51
|
Ranjbar S, Rahbarizadeh F, Ahmadvand D. Designing an ELP-intein system: toward a more realistic outlook. Prep Biochem Biotechnol 2019; 49:222-229. [PMID: 30806151 DOI: 10.1080/10826068.2018.1509087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Despite the ever-growing demand for proteins in pharmaceutical applications, downstream processing imposes many technical and economic limitations to recombinant technology. Elastin-like polypeptides tend to aggregate reversibly at a specific temperature. These biopolymers have been joined with self-cleaving inteins to develop a non-chromatographic platform for protein purification without the need for expensive enzymatic tag removal. Following the design and expression of an ELP-intein-tagged GFP, herein, we report certain complications and setbacks associated with this protein purification system, overlooked in previous studies. Based on our results, a recovery rate of 68% was achieved using inverse transition cycling. Fluorescence intensity analysis indicated a production yield of 11 mg GFP fusion protein per liter of bacterial culture. The low expression level is attributable to several factors, such as irreversible aggregation, slipped-strand mispairing or insufficiency of aminoacyl tRNAs during protein translation of the highly repetitive ELP tag. While the goals we set out to achieve were not entirely met, a number of useful tips could be gathered as a generic means for implementing ELP-intein protein purification. Overall, we believe that such reports help clarify the exact capacity of emerging techniques and build a fairly realistic prospect toward their application.
Collapse
Affiliation(s)
- Saeed Ranjbar
- a Department of Medical Biotechnology, Faculty of Medical Sciences , Tarbiat Modares University , Tehran , Iran
| | - Fatemeh Rahbarizadeh
- a Department of Medical Biotechnology, Faculty of Medical Sciences , Tarbiat Modares University , Tehran , Iran
| | - Davoud Ahmadvand
- b Department of Medical Laboratoty Sciences , Faculty of Allied Medicine, Iran University of Medical Sciences , Tehran , Iran.,c Neuroscience Research Center , Iran University of Medical Sciences , Tehran , Iran
| |
Collapse
|
52
|
Abstract
Genome organization and subnuclear protein localization are essential for normal cellular function and have been implicated in the control of gene expression, DNA replication, and genomic stability. The coupling of chromatin conformation capture (3C), chromatin immunoprecipitation and sequencing, and related techniques have continuously improved our understanding of genome architecture. To profile site-specifically DNA-associated proteins in a high-throughput and unbiased manner, the RNA-programmable CRISPR-Cas9 platform has recently been combined with an enzymatic labeling system to allow proteomic landscapes at repetitive and nonrepetitive loci to be defined with unprecedented ease and resolution. In this chapter, we describe the dCas9-APEX2 experimental approach for specifically targeting a DNA sequence, enzymatically labeling local proteins with biotin, and quantitatively analyzing the labeled proteome. We also discuss the optimization and extension of this pipeline to facilitate its use in understanding nuclear and chromosome biology.
Collapse
Affiliation(s)
- Xin D Gao
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, United States
| | - Tomás C Rodríguez
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, United States
| | - Erik J Sontheimer
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, United States.
| |
Collapse
|
53
|
Tran TT, Doucouré H, Hutin M, Jaimes Niño LM, Szurek B, Cunnac S, Koebnik R. Efficient enrichment cloning of TAL effector genes from Xanthomonas. MethodsX 2018; 5:1027-1032. [PMID: 30225203 PMCID: PMC6138780 DOI: 10.1016/j.mex.2018.08.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 08/31/2018] [Indexed: 11/29/2022] Open
Abstract
Many plant-pathogenic xanthomonads use a type III secretion system to translocate Transcription Activator-Like (TAL) effectors into eukaryotic host cells where they act as transcription factors. Target genes are induced upon binding of a TAL effector to double-stranded DNA in a sequence-specific manner. DNA binding is governed by a highly repetitive protein domain, which consists of an array of nearly identical repeats of ca. 102 base pairs. Many species and pathovars of Xanthomonas, including pathogens of rice, cereals, cassava, citrus and cotton, encode multiple TAL effectors in their genomes. Some of the TAL effectors have been shown to act as key pathogenicity factors, which induce the expression of susceptibility genes to the benefit of the pathogen. However, due to the repetitive character and the presence of multiple gene copies, high-throughput cloning of TAL effector genes remains a challenge. In order to isolate complete TAL effector gene repertoires, we developed an enrichment cloning strategy based on •genome-informed in silico optimization of restriction digestions,•selective restriction digestion of genomic DNA, and•size fractionation of DNA fragments. Our rapid, cheap and powerful method allows efficient cloning of TAL effector genes from xanthomonads, as demonstrated for two rice-pathogenic strains of Xanthomonas oryzae from Africa.
