.mrfmmm.2008.06.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2007] [Revised: 04/18/2008] [Accepted: 06/13/2008] [Indexed: 12/17/2022]
Abstract
Rothmund-Thomson syndrome (RTS), a rare recessive autosomal disorder, presents genome instability and clinical heterogeneity with growth deficiency, skin and bone defects, premature aging symptoms and cancer susceptibility. A subset of RTS patients presents mutations of the RECQL4 gene, member of the RecQ family of DNA helicases, including the RECQL2 (BLM) and RECQL3 (WRN) genes, defective in the cancer prone Bloom and Werner syndromes, respectively. Analysis of the RECQL4 gene in six clinically diagnosed RTS patients shows five patients, including two siblings, with eight mutations mainly located in the helicase domain, three patients presenting two mutations. The alterations include four missense mutations, one nonsense mutation and the same frameshift deletion, g.2881delG in exon 9 found in three patients. Seven RECQL4 polymorphisms, two being new, have also been identified. Primary RTS fibroblasts from these RTS patients show no sensitivity to a wide variety of genotoxic agents including ionizing or ultraviolet irradiation, nitrogen mustard, 4NQO, 8-MOP, Cis-Pt, MMC, H2O2, HU, or UV plus caffeine which could be related to the RECQL4 alterations identified here. This is in contrast with the DNA damage sensitive Bloom and Werner cells and highlights the complexity of the numerous RecQ protein functions implicated in the different cellular pathways required for maintaining genomic integrity.
Collapse
Affiliation(s)
- Rosa Estela Caseira Cabral
- Laboratoire Génomes et Cancers, FRE2939 CNRS, Institut Gustave-Roussy, Université Paris-Sud, PRII, 39 Rue Camille Desmoulins, 94805 Villejuif, France
| | | | | | | | | | | | | |
Collapse
|
63
|
Futami K, Kumagai E, Makino H, Sato A, Takagi M, Shimamoto A, Furuichi Y. Anticancer activity of RecQL1 helicase siRNA in mouse xenograft models. Cancer Sci 2008; 99:1227-36. [PMID: 18422747 PMCID: PMC11159650 DOI: 10.1111/j.1349-7006.2008.00794.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2007] [Revised: 02/04/2008] [Accepted: 02/05/2008] [Indexed: 11/29/2022] Open
Abstract
Small interfering RNAs (siRNAs) are expected to have a medical application in human therapy as drugs with a high specificity for their molecular target mRNAs. RecQL1 DNA helicase in the human RecQ helicase family participates in DNA repair and recombination pathways in the cell cycle of replication. Silencing the RecQL1 expression by RecQL1-siRNA induces mitotic death in vitro specifically in growing cancer cells. By contrast, the same RecQL1 silencing does not affect the growth of normal cells, emphasizing that RecQL1 helicase is an ideal molecular target for cancer therapy. In this study, we show that local and systemic administration of RecQL1-siRNA mixed with polyethyleneimine polymer or cationic liposomes prevented cancer cell proliferation in vivo in mouse models of cancer without noticeable adverse effects. The results indicate that RecQL1-siRNA in a complex with a cationic polymer is a very promising anticancer drug candidate, and that in particular, RecQL1-siRNA formulated with a cationic liposome has an enormous potential to be used by intravenous injection for therapy specific for liver cancers, including metastasized cancers from the colon and pancreas.
Collapse
MESH Headings
- Animals
- Carcinoma, Hepatocellular/enzymology
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/therapy
- Cell Line, Tumor
- Cell Proliferation
- Colorectal Neoplasms/enzymology
- Colorectal Neoplasms/genetics
- Colorectal Neoplasms/therapy
- Flow Cytometry
- Humans
- Immunoenzyme Techniques
- Liposomes
- Liver Neoplasms, Experimental/genetics
- Liver Neoplasms, Experimental/secondary
- Liver Neoplasms, Experimental/therapy
- Lung Neoplasms/enzymology
- Lung Neoplasms/genetics
- Lung Neoplasms/therapy
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Neoplasms, Experimental/drug therapy
- Neoplasms, Experimental/enzymology
- Neoplasms, Experimental/genetics
- Pancreatic Neoplasms/enzymology
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/therapy
- Polyethyleneimine/chemistry
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Small Interfering/pharmacology
- RecQ Helicases/antagonists & inhibitors
- RecQ Helicases/genetics
- RecQ Helicases/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Kazunobu Futami
- GeneCare Research Institute, 19-2 Kajiwara, Kamakura, Kanagawa 247-0063, Japan
| | | | | | | | | | | | | |
Collapse
|
64
|
Bugreev DV, Brosh RM, Mazin AV. RECQ1 possesses DNA branch migration activity. J Biol Chem 2008; 283:20231-42. [PMID: 18495662 DOI: 10.1074/jbc.m801582200] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
RecQ helicases are essential for the maintenance of genome stability. Five members of the RecQ family have been found in humans, including RECQ1, RECQ5, BLM, WRN, and RECQ4; the last three are associated with human diseases. At this time, only BLM and WRN helicases have been extensively characterized, and the information on the other RecQ helicases has only started to emerge. Our current paper is focused on the biochemical properties of human RECQ1 helicase. Recent cellular studies have shown that RECQ1 may participate in DNA repair and homologous recombination, but the exact mechanisms of how RECQ1 performs its cellular functions remain largely unknown. Whereas RECQ1 possesses poor helicase activity, we found here that the enzyme efficiently promotes DNA branch migration. Further analysis revealed that RECQ1 catalyzes unidirectional three-stranded branch migration with a 3' --> 5' polarity. We show that this RECQ1 activity is instrumental in specific disruption of joint molecules (D-loops) formed by a 5' single-stranded DNA invading strand, which may represent dead end intermediates of homologous recombination in vivo. The newly found enzymatic properties of the RECQ1 helicase may have important implications for the function of RECQ1 in maintenance of genomic stability.
Collapse
Affiliation(s)
- Dmitry V Bugreev
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102-1192, USA
| | | | | |
Collapse
|
65
|
Abstract
Disruption of the Rb (retinoblastoma protein)/E2F cell-cycle pathway and Ras activation are two of the most frequent events in cancer, and both of these mutations place oncogenic stress on cells to increase DNA replication. In the present study, we demonstrate that these mutations have an additive effect on induction of members of the RecQ DNA helicase family. RecQ activity is important for genomic stability, initiation of DNA replication and telomere maintenance, and mutation of the BLM (Bloom's syndrome gene), WRN (Werner's syndrome gene) or RECQL4 (Rothmund–Thomson syndrome gene) family members leads to premature aging syndromes characterized by genetic instability and telomere loss. RecQ family members are frequently overexpressed in cancers, and overexpression of BLM has been shown to cause telomere elongation. Concomitant with induction of RecQ genes in response to Rb family mutation and Ras activation, we show an increase in the number of telomeric repeats. We suggest that this induction of RecQ genes in response to common oncogenic mutations may explain the up-regulation of the genes seen in cancers, and it may provide a means for transformed cells to respond to an increased demand for DNA replication.
Collapse
|
66
|
Futami K, Ishikawa Y, Goto M, Furuichi Y, Sugimoto M. Role of Werner syndrome gene product helicase in carcinogenesis and in resistance to genotoxins by cancer cells. Cancer Sci 2008; 99:843-8. [PMID: 18312465 PMCID: PMC11158842 DOI: 10.1111/j.1349-7006.2008.00778.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2007] [Revised: 01/07/2008] [Accepted: 01/14/2008] [Indexed: 11/30/2022] Open
Abstract
Werner syndrome (WS) is an autosomal recessive genetic disorder causing premature aging, and WRN has been identified as the causative gene of WS. The product of the WRN gene (WRN) acts as a DNA helicase with exonuclease activity, and data have accumulated showing that the WRN gene strongly participates in carcinogenesis: (1) the normal WRN gene likely participates in the immortalization of B-lymphoblastoid cell lines through telomeric crisis caused by telomere shortening, (2) a much higher incidence of rare cancers occurs in WS patients than in other kinds of patients, and (3) levels of WRN expressed in virus-transformed cells and cancer cells are usually markedly up-regulated and are inversely correlated with the sensitivity of these cells against various genotoxins, including camptothecin. In this paper, we review the events that show a close correlation of the WRN gene and WRN with carcinogenesis and their underlying molecular mechanisms.
Collapse
Affiliation(s)
- Kazunobu Futami
- GeneCare Research Institute, TECOM 2nd Building, 19-2 Kajiwara, Kamakura, Kanagawa 247-0063, Japan
| | | | | | | | | |
Collapse
|
67
|
Abstract
It has been proposed that selective inactivation of a DNA repair pathway may enhance anti-cancer therapies that eliminate cancerous cells through the cytotoxic effects of DNA damaging agents or radiation. Given the unique and critically important roles of DNA helicases in the DNA damage response, DNA repair, and maintenance of genomic stability, a number of strategies currently being explored or in use to combat cancer may be either mediated or enhanced through the modulation of helicase function. The focus of this review will be to examine the roles of helicases in DNA repair that might be suitably targeted by cancer therapeutic approaches. Treatment of cancers with anti-cancer drugs such as small molecule compounds that modulate helicase expression or function is a viable approach to selectively kill cancer cells through the inactivation of helicase-dependent DNA repair pathways, particularly those associated with DNA recombination, replication restart, and cell cycle checkpoint.
Collapse
Affiliation(s)
- Rigu Gupta
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, 5600 Nathan Shock Drive, Baltimore, MD 21224 USA
| | - Robert M. Brosh
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, 5600 Nathan Shock Drive, Baltimore, MD 21224 USA
| |
Collapse
|
68
|
Abstract
Five members of the RecQ subfamily of DEx-H-containing DNA helicases have been identified in both human and mouse, and mutations in BLM, WRN, and RECQ4 are associated with human diseases of premature aging, cancer, and chromosomal instability. Although a genetic disease has not been linked to RECQ1 mutations, RECQ1 helicase is the most highly expressed of the human RecQ helicases, suggesting an important role in cellular DNA metabolism. Recent advances have elucidated a unique role of RECQ1 to suppress genomic instability. Embryonic fibroblasts from RECQ1-deficient mice displayed aneuploidy, chromosomal instability, and increased load of DNA damage.(1) Acute depletion of human RECQ1 renders cells sensitive to DNA damage and results in spontaneous gamma-H2AX foci and elevated sister chromatid exchanges, indicating aberrant repair of DNA breaks.(2) Consistent with a role in DNA repair, RECQ1 relocalizes to irradiation-induced nuclear foci and associates with chromatin.(2) RECQ1 catalytic activities(3) and interactions with DNA repair proteins(2,4,5) are likely to be important for its molecular functions in genome homeostasis. Collectively, these studies provide the first evidence for an important role of RECQ1 to confer chromosomal stability that is unique from that of other RecQ helicases and suggest its potential involvement in tumorigenesis.
Collapse
Affiliation(s)
| | - Robert M. Brosh
- Laboratory of Molecular Gerontology; National Institute on Aging; National Institutes of Health; Department of Health and Human Services; Baltimore, Maryland USA
| |
Collapse
|
69
|
Human RECQ1 is a DNA damage responsive protein required for genotoxic stress resistance and suppression of sister chromatid exchanges. PLoS One 2007; 2:e1297. [PMID: 18074021 PMCID: PMC2111050 DOI: 10.1371/journal.pone.0001297] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2007] [Accepted: 11/14/2007] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND DNA helicases are ubiquitous enzymes that unwind DNA in an ATP-dependent and directionally specific manner. Unwinding of double-stranded DNA is essential for the processes of DNA repair, recombination, transcription, and DNA replication. Five human DNA helicases sharing sequence similarity with the E. coli RecQ helicase have been identified. Three of the human RecQ helicases are implicated in hereditary diseases (Bloom syndrome, Werner syndrome, and Rothmund-Thomson syndrome) which display clinical symptoms of premature aging and cancer. RECQ1 helicase is the most highly expressed of the human RecQ helicases; however, a genetic disease has yet not been linked to mutations in the RECQ1 gene, and the biological functions of human RECQ1 in cellular DNA metabolism are not known. METHODOLOGY/PRINCIPAL FINDINGS In this study, we report that RECQ1 becomes phosphorylated upon DNA damage and forms irradiation-induced nuclear foci that associate with chromatin in human cells. Depletion of RECQ1 renders human cells sensitive to DNA damage induced by ionizing radiation or the topoisomerase inhibitor camptothecin, and results in spontaneous gamma-H2AX foci and elevated sister chromatid exchanges, indicating aberrant repair of DNA breaks. Consistent with a role in homologous recombinational repair, endogenous RECQ1 is associated with the strand exchange protein Rad51 and the two proteins directly interact with high affinity. CONCLUSION/SIGNIFICANCE Collectively, these results provide the first evidence for a role of human RECQ1 in the response to DNA damage and chromosomal stability maintenance and point to the vital importance of RECQ1 in genome homeostasis.
Collapse
|
70
|
Abstract
Genomic instability leads to mutations, cellular dysfunction and aberrant phenotypes at the tissue and organism levels. A number of mechanisms have evolved to cope with endogenous or exogenous stress to prevent chromosomal instability and maintain cellular homeostasis. DNA helicases play important roles in the DNA damage response. The RecQ family of DNA helicases is of particular interest since several human RecQ helicases are defective in diseases associated with premature aging and cancer. In this review, we will provide an update on our understanding of the specific roles of human RecQ helicases in the maintenance of genomic stability through their catalytic activities and protein interactions in various pathways of cellular nucleic acid metabolism with an emphasis on DNA replication and repair. We will also discuss the clinical features of the premature aging disorders associated with RecQ helicase deficiencies and how they relate to the molecular defects.
Collapse
Affiliation(s)
- Robert M Brosh
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, 5600 Nathan Shock Drive, Baltimore, MD 21224, USA
| | | |
Collapse
|
71
|
Futami K, Takagi M, Shimamoto A, Sugimoto M, Furuichi Y. Increased chemotherapeutic activity of camptothecin in cancer cells by siRNA-induced silencing of WRN helicase. Biol Pharm Bull 2007; 30:1958-61. [PMID: 17917271 DOI: 10.1248/bpb.30.1958] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Werner syndrome helicase (WRN) participates in a wide range of DNA activities, including replication, double-strand DNA break repair, telomere and retrovirus long terminal repeat maintenance. Mutations of the WRN gene cause Werner syndrome (WS), an autosomal recessive premature ageing disorder associated with various symptoms related to ageing. In this study, we investigated the siRNA that specifically down-regulates WRN expression. WRN silencing increased markedly the chemotherapeutic activity of camptothecin (CPT) on cancer cells in terms of the extent of efficacy and lowering effective drug dosage, accompanied by suppressing recovery from DNA damage caused by CPT. Here, we propose a potential combination therapy of WRN-siRNA and CPT, looking forward to minimizing the inevitable adverse effects associated with cancer chemotherapy.