Collapse
Affiliation(s)
- T T Tran
- IRD, Cirad, Univ. Montpellier, IPME, Montpellier, France
| | - H Doucouré
- IRD, Cirad, Univ. Montpellier, IPME, Montpellier, France
| | - M Hutin
- IRD, Cirad, Univ. Montpellier, IPME, Montpellier, France
| | | | - B Szurek
- IRD, Cirad, Univ. Montpellier, IPME, Montpellier, France
| | - S Cunnac
- IRD, Cirad, Univ. Montpellier, IPME, Montpellier, France
| | - R Koebnik
- IRD, Cirad, Univ. Montpellier, IPME, Montpellier, France
| |
Collapse
|
54
|
Matsuo Y, Yamanaka A, Matsuo R. RFamidergic neurons in the olfactory centers of the terrestrial slug Limax. ZOOLOGICAL LETTERS 2018; 4:22. [PMID: 30116553 PMCID: PMC6085721 DOI: 10.1186/s40851-018-0108-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 07/31/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND The terrestrial slug Limax has long been used as a model for the study of olfactory information processing and odor learning. Olfactory inputs from the olfactory epithelium are processed in the tentacular ganglion and then in the procerebrum. Glutamate and acetylcholine are the major neurotransmitters used in the procerebrum. Phe-Met-Arg-Phe-NH2 (FMRFamide) has been shown to be involved in the regulation of the network activity of the procerebrum. Although there are thought to be various RFamide family peptides other than FMRFamide that are potentially recognized by anti-FMRFamide antibody in the central nervous system of mollusks, identifying the entire repertoire of RFamide peptides in Limax has yet to be achieved. METHODS In the present study, we made a comprehensive search for RFamide peptide-encoding genes from the transcriptome data of Limax, and identified 12 genes. The expression maps of these RFamide genes were constructed by in situ hybridization in the cerebral ganglia including the procerebrum, and in the superior/inferior tentacles. RESULTS Ten of 12 genes were expressed in the procerebrum, and nine of 12 genes were expressed in the tentacular ganglia. Gly-Ser-Leu-Phe-Arg-Phe-NH2 (GSLFRFamide), which is encoded by two different genes, LFRFamide1 (Leu-Phe-Arg-Phe-NH2-1) and LFRFamide2 (Leu-Phe-Arg-Phe-NH2-2), decreased the oscillatory frequency of the local field potential oscillation in the procerebrum when exogenously applied in vitro. We also found by immunohistochemistry that the neurons expressing pedal peptide send efferent projections from the procerebrum back to the tentacular ganglion. CONCLUSION Our findings suggest the involvement of a far wider variety of RFamide family peptides in the olfactory information processing in Limax than previously thought.
Collapse
Affiliation(s)
- Yuko Matsuo
- Laboratory of Neurobiology, International College of Arts and Sciences, Fukuoka Women’s University, 1-1-1 Kasumigaoka, Higashi-ku, Fukuoka, 813-8529 Japan
| | - Amami Yamanaka
- Laboratory of Neurobiology, International College of Arts and Sciences, Fukuoka Women’s University, 1-1-1 Kasumigaoka, Higashi-ku, Fukuoka, 813-8529 Japan
| | - Ryota Matsuo
- Laboratory of Neurobiology, International College of Arts and Sciences, Fukuoka Women’s University, 1-1-1 Kasumigaoka, Higashi-ku, Fukuoka, 813-8529 Japan
| |
Collapse
|
55
|
Erkes A, Reschke M, Boch J, Grau J. Evolution of Transcription Activator-Like Effectors in Xanthomonas oryzae. Genome Biol Evol 2018. [PMID: 28637323 PMCID: PMC5512977 DOI: 10.1093/gbe/evx108] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Transcription activator-like effectors (TALEs) are secreted by plant–pathogenic Xanthomonas bacteria into plant cells where they act as transcriptional activators and, hence, are major drivers in reprogramming the plant for the benefit of the pathogen. TALEs possess a highly repetitive DNA-binding domain of typically 34 amino acid (AA) tandem repeats, where AA 12 and 13, termed repeat variable di-residue (RVD), determine target specificity. Different Xanthomonas strains possess different repertoires of TALEs. Here, we study the evolution of TALEs from the level of RVDs determining target specificity down to the level of DNA sequence with focus on rice-pathogenic Xanthomonas oryzae pv. oryzae (Xoo) and Xanthomonas oryzae pv. oryzicola (Xoc) strains. We observe that codon pairs coding for individual RVDs are conserved to a similar degree as the flanking repeat sequence. We find strong indications that TALEs may evolve 1) by base substitutions in codon pairs coding for RVDs, 2) by recombination of N-terminal or C-terminal regions of existing TALEs, or 3) by deletion of individual TALE repeats, and we propose possible mechanisms. We find indications that the reassortment of TALE genes in clusters is mediated by an integron-like mechanism in Xoc. We finally study the effect of the presence/absence and evolutionary modifications of TALEs on transcriptional activation of putative target genes in rice, and find that even single RVD swaps may lead to considerable differences in activation. This correlation allowed a refined prediction of TALE targets, which is the crucial step to decipher their virulence activity.