Collapse
Affiliation(s)
- Kazunobu Futami
- GeneCare Research Institute Co., Ltd., Kamakura, Kanagawa, Japan
| | | | | | | | | |
Collapse
|
72
|
Futami K, Kumagai E, Makino H, Goto H, Takagi M, Shimamoto A, Furuichi Y. Induction of mitotic cell death in cancer cells by small interference RNA suppressing the expression of RecQL1 helicase. Cancer Sci 2007; 99:71-80. [PMID: 17953710 DOI: 10.1111/j.1349-7006.2007.00647.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
RecQL1 DNA helicase of the human RecQ helicase family participates in DNA repair and recombination pathways during cell-cycle replication. When we examined the effect of RecQL1 suppression on cell growth, we found that RecQL1 silencing by small interference RNA efficiently prevented proliferation of a wide range of cancer cells by inducing mitotic catastrophe and mitotic cell death. In contrast, such mitotic cell death was not seen in the growing normal fibroblasts used as controls, even if RecQL1 expression was fully downregulated. Our results support the hypothesis that endogenous DNA damage that occurs during DNA replication and remains unrepaired in cancer cells due to RecQL1 silencing induces cancer cell-specific mitotic catastrophe through a less-strict checkpoint in cancer cells than in normal cells. We speculate that normal cells are exempt from such mitotic cell death, despite slow growth, because cell-cycle progression is controlled strictly by a strong checkpoint system that detects DNA damage and arrests progression of the cell cycle until DNA damage is repaired completely. These results suggest that RecQL1 helicase is an excellent molecular target for cancer chemotherapy.
Collapse
Affiliation(s)
- Kazunobu Futami
- GeneCare Research Institute, 19-2 Kajiwara, Kamakura, Kanagawa 247-0063, Japan
| | | | | | | | | | | | | |
Collapse
|
73
|
Opresko PL, Calvo JP, von Kobbe C. Role for the Werner syndrome protein in the promotion of tumor cell growth. Mech Ageing Dev 2007; 128:423-36. [PMID: 17624410 DOI: 10.1016/j.mad.2007.05.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2007] [Revised: 05/18/2007] [Accepted: 05/21/2007] [Indexed: 11/20/2022]
Abstract
Werner syndrome (WS) is a premature aging and cancer-prone disease caused by loss of the RecQ helicase WRN protein. Cultured WS fibroblasts display high genomic instability and senesce prematurely. Epigenetic inactivation of the WRN gene occurs in numerous tumor types, in which WRN demonstrates tumor suppressor-like activity (Agrelo et al., 2006). However, the role of WRN in tumors that express WRN protein is unknown. Here we report that the inhibition of WRN expression strongly impairs growth of 12 out of 15 cancer cell lines tested. For those cell lines in which WRN depletion induced high cell death, the majority of the surviving proliferative clones exhibited WRN expression. Growth arrest induced by WRN depletion was characterized by an accumulation of cells in the G2/M cell cycle phases and an increase in DNA damage. Importantly, WRN depletion inhibited tumor growth in vivo in SCID mouse xenograft models. Altogether, these findings support a dual role for WRN in tumorigenesis; tumor suppressor-like activity in tumors with WRN inactivation and the promotion of proliferation and survival in tumors that express WRN. These findings suggest a possible therapeutic role for WRN as an anti-cancer target, and highlight the importance of WRN protein status for tumorigenesis and clinical treatments of patients.
Collapse
Affiliation(s)
- Patricia L Opresko
- University of Pittsburgh, Department of Environmental and Occupational Health, Pittsburgh, PA, USA.
| | | | | |
Collapse
|
74
|
Kudlow BA, Kennedy BK, Monnat RJ. Werner and Hutchinson-Gilford progeria syndromes: mechanistic basis of human progeroid diseases. Nat Rev Mol Cell Biol 2007; 8:394-404. [PMID: 17450177 DOI: 10.1038/nrm2161] [Citation(s) in RCA: 212] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Progeroid syndromes have been the focus of intense research in part because they might provide a window into the pathology of normal ageing. Werner syndrome and Hutchinson-Gilford progeria syndrome are two of the best characterized human progeroid diseases. Mutated genes that are associated with these syndromes have been identified, mouse models of disease have been developed, and molecular studies have implicated decreased cell proliferation and altered DNA-damage responses as common causal mechanisms in the pathogenesis of both diseases.
Collapse
Affiliation(s)
- Brian A Kudlow
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | | | | |
Collapse
|
75
|
Bordi L, Gioia C, Lalle E, Piselli P, Poccia F, Capobianchi MR, Amendola A. Differential Expression of Werner and Bloom Syndrome Genes in the Peripheral Blood of HIV-1 Infected Patients. Hum Immunol 2007; 68:91-9. [PMID: 17321898 DOI: 10.1016/j.humimm.2006.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2006] [Accepted: 11/21/2006] [Indexed: 11/23/2022]
Abstract
Human immunodeficiency virus (HIV)-induced immunodeficiency and immune-system aging share some analogies. Since Werner (WRN) and Bloom (BLM) helicases are crucial in cell repair and aging, their peripheral blood mononuclear cells (PBMC) mRNA levels were compared in HIV-1 infected patients and in normal donors. The mean levels of WRN mRNA were 3.7-fold higher in PBMCs from HIV-1 infected individuals in comparison to healthy donors, whereas BLM mRNA mean levels were slightly higher, although not significantly. WRN increase was positively correlated to CD4 and CD8 T-cell numbers, and also the percentage of naive T lymphocytes, and was observed also in T-cell subsets. Interestingly, a general trend toward increased WRN mRNA levels in individuals with lower viral load was observed, without association with patient age, time of seroconversion, and on/off antiretroviral therapy regimen. On the whole, this study shows that WRN and BLM are differentially modulated in HIV infection, as WRN--but not BLM--is significantly increased, suggesting that mechanisms different from defect or loss of helicase function, observed in WRN and BLM syndromes, may be at the basis of T-cell aging in HIV infection.
Collapse
Affiliation(s)
- Licia Bordi
- Laboratory of Virology, National Institute for Infectious Diseases, Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
76
|
Ide T. [Mechanism of cell proliferation--cell cycle, oncogenes, and senescence]. YAKUGAKU ZASSHI 2007; 126:1087-115. [PMID: 17077613 DOI: 10.1248/yakushi.126.1087] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cell proliferation is regulated through a transition between the G0 phase and cell cycle. We isolated a mammalian temperature-sensitive mutant cell line defective in the function from the G0 phase to cell cycle. Senescent human somatic cells fail to enter into the cell cycle from the G0 phase with stimulation by any growth factor. Telomere shortening was found to be a cause of cellular senescence, and reexpression of telomerase immortalized human somatic cells. Immortalized human somatic cells showed normal phenotypes and were useful not only for basic research but also for clinical and applied fields. The importance of p53 and p21 activation/induction i now well accepted in the signal transduction process from telomere shortening to growth arrest, but the precise mechanism is largely unknown as yet. We found that the MAP kinase cascade and histone acetylase have an important role in the signaling process to express p21. Tumor tissues and cells were found to have strong telomerase activity, while most normal somatic human tissues showed very weak or no activity. Telomerase activity was shown to be a good marker for early tumor diagnosis because significant telomerase activity was detected in very early tumors or even in some precancerous tissues compared with adjacent normal tissues. Telomere/telomerase is a candidate target for cancer chemotherapeutics, and an agent that abrogated telomere functions was found to kill tumor cells effectively by inducing apoptosis whereas it showed no effect on the viability of normal cells.
Collapse
Affiliation(s)
- Toshinori Ide
- Department of Cellular and Molecular Biology, Division of Integrated Medical Science, Graduated School of Biomedical Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City 734-8551, Japan.
| |
Collapse
|
77
|
Iso T, Futami K, Iwamoto T, Furuichi Y. Modulation of the Expression of Bloom Helicase by Estrogenic Agents. Biol Pharm Bull 2007; 30:266-71. [PMID: 17268063 DOI: 10.1248/bpb.30.266] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We report that the expression of Bloom helicase (BLM) was up-regulated by 17beta-estradiol (E2) in estrogen receptor (ER)-positive mammary tumor MCF-7 cells, but was hardly modulated in ER-negative mammary tumor MDA-MB-231 cells. ER antagonist ICI182780 blocked the E2 effect on BLM expression in MCF-7 cells. From these results we conclude that ER participates in up-regulation of BLM expression in MCF-7 cells by means of E2. Similar results were obtained when MCF-7 cells were treated with bisphenol A (BPA), an endocrine-disrupting chemical having a weak estrogenic activity. The ER binding ability of BPA is estimated at 1/1000 of E2 ability, and in this study about 1000-times more BPA was needed for the same levels of estrogenic effect of E2. The expression of cell-cycle associated genes, cdc6, MCM5, MCM2, Myt1, PCNA and AuroraA were up-regulated by E2 and BPA treatment in MCF-7 cells accompanied by up-regulation of BLM. In this BLM promoter study, Sp1 elements in the upper region of BLM modulated transcription, but were not indispensable for E2 response. Our results suggested that up-regulation of BLM expression by E2 and BPA is ER-dependent and may be responsible for repair of DNA damage caused by the genotoxicity of these estrogenic agents.
Collapse
Affiliation(s)
- Takako Iso
- GeneCare Research Institute Co., Ltd., Kanagawa, Japan
| | | | | | | |
Collapse
|
78
|
Woo LL, Futami K, Shimamoto A, Furuichi Y, Frank KM. The Rothmund-Thomson gene product RECQL4 localizes to the nucleolus in response to oxidative stress. Exp Cell Res 2006; 312:3443-57. [PMID: 16949575 DOI: 10.1016/j.yexcr.2006.07.023] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2006] [Revised: 07/20/2006] [Accepted: 07/21/2006] [Indexed: 11/20/2022]
Abstract
Mutations in the RECQL4 helicase gene have been linked to Rothmund-Thomson syndrome (RTS), which is characterized by poikiloderma, growth deficiency, and a predisposition to cancer. Examination of RECQL4 subcellular localization in live cells demonstrated a nucleoplasmic pattern and, to a lesser degree, staining in nucleoli. Analysis of RECQL4-GFP deletion mutants revealed two nuclear localization regions in the N-terminal region of RECQL4 and a nucleolar localization signal at amino acids 376-386. RECQL4 localization did not change after treatment with the DNA-damaging agents bleomycin, etoposide, UV irradiation and gamma irradiation, in contrast to the Bloom and Werner syndrome helicases that relocate to distinct nuclear foci after damage. However, in a significant number of cells exposed to hydrogen peroxide or streptonigrin, RECQL4 accumulated in nucleoli. Using a T7 phage display screen, we determined that RECQL4 interacts with poly(ADP-ribose) polymerase-1 (PARP-1), a nuclear enzyme that promotes genomic integrity through its involvement in DNA repair and signaling pathways. The RECQL4 nucleolar localization was inhibited by pretreatment with a PARP-1 inhibitor. The C-terminal portion of RECQL4 was found to be an in vitro substrate for PARP-1. These results demonstrate changes in the intracellular localization of RECQL4 in response to oxidative stress and identify an interaction between RECQL4 and PARP-1.
Collapse
Affiliation(s)
- Leslie L Woo
- Department of Pathology, University of Chicago, MC1089, Chicago, IL 60637, USA
| | | | | | | | | |
Collapse
|
79
|
Werner SR, Prahalad AK, Yang J, Hock JM. RECQL4-deficient cells are hypersensitive to oxidative stress/damage: Insights for osteosarcoma prevalence and heterogeneity in Rothmund-Thomson syndrome. Biochem Biophys Res Commun 2006; 345:403-9. [PMID: 16678792 DOI: 10.1016/j.bbrc.2006.04.093] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2006] [Accepted: 04/15/2006] [Indexed: 10/24/2022]
Abstract
Rothmund-Thomson syndrome (RTS) is a heterogeneous disease, associated with increased prevalence of osteosarcoma in very young patients with a mutated RECQL4 gene. In this study, we tested the ability of RECQL4 deficient fibroblasts, derived from a RTS patient to recover from hydrogen peroxide (H(2)O(2))-induced oxidative stress/damage. Immunoperoxidase staining for 8-oxo-deoxyguanosine (8-oxo-dG) formation in RTS and normal human fibroblasts were compared to assess DNA damage. We determined DNA synthesis, cell growth, cell cycle distribution, and viability in RTS and normal human fibroblasts before and after H(2)O(2) treatment. H(2)O(2) induces 8-oxo-dG formation in both RTS and normal fibroblasts. In normal human fibroblasts, RECQL4 was predominantly localized to cytoplasm; nuclear translocation and foci formation occurred in response to oxidant stimulation. After recovery from oxidant exposure, viable RTS fibroblasts showed irreversible growth arrest compared to normal fibroblasts. DNA synthesis decreased significantly in treated RTS cells, with concomitant reduction of cells in the S-phase. These results suggest that enhanced oxidant sensitivity in RECQL4 deficient fibroblasts derived from RTS patients could be attributed to abnormal DNA metabolism and proliferation failure. The ramifications of these findings on osteosarcoma prevalence and heterogeneity in RTS are discussed.
Collapse
Affiliation(s)
- Sean R Werner
- Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | | | | |
Collapse
|
80
|
Kato A, Inoue H. Growth defect and mutator phenotypes of RecQ-deficient Neurospora crassa mutants separately result from homologous recombination and nonhomologous end joining during repair of DNA double-strand breaks. Genetics 2006; 172:113-25. [PMID: 16219790 PMCID: PMC1456140 DOI: 10.1534/genetics.105.041756] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2005] [Accepted: 09/29/2005] [Indexed: 11/18/2022] Open
Abstract
RecQ helicases function in the maintenance of genome stability in many organisms. The filamentous fungus Neurospora crassa has two RecQ homologs, QDE3 and RECQ2. We found that the qde-3 recQ2 double mutant showed a severe growth defect. The growth defect was alleviated by mutation in mei-3, the homolog of yeast RAD51, which is required for homologous recombination (HR), suggesting that HR is responsible for this phenotype. We also found that the qde-3 recQ2 double mutant showed a mutator phenotype, yielding mostly deletions. This phenotype was completely suppressed by mutation of mus-52, a homolog of the human KU80 gene that is required for nonhomologous end joining (NHEJ), but was unaffected by mutation of mei-3. The high spontaneous mutation frequency in the double mutant is thus likely to be due to NHEJ acting on an elevated frequency of double-strand breaks (DSBs) and we therefore suggest that QDE3 and RECQ2 maintain chromosome stability by suppressing the formation of spontaneous DSBs.