Collapse
Affiliation(s)
- Annett Erkes
- Institute of Computer Science, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Maik Reschke
- Department of Plant Biotechnology, Leibniz Universität Hannover, Germany
| | - Jens Boch
- Department of Plant Biotechnology, Leibniz Universität Hannover, Germany
| | - Jan Grau
- Institute of Computer Science, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
56
|
Rajaraman S, Antani SK, Poostchi M, Silamut K, Hossain MA, Maude RJ, Jaeger S, Thoma GR. Pre-trained convolutional neural networks as feature extractors toward improved malaria parasite detection in thin blood smear images. PeerJ 2018; 6:e4568. [PMID: 29682411 PMCID: PMC5907772 DOI: 10.7717/peerj.4568] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 03/13/2018] [Indexed: 01/14/2023] Open
Abstract
Malaria is a blood disease caused by the Plasmodium parasites transmitted through the bite of female Anopheles mosquito. Microscopists commonly examine thick and thin blood smears to diagnose disease and compute parasitemia. However, their accuracy depends on smear quality and expertise in classifying and counting parasitized and uninfected cells. Such an examination could be arduous for large-scale diagnoses resulting in poor quality. State-of-the-art image-analysis based computer-aided diagnosis (CADx) methods using machine learning (ML) techniques, applied to microscopic images of the smears using hand-engineered features demand expertise in analyzing morphological, textural, and positional variations of the region of interest (ROI). In contrast, Convolutional Neural Networks (CNN), a class of deep learning (DL) models promise highly scalable and superior results with end-to-end feature extraction and classification. Automated malaria screening using DL techniques could, therefore, serve as an effective diagnostic aid. In this study, we evaluate the performance of pre-trained CNN based DL models as feature extractors toward classifying parasitized and uninfected cells to aid in improved disease screening. We experimentally determine the optimal model layers for feature extraction from the underlying data. Statistical validation of the results demonstrates the use of pre-trained CNNs as a promising tool for feature extraction for this purpose.
Collapse
Affiliation(s)
- Sivaramakrishnan Rajaraman
- Lister Hill National Center for Biomedical Communications, National Library of Medicine, Bethesda, MD, United States of America
| | - Sameer K. Antani
- Lister Hill National Center for Biomedical Communications, National Library of Medicine, Bethesda, MD, United States of America
| | - Mahdieh Poostchi
- Lister Hill National Center for Biomedical Communications, National Library of Medicine, Bethesda, MD, United States of America
| | - Kamolrat Silamut
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | - Md. A. Hossain
- Department of Medicine, Chittagong Medical Hospital, Chittagong, Bangladesh
| | - Richard J. Maude
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Harvard TH Chan School of Public Health, Harvard University, Boston, MA, United States of America
| | - Stefan Jaeger
- Lister Hill National Center for Biomedical Communications, National Library of Medicine, Bethesda, MD, United States of America
| | - George R. Thoma
- Lister Hill National Center for Biomedical Communications, National Library of Medicine, Bethesda, MD, United States of America
| |
Collapse
|
57
|
Ratnayake D, Newman M, Lardelli M. Degenerate codon mixing for PCR-based manipulation of highly repetitive sequences. BMC Res Notes 2018; 11:202. [PMID: 29587822 PMCID: PMC5870680 DOI: 10.1186/s13104-018-3298-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 03/20/2018] [Indexed: 11/24/2022] Open
Abstract
Objective Repeat expansion of polyglutamine tracks leads to a group of inherited human neurodegenerative disorders. Studying such repetitive sequences is required to gain insight into the pathophysiology of these diseases. PCR-based manipulation of repetitive sequences, however, is challenging due to the absence of unique primer binding sites or the generation of non-specific products. Results We have utilised the degeneracy of the genetic code to generate a polyglutamine sequence with low repeat similarity. This strategy allowed us to use conventional PCR to generate multiple constructs with approximately defined numbers of glutamine repeats. We then used these constructs to measure the in vivo variation in autophagic degradation activity related to the different numbers of glutamine repeats, providing an example of their applicability to study repeat expansion diseases. Our simple and easily generalised method of generating low repetition DNA sequences coding for uniform stretches of amino acid residues provides a strategy for generating particular lengths of polyglutamine tracts using standard PCR and cloning protocols. Electronic supplementary material The online version of this article (10.1186/s13104-018-3298-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dhanushika Ratnayake
- School of Biological Sciences, Alzheimer's Disease Genetics Laboratory, University of Adelaide, North Terrace, Adelaide, SA, 5005, Australia.,Australian Regenerative Medicine Institute, Monash University, Wellington Road, Clayton, 3800, Australia
| | - Morgan Newman
- School of Biological Sciences, Alzheimer's Disease Genetics Laboratory, University of Adelaide, North Terrace, Adelaide, SA, 5005, Australia
| | - Michael Lardelli
- School of Biological Sciences, Alzheimer's Disease Genetics Laboratory, University of Adelaide, North Terrace, Adelaide, SA, 5005, Australia.