Collapse
Affiliation(s)
- Akihiro Kato
- Laboratory of Genetics, Department of Regulation Biology, Faculty of Science, Saitama University, 338-8570 Saitama, Japan
| | | |
Collapse
|
81
|
LeRoy G, Carroll R, Kyin S, Seki M, Cole MD. Identification of RecQL1 as a Holliday junction processing enzyme in human cell lines. Nucleic Acids Res 2005; 33:6251-7. [PMID: 16260474 PMCID: PMC1275589 DOI: 10.1093/nar/gki929] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2005] [Revised: 10/10/2005] [Accepted: 10/10/2005] [Indexed: 11/12/2022] Open
Abstract
Homologous recombination provides an effective way to repair DNA double-strand breaks (DSBs) and is required for genetic recombination. During the process of homologous recombination, a heteroduplex DNA structure, or a 'Holliday junction' (HJ), is formed. The movement, or branch migration, of this junction is necessary for recombination to proceed correctly. In prokaryotes, the RecQ protein or the RuvA/RuvB protein complex can promote ATP-dependent branch migration of Holliday junctions. Much less is known about the processing of Holliday junctions in eukaryotes. Here, we identify RecQL1 as a predominant ATP-dependent, HJ branch migrator present in human nuclear extracts. A reduction in the level of RecQL1 induced by RNA interference in HeLa cells leads to an increase in sister chromatid exchange. We propose that RecQL1 is involved in the processing of Holliday junctions in human cells.
Collapse
Affiliation(s)
- Gary LeRoy
- Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ 08544-1014, USA.
| | | | | | | | | |
Collapse
|
82
|
Slupianek A, Gurdek E, Koptyra M, Nowicki MO, Siddiqui KM, Groden J, Skorski T. BLM helicase is activated in BCR/ABL leukemia cells to modulate responses to cisplatin. Oncogene 2005; 24:3914-22. [PMID: 15750625 DOI: 10.1038/sj.onc.1208545] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bloom protein (BLM) is a 3'-5' helicase, mutated in Bloom syndrome, which plays an important role in response to DNA double-strand breaks and stalled replication forks. Here, we show that BCR/ABL tyrosine kinase, which also modulates DNA repair capacity, is associated with elevated expression of BLM. Downregulation of BLM by antisense cDNA or dominant-negative mutant inhibits homologous recombination repair (HRR) and increases sensitivity to cisplatin in BCR/ABL-positive cells. Bone marrow cells from mice heterozygous for BLM mutation, BLM(Cin/+), transfected with BCR/ABL display increased sensitivity to cisplatin compared to those obtained from the wild-type littermates. BCR/ABL promotes interactions of BLM with RAD51, while simultaneous overexpression of BLM and RAD51 in normal cells increases drug resistance. These data suggest that BLM collaborates with RAD51 to facilitate HRR and promotes the resistance of BCR/ABL-positive leukemia cells to DNA-damaging agents.
Collapse
Affiliation(s)
- Artur Slupianek
- Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| | | | | | | | | | | | | |
Collapse
|
83
|
Pradines J, Rudolph-Owen L, Hunter J, Leroy P, Cary M, Coopersmith R, Dancik V, Eltsefon Y, Farutin V, Leroy C, Rees J, Rose D, Rowley S, Ruttenberg A, Wieghardt P, Sander C, Reich C. Detection of activity centers in cellular pathways using transcript profiling. J Biopharm Stat 2005; 14:701-21. [PMID: 15468760 DOI: 10.1081/bip-200025678] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We present a new computational method for identifying regulated pathway components in transcript profiling (TP) experiments by evaluating transcriptional activity in the context of known biological pathways. We construct a graph representing thousands of protein functional relationships by integrating knowledge from public databases and review articles. We use the notion of distance in a graph to define pathway neighborhoods. The pathways perturbed in an experiment are then identified as the subgraph induced by the genes, referred to as activity centers, having significant density of transcriptional activity in their functional neighborhoods. We illustrate the predictive power of this approach by performing and analyzing an experiment of TP53 overexpression in NCI-H125 cells. The detected activity centers are in agreement with the known TP53 activation effects and our independent experimental results. We also apply the method to a serum starvation experiment using HEY cells and investigate the predicted activity of the transcription factor MYC. Finally, we discuss interesting properties of the activity center approach and its possible applications beyond the comparison of two experiments.
Collapse
Affiliation(s)
- Joel Pradines
- Department of Computational Sciences, Millennium Pharmaceuticals, Inc, Cambridge, Massachusetts 021398, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Sengupta S, Shimamoto A, Koshiji M, Pedeux R, Rusin M, Spillare EA, Shen JC, Huang LE, Lindor NM, Furuichi Y, Harris CC. Tumor suppressor p53 represses transcription of RECQ4 helicase. Oncogene 2005; 24:1738-48. [PMID: 15674334 DOI: 10.1038/sj.onc.1208380] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
RECQ4 is a member of the RecQ helicase family, which has been implicated in the regulation of DNA replication, recombination and repair. p53 modulates the functions of RecQ helicases including BLM and WRN. In this study, we demonstrate that p53 can regulate the transcription of RECQ4. Using nontransformed, immortalized normal human fibroblasts, we show that p53-dependent downregulation of RECQ4 expression occurred in G1-arrested cells, both in the absence or presence of exogenous DNA damage. Wild-type p53 (but not the tumor-derived mutant forms) repressed RECQ4 promoter activity. The camptothecin or etoposide-dependent p53-mediated repression was attenuated by trichostatin A (TSA), an inhibitor of histone deacetylases (HDACs). Repression of the RECQ4 promoter was accompanied with an increased accumulation of HDAC1, and the loss of SP1 and p53 binding to the promoter. The simultaneous formation of a camptothecin-dependent p53-SP1 complex indicated its occurrence outside of the RECQ4 promoter. These data suggest that p53-mediated repression of RECQ4 transcription during DNA damage results from the modulation of the promoter occupancy of transcription activators and repressors.
Collapse
Affiliation(s)
- Sagar Sengupta
- Laboratory of Human Carcinogenesis, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Bordi L, Amendola A, Ciccosanti F, Abbate I, Camilloni G, Capobianchi MR. Expression of Werner and Bloom syndrome genes is differentially regulated by in vitro HIV-1 infection of peripheral blood mononuclear cells. Clin Exp Immunol 2004; 138:251-8. [PMID: 15498034 PMCID: PMC1809202 DOI: 10.1111/j.1365-2249.2004.02622.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
In HIV infection, continuous immune activation leads to accelerated ageing of the adaptive immune system, similar to that observed in elderly people. We investigated the expression of WRN and BLM (genes involved in disorders characterized by premature ageing, genomic instability and cancer predisposition) in peripheral blood mononuclear cells (PBMC) activated in vitro with phytohaemagglutinin (PHA) and infected with different HIV-1 strains. The steady state levels of mRNA were analysed by reverse transcription-polymerase chain reaction (RT-PCR), and protein expression was assayed using immunocytochemistry and Western blot techniques. In uninfected PBMC, PHA stimulation induced an increase in BLM mRNA and protein expression, while WRN expression remained virtually unchanged. When PBMC were infected in vitro with a lymphotropic HIV-1 strain, the level of BLM mRNA showed a peak at 24 h of infection, followed by a decline to uninfected culture levels. A similar result failed to be seen using an R5-tropic HIV-1 strain. In accordance with mRNA expression, in HIV-infected cultures PBMC were stained more frequently and more intensely by a BLM-specific antibody as compared to uninfected cultures, staining peaking at 24. Conversely, WRN expression was not modulated by HIV-1. The proportion of cells showing BLM up-regulation, established by immunocytochemical staining, was much greater than the proportion of productively infected PBMC, as established by proviral DNA measurement. This result indicates that BLM up-regulation is probably a result of an indirect bystander cell effect. Activation of the BLM gene in infected PBMC suggests that premature ageing could be a further immunopathogenetic mechanism involved in HIV-induced immunodeficiency, and points to a possible new candidate target for innovative therapeutic intervention.
Collapse
Affiliation(s)
- L Bordi
- National Institute for Infectious Diseases 'L. Spallanzani', Università di Roma 'La Sapienza', Istitito di Biologia e Patologia Molecolare CNR, Rome, Italy
| | | | | | | | | | | |
Collapse
|
86
|
Sugimoto M, Tahara H, Ide T, Furuichi Y. Steps involved in immortalization and tumorigenesis in human B-lymphoblastoid cell lines transformed by Epstein-Barr virus. Cancer Res 2004; 64:3361-4. [PMID: 15150084 DOI: 10.1158/0008-5472.can-04-0079] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Epstein-Barr virus (EBV) is closely associated with the generation of various tumors, including Burkitt's lymphoma. Human resting B cells from peripheral blood are easily transformed by EBV to actively proliferating B-lymphoblastoid cell lines (LCLs). These LCLs with normal diploid karyotypes have been believed to be "immortal", without becoming tumorigenic. A series of recent studies, however, indicate that this initial, simple concept needs extensive reconsideration. Most LCLs from normal individuals are mortal because their telomeres shorten. Some LCLs are truly immortalized by developing strong telomerase activity and aneuploidy, accompanied by various other changes: down-regulation of p16/Rb; mutation of the p53 gene; modulation of apoptosis; and sensitivity to various chemical agents. Some post-immortal LCLs additionally develop the ability to form colonies in agarose and even become tumorigenic by developing the ability to grow in nude mice. The genetic background of LCLs markedly affects the frequency of immortalization. In summary, changes of B cells after infection by EBV are roughly divided into two steps: (a) transformation of B cells into LCLs caused by EBV proteins; and (b) immortalization and tumorigenesis of LCLs mainly regulated by the factors of host cells in cooperation with EBV proteins. The new concept as reviewed here is essential for the future study of tumorigenesis by EBV.
Collapse
|
87
|
Sharma S, Sommers JA, Brosh RM. In vivo function of the conserved non-catalytic domain of Werner syndrome helicase in DNA replication. Hum Mol Genet 2004; 13:2247-61. [PMID: 15282207 DOI: 10.1093/hmg/ddh234] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Werner syndrome is a genetic disorder characterized by genomic instability, elevated recombination and replication defects. The WRN gene encodes a RecQ helicase whose function(s) in cellular DNA metabolism is not well understood. To investigate the role of WRN in replication, we examined its ability to rescue cellular phenotypes of a yeast dna2 mutant defective in a helicase-endonuclease that participates with flap endonuclease 1 (FEN-1) in Okazaki fragment processing. Genetic complementation studies indicate that human WRN rescues dna2-1 mutant phenotypes of growth, cell cycle arrest and sensitivity to the replication inhibitor hydroxyurea or DNA damaging agent methylmethane sulfonate. A conserved non-catalytic C-terminal domain of WRN was sufficient for genetic rescue of dna2-1 mutant phenotypes. WRN and yeast FEN-1 were reciprocally co-immunoprecipitated from extracts of transformed dna2-1 cells. A physical interaction between yeast FEN-1 and WRN is demonstrated by yeast FEN-1 affinity pull-down experiments using transformed dna2-1 cells extracts and by ELISA assays with purified recombinant proteins. Biochemical analyses demonstrate that the C-terminal domain of WRN or BLM stimulates FEN-1 cleavage of its proposed physiological substrates during replication. Collectively, the results suggest that the WRN-FEN-1 interaction is biologically important in DNA metabolism and are consistent with a role of the conserved non-catalytic domain of a human RecQ helicase in DNA replication intermediate processing.
Collapse
Affiliation(s)
- Sudha Sharma
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, 5600 Nathan Shock Drive, Baltimore, Maryland 21224, USA
| | | | | |
Collapse
|
88
|
Sugimoto M, Tahara H, Okubo M, Kobayashi T, Goto M, Ide T, Furuichi Y. WRN gene and other genetic factors affecting immortalization of human B-lymphoblastoid cell lines transformed by Epstein-Barr virus. ACTA ACUST UNITED AC 2004; 152:95-100. [PMID: 15262425 DOI: 10.1016/j.cancergencyto.2003.11.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2003] [Revised: 11/12/2003] [Accepted: 11/13/2003] [Indexed: 11/24/2022]
Abstract
The immortalization of human B-lymphoblastoid cell lines (LCL) transformed by Epstein-Barr virus (EBV) is accompanied by two major events: increase in telomerase activity and change in karyotype from normal diploid to aneuploidy. We investigated the effect of genetic factors on the incidence of immortalization by putting old and new data together to collect enough samples for statistical analysis. Among 50 LCL from normal individuals, 5 LCL (10.0%) were immortalized and the remaining 45 LCL were mortal. None of the 44 LCL (0%; P < 0.031 against normal individuals by chi square test) from patients having Werner syndrome (WS), a recessive genetic disorder showing premature aging, were immortalized. Among 11 LCL from a family with a tendency to have hereditary type 2 diabetes mellitus, 5 LCL (45.5%; P < 0.0040 against normal individuals, P < 0.00001 against WS patients) were immortalized. Duplicated measurements of the lifespan of 33 LCL showed a good coincidence (r=0.785) between the first and second estimations, indicating that each mortal LCL has a predetermined lifespan. These results strongly suggest that the normal WRN gene, the causative gene of WS, is essential for LCL to immortalize, and genetic factor(s) of a family having diabetes mellitus increases immortalization, implicating that host genetic factors affect immortalization of EBV and probably carcinogenesis by EBV.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Aged, 80 and over
- Aging, Premature/pathology
- Aging, Premature/virology
- B-Lymphocytes/virology
- Cell Transformation, Viral
- Cells, Cultured
- Child
- Child, Preschool
- DNA Helicases/genetics
- DNA Helicases/metabolism
- Diabetes Mellitus, Type 2/pathology
- Diabetes Mellitus, Type 2/virology
- Exodeoxyribonucleases
- Female
- Genetic Markers/physiology
- Herpesvirus 4, Human/physiology
- Humans
- Infant, Newborn
- Male
- Middle Aged
- Pedigree
- RecQ Helicases
- Telomerase/metabolism
- Telomere/genetics
- Werner Syndrome/pathology
- Werner Syndrome/virology
- Werner Syndrome Helicase
Collapse
Affiliation(s)
- Masanobu Sugimoto
- GeneCare Research Institute, 200 Kajiwara, Kamakura, Kanagawa 247-0063, Japan.