| |
Collapse
|
58
|
Dhatterwal P, Mehrotra S, Mehrotra R. Optimization of PCR conditions for amplifying an AT-rich amino acid transporter promoter sequence with high number of tandem repeats from Arabidopsis thaliana. BMC Res Notes 2017; 10:638. [PMID: 29183338 PMCID: PMC5706289 DOI: 10.1186/s13104-017-2982-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 11/22/2017] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE The aim of the present study is to optimize the PCR conditions required to amplify the promoter sequence of an amino acid transporter having an AT-rich base composition with a high number of tandem repeats. RESULT Results show that successful amplification can be achieved by performing a 2-step PCR at a lower extension temperature of 65 °C for an increased extension period of 1.5 min/kb, with MgCl2 concentration ranging from 2.5 to 3.0 mM. The results also suggest that the DNA concentration of about 25-30 ng/µl was essential to achieve this amplification.
Collapse
Affiliation(s)
- Pinky Dhatterwal
- Department of Biological Sciences, Birla Institute of Technology & Sciences, Pilani, Rajasthan, 333031, India
| | - Sandhya Mehrotra
- Department of Biological Sciences, Birla Institute of Technology & Sciences, Pilani, Rajasthan, 333031, India.
| | - Rajesh Mehrotra
- Department of Biological Sciences, Birla Institute of Technology & Sciences, Pilani, Rajasthan, 333031, India.
| |
Collapse
|
59
|
Ulfstedt M, Hu GZ, Johansson M, Ronne H. Testing of Auxotrophic Selection Markers for Use in the Moss Physcomitrella Provides New Insights into the Mechanisms of Targeted Recombination. FRONTIERS IN PLANT SCIENCE 2017; 8:1850. [PMID: 29163580 PMCID: PMC5675891 DOI: 10.3389/fpls.2017.01850] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 10/11/2017] [Indexed: 05/30/2023]
Abstract
The moss Physcomitrella patens is unique among plants in that homologous recombination can be used to knock out genes, just like in yeast. Furthermore, transformed plasmids can be rescued from Physcomitrella back into Escherichia coli, similar to yeast. In the present study, we have tested if a third important tool from yeast molecular genetics, auxotrophic selection markers, can be used in Physcomitrella. Two auxotrophic moss strains were made by knocking out the PpHIS3 gene encoding imidazoleglycerol-phosphate dehydratase, and the PpTRP1 gene encoding phosphoribosylanthranilate isomerase, disrupting the biosynthesis of histidine and tryptophan, respectively. The resulting PpHIS3Δ and PpTRP1Δ knockout strains were unable to grow on medium lacking histidine or tryptophan. The PpHIS3Δ strain was used to test selection of transformants by complementation of an auxotrophic marker. We found that the PpHIS3Δ strain could be complemented by transformation with a plasmid expressing the PpHIS3 gene from the CaMV 35S promoter, allowing the strain to grow on medium lacking histidine. Both linearized plasmids and circular supercoiled plasmids could complement the auxotrophic marker, and plasmids from both types of transformants could be rescued back into E. coli. Plasmids rescued from circular transformants were identical to the original plasmid, whereas plasmids rescued from linearized transformants had deletions generated by recombination between micro-homologies in the plasmids. Our results show that cloning by complementation of an auxotrophic marker works in Physcomitrella, which opens the door for using auxotrophic selection markers in moss molecular genetics. This will facilitate the adaptation of shuttle plasmid dependent methods from yeast molecular genetics for use in Physcomitrella.
Collapse
Affiliation(s)
- Mikael Ulfstedt
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Guo-Zhen Hu
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Monika Johansson
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Hans Ronne
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
60
|
HOSSEINI FARASH BR, MOHEBALI M, KAZEMI B, HAJJARAN H, AKHOUNDI B, RAOOFIAN R, FATA A, MOJARRAD M, SHARIFI-YAZDI MK. Cloning of K26 Hydrophilic Antigen from Iranian Strain of Leishmania infantum. IRANIAN JOURNAL OF PUBLIC HEALTH 2017; 46:1359-1365. [PMID: 29308379 PMCID: PMC5750347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
BACKGROUND Visceral leishmaniasis (VL) caused by Leishmania infantum is the most severe form of leishmaniasis in Iran, which causes a high mortality rate in the case of inaccurate diagnosis and treatment. This study aimed to clone of K26 gene from Iranian strain of L. infantum and register the sequencing results in Genbank to facilitate the preparation a new K26 antigen for the detection of L. infantum infection. METHODS L. infantum was obtained from an infected domestic dog in Meshkin-Shahr area from northwestern Iran in 2015. Canine visceral leishmaniasis was confirmed by direct agglutination test (DAT), rK39 dipstick and parasitological methods. L. infantum was confirmed by N-acetyl glucosamine -1-phosphate transferase (nagt)-PCR and its sequencing. The band of interest for k26 form Iranian strain of L. infantum was purified by gel extraction kit after PCR amplification and then ligated into pBluescript II SK (+) and pET-32a (+), respectively. The sequences of recombinant plasmids were analyzed and submitted to Genbank. RESULTS The submission of rk26 nucleotide sequence was performed to the GeneBank/NCBI Data Base under accession number KY212883. The related gene was showed a homology about 99% to L. chagasi and L. infantum k26 gene, while the level of homology in comparison with different strains of L. donovani ranged from 84-94%. CONCLUSION The successful rk26 cloning into an expression vector performed in this study could help to produce a new recombinant antigen for serodiagnosis of VL especially in areas where L. infantum is the main causative agent.
Collapse
Affiliation(s)
- Bibi Razieh HOSSEINI FARASH
- Dept. of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi MOHEBALI
- Dept. of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran,Center for Research of Endemic Parasites of Iran, Tehran University of Medical Sciences, Tehran, Iran,Corresponding Author:
| | - Bahram KAZEMI
- Dept. of Biotechnology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Homa HAJJARAN
- Dept. of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Behnaz AKHOUNDI
- Dept. of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza RAOOFIAN
- Legal Medicine Research Center, Iranian Legal Medicine Organization, Tehran, Iran
| | - Abdolmajid FATA
- Dept. of Medical Parasitology and Mycology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid MOJARRAD
- Dept. of Medical Parasitology and Mycology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | |
Collapse
|
61
|
Van Hove B, Guidi C, De Wannemaeker L, Maertens J, De Mey M. Recursive DNA Assembly Using Protected Oligonucleotide Duplex Assisted Cloning (PODAC). ACS Synth Biol 2017; 6:943-949. [PMID: 28320206 DOI: 10.1021/acssynbio.7b00017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A problem rarely tackled by current DNA assembly methods is the issue of cloning additional parts into an already assembled construct. Costly PCR workflows are often hindered by repeated sequences, and restriction based strategies impose design constraints for each enzyme used. Here we present Protected Oligonucleotide Duplex Assisted Cloning (PODAC), a novel technique that makes use of an oligonucleotide duplex for iterative Golden Gate cloning using only one restriction enzyme. Methylated bases confer protection from digestion during the assembly reaction and are removed during replication in vivo, unveiling a new cloning site in the process. We used this method to efficiently and accurately assemble a biosynthetic pathway and demonstrated its robustness toward sequence repeats by constructing artificial CRISPR arrays. As PODAC is readily amenable to standardization, it would make a useful addition to the synthetic biology toolkit.