| | | | | | | | | | | | | |
Collapse
|
89
|
Davies SL, North PS, Dart A, Lakin ND, Hickson ID. Phosphorylation of the Bloom's syndrome helicase and its role in recovery from S-phase arrest. Mol Cell Biol 2004; 24:1279-91. [PMID: 14729972 PMCID: PMC321429 DOI: 10.1128/mcb.24.3.1279-1291.2004] [Citation(s) in RCA: 165] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bloom's syndrome (BS) is a human genetic disorder associated with cancer predisposition. The BS gene product, BLM, is a member of the RecQ helicase family, which is required for the maintenance of genome stability in all organisms. In budding and fission yeasts, loss of RecQ helicase function confers sensitivity to inhibitors of DNA replication, such as hydroxyurea (HU), by failure to execute normal cell cycle progression following recovery from such an S-phase arrest. We have examined the role of the human BLM protein in recovery from S-phase arrest mediated by HU and have probed whether the stress-activated ATR kinase, which functions in checkpoint signaling during S-phase arrest, plays a role in the regulation of BLM function. We show that, consistent with a role for BLM in protection of human cells against the toxicity associated with arrest of DNA replication, BS cells are hypersensitive to HU. BLM physically associates with ATR (ataxia telangiectasia and rad3(+) related) protein and is phosphorylated on two residues in the N-terminal domain, Thr-99 and Thr-122, by this kinase. Moreover, BS cells ectopically expressing a BLM protein containing phosphorylation-resistant T99A/T122A substitutions fail to adequately recover from an HU-induced replication blockade, and the cells subsequently arrest at a caffeine-sensitive G(2)/M checkpoint. These abnormalities are not associated with a failure of the BLM-T99A/T122A protein to localize to replication foci or to colocalize either with ATR itself or with other proteins that are required for response to DNA damage, such as phosphorylated histone H2AX and RAD51. Our data indicate that RecQ helicases play a conserved role in recovery from perturbations in DNA replication and are consistent with a model in which RecQ helicases act to restore productive DNA replication following S-phase arrest and hence prevent subsequent genomic instability.
Collapse
Affiliation(s)
- Sally L Davies
- Cancer Research UK Laboratories, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, United Kingdom
| | | | | | | | | |
Collapse
|
90
|
Onclercq-Delic R, Calsou P, Delteil C, Salles B, Papadopoulo D, Amor-Guéret M. Possible anti-recombinogenic role of Bloom's syndrome helicase in double-strand break processing. Nucleic Acids Res 2003; 31:6272-82. [PMID: 14576316 PMCID: PMC275476 DOI: 10.1093/nar/gkg834] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Bloom's syndrome (BS) which associates genetic instability and predisposition to cancer is caused by mutations in the BLM gene encoding a RecQ family 3'-5' DNA helicase. It has been proposed that the generation of genetic instability in BS cells could result from an aberrant non-homologous DNA end joining (NHEJ), one of the two main DNA double-strand break (DSB) repair pathways in mammalian cells, the second major pathway being homologous recombination (HR). Using cell extracts, we report first that Ku70/80 and the catalytic subunit of the DNA-dependent protein kinase (DNA-PKcs), key factors of the end-joining machinery, and BLM are located in close proximity on DNA and that BLM binds to DNA only in the absence of ATP. In the presence of ATP, BLM is phosphorylated and dissociates from DNA in a strictly DNA-PKcs-dependent manner. We also show that BS cells display, in vivo, an accurate joining of DSBs, reflecting thus a functional NHEJ pathway. In sharp contrast, a 5-fold increase of the HR-mediated DNA DSB repair in BS cells was observed. These results support a model in which NHEJ activation mediates BLM dissociation from DNA, whereas, under conditions where HR is favored, e.g. at the replication fork, BLM exhibits an anti-recombinogenic role.
Collapse
Affiliation(s)
- Rosine Onclercq-Delic
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8126, Institut Gustave Roussy, 39 Rue Camille Desmoulins, 94805 Villejuif Cedex, France
| | | | | | | | | | | |
Collapse
|
91
|
Bachrati CZ, Hickson ID. RecQ helicases: suppressors of tumorigenesis and premature aging. Biochem J 2003; 374:577-606. [PMID: 12803543 PMCID: PMC1223634 DOI: 10.1042/bj20030491] [Citation(s) in RCA: 297] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2003] [Revised: 06/10/2003] [Accepted: 06/12/2003] [Indexed: 02/04/2023]
Abstract
The RecQ helicases represent a subfamily of DNA helicases that are highly conserved in evolution. Loss of RecQ helicase function leads to a breakdown in the maintenance of genome integrity, in particular hyper-recombination. Germ-line defects in three of the five known human RecQ helicases give rise to defined genetic disorders associated with cancer predisposition and/or premature aging. These are Bloom's syndrome, Werner's syndrome and Rothmund-Thomson syndrome, which are caused by defects in the genes BLM, WRN and RECQ4 respectively. Here we review the properties of RecQ helicases in organisms from bacteria to humans, with an emphasis on the biochemical functions of these enzymes and the range of protein partners that they operate with. We will discuss models in which RecQ helicases are required to protect against replication fork demise, either through prevention of fork breakdown or restoration of productive DNA synthesis.
Collapse
Affiliation(s)
- Csanád Z Bachrati
- Cancer Research UK Laboratories, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | | |
Collapse
|
92
|
Chen L, Huang S, Lee L, Davalos A, Schiestl RH, Campisi J, Oshima J. WRN, the protein deficient in Werner syndrome, plays a critical structural role in optimizing DNA repair. Aging Cell 2003; 2:191-9. [PMID: 12934712 DOI: 10.1046/j.1474-9728.2003.00052.x] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Werner syndrome (WS) predisposes patients to cancer and premature aging, owing to mutations in WRN. The WRN protein is a RECQ-like helicase and is thought to participate in DNA double-strand break (DSB) repair by non-homologous end joining (NHEJ) or homologous recombination (HR). It has been previously shown that non-homologous DNA ends develop extensive deletions during repair in WS cells, and that this WS phenotype was complemented by wild-type (wt) WRN. WRN possesses both 3' --> 5' exonuclease and 3' --> 5' helicase activities. To determine the relative contributions of each of these distinct enzymatic activities to DSB repair, we examined NHEJ and HR in WS cells (WRN-/-) complemented with either wtWRN, exonuclease-defective WRN (E-), helicase-defective WRN (H-) or exonuclease/helicase-defective WRN (E-H-). The single E-and H- mutants each partially complemented the NHEJ abnormality of WRN-/- cells. Strikingly, the E-H- double mutant complemented the WS deficiency nearly as efficiently as did wtWRN. Similarly, the double mutant complemented the moderate HR deficiency of WS cells nearly as well as did wtWRN, whereas the E- and H- single mutants increased HR to levels higher than those restored by either E-H- or wtWRN. These results suggest that balanced exonuclease and helicase activities of WRN are required for optimal HR. Moreover, WRN appears to play a structural role, independent of its enzymatic activities, in optimizing HR and efficient NHEJ repair. Another human RECQ helicase, BLM, suppressed HR but had little or no effect on NHEJ, suggesting that mammalian RECQ helicases have distinct functions that can finely regulate recombination events.
Collapse
Affiliation(s)
- Lishan Chen
- Department of Pathology, University of Washington, Seattle, WA 98195-7470, USA
| | | | | | | | | | | | | |
Collapse
|
93
|
Abstract
RecQ family DNA helicases are defined as proteins sharing a homologous region with Escherichia coli RecQ and are basically regarded as enzymes involved in recombination. Humans have five RecQ family members, and deficiencies in three of them, BLM, WRN, and RTS, cause Bloom's, Werner's, and Rothmund-Thomson syndromes, respectively, each characterized by genomic instability and cancer predisposition. In this context, an important function of the RecQ homologs appears to be the unwinding of intermediates of recombination, thereby preventing its uncontrolled execution. As a consequence, their deficiencies give rise to elevated levels of recombination (the hyper-recombination phenotype), which result in chromosomal aberrations including loss of heterozygosity, a common chromosomal change associated with malignancies. Thus, those helicases qualify as caretaker-type tumor suppressor proteins. In addition, BLM and WRN deficiencies have been shown to attenuate p53-mediated apoptosis, suggesting that they also belong to the gatekeeper class of tumor suppressor proteins.
Collapse
Affiliation(s)
- Hiroaki Nakayama
- Kyushu University (Emeritus), Hakozaki 6-10-1, Higashi-ku, Fukuoka 812-8581, Japan.
| |
Collapse
|
94
|
Abstract
The faithful replication of the genome is essential for the survival of all organisms. It is not surprising therefore that numerous mechanisms have evolved to ensure that duplication of the genome occurs with only minimal risk of mutation induction. One mechanism of genome destabilization is replication fork demise, which can occur when a translocating fork meets a lesion or adduct in the template. Indeed, the collapse of replication forks has been suggested to occur in every replicative cell cycle making this a potentially significant problem for all proliferating cells. The RecQ helicases, which are essential for the maintenance of genome stability, are thought to function during DNA replication. In particular, RecQ helicase mutants display replication defects and have phenotypes consistent with an inability to efficiently reinitiate replication following replication fork demise. Here, we review some current models for how replication fork repair might be effected, and discuss potential roles for RecQ helicases in this process.
Collapse
Affiliation(s)
- Leonard Wu
- Cancer Research UK Laboratories, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | | |
Collapse
|
95
|
Abstract
The genes for several genetic skin diseases have been identified in recent years. This development improves diagnostic capabilities and genetic counseling, and investigators can now turn to the molecular mechanisms involved in the pathogenesis of these diseases. The identification of the causative genes has led to the generation of mouse models for some genetic skin diseases. A study of the keratin 10 deficient mouse, a model for epidermolytic hyperkeratosis, and a mouse model for Bloom syndrome are reviewed in this article. Several studies also evaluate the relation between genotype and phenotype. In this article, the clinical findings and molecular advances in tuberous sclerosis complex, neurofibromatosis type 1, Bloom syndrome, epidermolytic hyperkeratosis, X-linked ichthyosis, Netherton syndrome, and Hermansky-Pudlak syndrome are reviewed.
Collapse
Affiliation(s)
- Dawn H Siegel
- Department of Dermatology, University of California, San Francisco, California, USA.
| | | |
Collapse
|
96
|
Wang XW, Tseng A, Ellis NA, Spillare EA, Linke SP, Robles AI, Seker H, Yang Q, Hu P, Beresten S, Bemmels NA, Garfield S, Harris CC. Functional interaction of p53 and BLM DNA helicase in apoptosis. J Biol Chem 2001; 276:32948-55. [PMID: 11399766 DOI: 10.1074/jbc.m103298200] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The Bloom syndrome (BS) protein, BLM, is a member of the RecQ DNA helicase family that also includes the Werner syndrome protein, WRN. Inherited mutations in these proteins are associated with cancer predisposition of these patients. We recently discovered that cells from Werner syndrome patients displayed a deficiency in p53-mediated apoptosis and WRN binds to p53. Here, we report that analogous to WRN, BLM also binds to p53 in vivo and in vitro, and the C-terminal domain of p53 is responsible for the interaction. p53-mediated apoptosis is defective in BS fibroblasts and can be rescued by expression of the normal BLM gene. Moreover, lymphoblastoid cell lines (LCLs) derived from BS donors are resistant to both gamma-radiation and doxorubicin-induced cell killing, and sensitivity can be restored by the stable expression of normal BLM. In contrast, BS cells have a normal Fas-mediated apoptosis, and in response to DNA damage normal accumulation of p53, normal induction of p53 responsive genes, and normal G(1)-S and G(2)-M cell cycle arrest. BLM localizes to nuclear foci referred to as PML nuclear bodies (NBs). Cells from Li-Fraumeni syndrome patients carrying p53 germline mutations and LCLs lacking a functional p53 have a decreased accumulation of BLM in NBs, whereas isogenic lines with functional p53 exhibit normal accumulation. Certain BLM mutants (C1055S or Delta133-237) that have a reduced ability to localize to the NBs when expressed in normal cells can impair the localization of wild type BLM to NBs and block p53-mediated apoptosis, suggesting a dominant-negative effect. Taken together, our results indicate both a novel mechanism of p53 function by which p53 mediates nuclear trafficking of BLM to NBs and the cooperation of p53 and BLM to induce apoptosis.
Collapse
Affiliation(s)
- X W Wang
- Laboratory of Human Carcinogenesis, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Kaneko H, Morimoto W, Fukao T, Kasahara K, Kondo N. Telomerase activity in cell lines and lymphoma originating from Bloom syndrome. Leuk Lymphoma 2001; 42:757-60. [PMID: 11697506 DOI: 10.3109/10428190109099338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Bloom syndrome (BS) is characterized by premature aging and high predisposition to various types of cancer. BLM is the causative gene for BS. BLM functions as a DNA helicase in the direction of 3' to 5' and small subsets of telomeres colocalize with BLM protein. We investigated telomerase activity and telomere repeat length in the cells from BS patients. In Epstein-Barr-virus (EBV) transformed lymphoblastoid cell lines and lymphoma cells from BS patients, telomerase activity was detected as in the control and compared. The metastatic tumor from BS patient, which had a 9-bp deletion of p53 DNA showed the strongest telomerase activity. Telomere repeat length in BS cells showed that there is no large difference compared with normal cells. Collectively, the results show that the BLM gene is not a major structural and regulatory factor in maintaining telomere repeat length and telomerase activity.
Collapse
Affiliation(s)
- H Kaneko
- Department of Pediatrics, Gifu University School of Medicine, Japan.
| | | | | | | | | |
Collapse
|
98
|
Furuichi Y. Premature aging and predisposition to cancers caused by mutations in RecQ family helicases. Ann N Y Acad Sci 2001; 928:121-31. [PMID: 11795503 DOI: 10.1111/j.1749-6632.2001.tb05642.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
DNA helicases, because they unwind duplex DNA, have important roles in cellular DNA events such as replication, recombination, repair, and transcription. Multiple DNA helicase families with seven consensus motifs have been found, and members within each helicase family also share sequence homologies between motifs. The RecQ helicase family includes helicases that have extensive amino acid sequence homologies to the E. coli DNA helicase RecQ, which has been implicated in double-strand break repair and suppression of illegitimate recombination. To date, five RecQ helicase species exist in humans, but their exact biological functions remain unknown. In this paper, on the basis of five years of work, I overview the updated molecular biology of five human RecQ helicases; genetic diseases such as Werner's, Bloom's, and Rothmund-Thomson's syndromes caused by helicase mutations; the associated premature aging phenotype; and an increased risk of neoplasms. I also describe a hypothesis of "tissue-specific genomic instability" that accounts for the pathology behind multisymptomatic RecQ helicase syndromes.
Collapse
Affiliation(s)
- Y Furuichi
- AGENE Research Institute, Kamakura, Japan.
| |
Collapse
|