Collapse
Affiliation(s)
- Bob Van Hove
- Centre for Synthetic
Biology
(CSB), Department of Biochemical and Microbial Technology, Ghent University, 9000 Ghent, Belgium
| | - Chiara Guidi
- Centre for Synthetic
Biology
(CSB), Department of Biochemical and Microbial Technology, Ghent University, 9000 Ghent, Belgium
| | - Lien De Wannemaeker
- Centre for Synthetic
Biology
(CSB), Department of Biochemical and Microbial Technology, Ghent University, 9000 Ghent, Belgium
| | - Jo Maertens
- Centre for Synthetic
Biology
(CSB), Department of Biochemical and Microbial Technology, Ghent University, 9000 Ghent, Belgium
| | - Marjan De Mey
- Centre for Synthetic
Biology
(CSB), Department of Biochemical and Microbial Technology, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
62
|
Fargašová A, Balzerová A, Prucek R, Sedláková MH, Bogdanová K, Gallo J, Kolář M, Ranc V, Zbořil R. Detection of Prosthetic Joint Infection Based on Magnetically Assisted Surface Enhanced Raman Spectroscopy. Anal Chem 2017; 89:6598-6607. [DOI: 10.1021/acs.analchem.7b00759] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Ariana Fargašová
- Regional
Centre of Advanced Technologies and Materials, Department of Physical
Chemistry, Faculty of Science, Palacký University Olomouc, Šlechtitelů
27, 783 71 Olomouc, Czech Republic
| | - Anna Balzerová
- Regional
Centre of Advanced Technologies and Materials, Department of Physical
Chemistry, Faculty of Science, Palacký University Olomouc, Šlechtitelů
27, 783 71 Olomouc, Czech Republic
| | - Robert Prucek
- Regional
Centre of Advanced Technologies and Materials, Department of Physical
Chemistry, Faculty of Science, Palacký University Olomouc, Šlechtitelů
27, 783 71 Olomouc, Czech Republic
| | - Miroslava Htoutou Sedláková
- Department
of Microbiology, Faculty of Medicine and Dentistry, Palacký University Olomouc, Hněvotínská 3, 775 15 Olomouc, Czech Republic
| | - Kateřina Bogdanová
- Department
of Microbiology, Faculty of Medicine and Dentistry, Palacký University Olomouc, Hněvotínská 3, 775 15 Olomouc, Czech Republic
| | - Jiří Gallo
- Department
of Orthopaedics, Faculty of Medicine and Dentistry, Palacký University Olomouc, I. P. Pavlova 6, 77520 Olomouc, Czech Republic
| | - Milan Kolář
- Department
of Microbiology, Faculty of Medicine and Dentistry, Palacký University Olomouc, Hněvotínská 3, 775 15 Olomouc, Czech Republic
| | - Václav Ranc
- Regional
Centre of Advanced Technologies and Materials, Department of Physical
Chemistry, Faculty of Science, Palacký University Olomouc, Šlechtitelů
27, 783 71 Olomouc, Czech Republic
| | - Radek Zbořil
- Regional
Centre of Advanced Technologies and Materials, Department of Physical
Chemistry, Faculty of Science, Palacký University Olomouc, Šlechtitelů
27, 783 71 Olomouc, Czech Republic
| |
Collapse
|
63
|
Panelli S, Lorusso L, Balestrieri A, Lupo G, Capelli E. XMRV and Public Health: The Retroviral Genome Is Not a Suitable Template for Diagnostic PCR, and Its Association with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome Appears Unreliable. Front Public Health 2017; 5:108. [PMID: 28589117 PMCID: PMC5439170 DOI: 10.3389/fpubh.2017.00108] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 05/02/2017] [Indexed: 11/13/2022] Open
Abstract
A few years ago, a highly significant association between the xenotropic murine leukemia virus-related virus (XMRV) and myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS), a complex debilitating disease of poorly understood etiology and no definite treatment, was reported in Science, raising concern for public welfare. Successively, the failure to reproduce these findings, and the suspect that the diagnostic PCR was vitiated by laboratory contaminations, led to the retraction of the paper. Notwithstanding, XMRV continued to be the subject of researches and public debates. Occasional positivity in humans was also detected recently, even if the data always appeared elusive and non-reproducible. In this study, we discuss the current status of this controversial association and propose that a major role in the unreliability of the results was played by the XMRV genomic composition in itself. In this regard, we present bioinformatic analyses that show: (i) aspecific, spurious annealings of the available primers in multiple homologous sites of the human genome; (ii) strict homologies between whole XMRV genome and interspersed repetitive elements widespread in mammalian genomes. To further detail this scenario, we screen several human and mammalian samples by using both published and newly designed primers. The experimental data confirm that available primers are far from being selective and specific. In conclusion, the occurrence of highly conserved, repeated DNA sequences in the XMRV genome deeply undermines the reliability of diagnostic PCRs by leading to artifactual and spurious amplifications. Together with all the other evidences, this makes the association between the XMRV retrovirus and CFS totally unreliable.
Collapse
Affiliation(s)
- Simona Panelli
- Department of Earth and Environmental Sciences, Section of Animal Biology, University of Pavia, Pavia, Italy.,Centre for Health Technologies (C.H.T.), University of Pavia, Pavia, Italy
| | - Lorenzo Lorusso
- Neurology Unit, A.S.S.T. Franciacorta, Chiari (Brescia), Italy
| | | | - Giuseppe Lupo
- Department of Earth and Environmental Sciences, Section of Animal Biology, University of Pavia, Pavia, Italy.,Centre for Health Technologies (C.H.T.), University of Pavia, Pavia, Italy
| | - Enrica Capelli
- Department of Earth and Environmental Sciences, Section of Animal Biology, University of Pavia, Pavia, Italy.,Centre for Health Technologies (C.H.T.), University of Pavia, Pavia, Italy
| |
Collapse
|
64
|
ThermoAlign: a genome-aware primer design tool for tiled amplicon resequencing. Sci Rep 2017; 7:44437. [PMID: 28300202 PMCID: PMC5353602 DOI: 10.1038/srep44437] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 02/08/2017] [Indexed: 11/21/2022] Open
Abstract
Isolating and sequencing specific regions in a genome is a cornerstone of molecular biology. This has been facilitated by computationally encoding the thermodynamics of DNA hybridization for automated design of hybridization and priming oligonucleotides. However, the repetitive composition of genomes challenges the identification of target-specific oligonucleotides, which limits genetics and genomics research on many species. Here, a tool called ThermoAlign was developed that ensures the design of target-specific primer pairs for DNA amplification. This is achieved by evaluating the thermodynamics of hybridization for full-length oligonucleotide-template alignments — thermoalignments — across the genome to identify primers predicted to bind specifically to the target site. For amplification-based resequencing of regions that cannot be amplified by a single primer pair, a directed graph analysis method is used to identify minimum amplicon tiling paths. Laboratory validation by standard and long-range polymerase chain reaction and amplicon resequencing with maize, one of the most repetitive genomes sequenced to date (≈85% repeat content), demonstrated the specificity-by-design functionality of ThermoAlign. ThermoAlign is released under an open source license and bundled in a dependency-free container for wide distribution. It is anticipated that this tool will facilitate multiple applications in genetics and genomics and be useful in the workflow of high-throughput targeted resequencing studies.
Collapse
|
65
|
de Lange O, Schandry N, Wunderlich M, Berendzen KW, Lahaye T. Exploiting the sequence diversity of TALE-like repeats to vary the strength of dTALE-promoter interactions. Synth Biol (Oxf) 2017; 2:ysx004. [PMID: 32995505 PMCID: PMC7445789 DOI: 10.1093/synbio/ysx004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 06/13/2017] [Accepted: 06/16/2017] [Indexed: 11/13/2022] Open
Abstract
Designer transcription activator-like effectors (dTALEs) are programmable transcription factors used to regulate user-defined promoters. The TALE DNA-binding domain is a tandem series of amino acid repeats that each bind one DNA base. Each repeat is 33-35 amino acids long. A residue in the center of each repeat is responsible for defining DNA base specificity and is referred to as the base specificying residue (BSR). Other repeat residues are termed non-BSRs and can contribute to TALE DNA affinity in a non-base-specific manner. Previous dTALE engineering efforts have focused on BSRs. Non-BSRs have received less attention, perhaps because there is almost no non-BSR sequence diversity in natural TALEs. However, more sequence diverse, TALE-like proteins are found in diverse bacterial clades. Here, we show that natural non-BSR sequence diversity of TALEs and TALE-likes can be used to modify DNA-binding strength in a new form of dTALE repeat array that we term variable sequence TALEs (VarSeTALEs). We generated VarSeTALE repeat modules through random assembly of repeat sequences from different origins, while holding BSR composition, and thus base preference, constant. We used two different VarSeTALE design approaches combing either whole repeats from different TALE-like sources (inter-repeat VarSeTALEs) or repeat subunits corresponding to secondary structural elements (intra-repeat VarSeTALEs). VarSeTALE proteins were assayed in bacteria, plant protoplasts and leaf tissues. In each case, VarSeTALEs activated or repressed promoters with a range of activities. Our results indicate that natural non-BSR diversity can be used to diversify the binding strengths of dTALE repeat arrays while keeping target sequences constant.
Collapse
Affiliation(s)
- Orlando de Lange
- Department of General Genetics, Center for Plant Molecular Biology (ZMBP), Eberhard Karls Universitat Tübingen, Tübingen, Germany
- Department of Electrical Engineering, University of Washington, Seattle, WA, USA
| | - Niklas Schandry
- Department of General Genetics, Center for Plant Molecular Biology (ZMBP), Eberhard Karls Universitat Tübingen, Tübingen, Germany
| | - Markus Wunderlich
- Department of General Genetics, Center for Plant Molecular Biology (ZMBP), Eberhard Karls Universitat Tübingen, Tübingen, Germany
| | - Kenneth Wayne Berendzen
- ZMBP Central Facilities, Center for Plant Molecular Biology (ZMBP), Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Thomas Lahaye
- Department of General Genetics, Center for Plant Molecular Biology (ZMBP), Eberhard Karls Universitat Tübingen, Tübingen, Germany
| |
Collapse
|
66
|
Biasiotto G, Archetti S, Di Lorenzo D, Merola F, Paiardi G, Borroni B, Alberici A, Padovani A, Filosto M, Bonvicini C, Caimi L, Zanella I. A PCR-based protocol to accurately size C9orf72 intermediate-length alleles. Mol Cell Probes 2016; 32:60-64. [PMID: 27765650 DOI: 10.1016/j.mcp.2016.10.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Revised: 10/15/2016] [Accepted: 10/16/2016] [Indexed: 12/13/2022]
Abstract
Although large expansions of the non-coding GGGGCC repeat in C9orf72 gene are clearly defined as pathogenic for Amyotrophic Lateral Sclerosis (ALS) and Frontotemporal Lobar Degeneration (FTLD), intermediate-length expansions have also been associated with those and other neurodegenerative diseases. Intermediate-length allele sizing is complicated by intrinsic properties of current PCR-based methodologies, in that somatic mosaicism could be suspected. We designed a protocol that allows the exact sizing of intermediate-length alleles, as well as the identification of large expansions.
Collapse
Affiliation(s)
- Giorgio Biasiotto
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Biotechnology Laboratory, Department of Diagnostics, Civic Hospital of Brescia, Brescia, Italy
| | - Silvana Archetti
- Biotechnology Laboratory, Department of Diagnostics, Civic Hospital of Brescia, Brescia, Italy
| | - Diego Di Lorenzo
- Biotechnology Laboratory, Department of Diagnostics, Civic Hospital of Brescia, Brescia, Italy
| | - Francesca Merola
- Biotechnology Laboratory, Department of Diagnostics, Civic Hospital of Brescia, Brescia, Italy
| | - Giulia Paiardi
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Biotechnology Laboratory, Department of Diagnostics, Civic Hospital of Brescia, Brescia, Italy
| | - Barbara Borroni
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy; Neurology Unit, Centre for Aging Brain and Neurodegenerative Diseases, Civic Hospital of Brescia, Brescia, Italy
| | - Antonella Alberici
- Neurology Unit, Centre for Aging Brain and Neurodegenerative Diseases, Civic Hospital of Brescia, Brescia, Italy
| | - Alessandro Padovani
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy; Neurology Unit, Centre for Aging Brain and Neurodegenerative Diseases, Civic Hospital of Brescia, Brescia, Italy
| | - Massimiliano Filosto
- Neurology Unit, Centre for Neuromuscular Diseases and Neuropathies, Civic Hospital of Brescia, Brescia, Italy
| | | | - Luigi Caimi
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Biotechnology Laboratory, Department of Diagnostics, Civic Hospital of Brescia, Brescia, Italy
| | - Isabella Zanella
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Biotechnology Laboratory, Department of Diagnostics, Civic Hospital of Brescia, Brescia, Italy.
| |
Collapse
|
67
|
Tang NC, Chilkoti A. Combinatorial codon scrambling enables scalable gene synthesis and amplification of repetitive proteins. NATURE MATERIALS 2016; 15:419-24. [PMID: 26726995 PMCID: PMC4809025 DOI: 10.1038/nmat4521] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 11/25/2015] [Indexed: 05/08/2023]
Abstract
Most genes are synthesized using seamless assembly methods that rely on the polymerase chain reaction (PCR). However, PCR of genes encoding repetitive proteins either fails or generates nonspecific products. Motivated by the need to efficiently generate new protein polymers through high-throughput gene synthesis, here we report a codon-scrambling algorithm that enables the PCR-based gene synthesis of repetitive proteins by exploiting the codon redundancy of amino acids and finding the least-repetitive synonymous gene sequence. We also show that the codon-scrambling problem is analogous to the well-known travelling salesman problem, and obtain an exact solution to it by using De Bruijn graphs and a modern mixed integer linear programme solver. As experimental proof of the utility of this approach, we use it to optimize the synthetic genes for 19 repetitive proteins, and show that the gene fragments are amenable to PCR-based gene assembly and recombinant expression.
Collapse
Affiliation(s)
- Nicholas C Tang
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, USA
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, USA
| |
Collapse
|
68
|
Rapid and efficient genome-wide characterization of Xanthomonas TAL effector genes. Sci Rep 2015; 5:13162. [PMID: 26271455 PMCID: PMC4536657 DOI: 10.1038/srep13162] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 07/07/2015] [Indexed: 11/12/2022] Open
Abstract
Xanthomonas TALE transcriptional activators act as virulence or avirulence factors by activating host disease susceptibility or resistance genes. Their specificity is determined by a tandem repeat domain. Some Xanthomonas pathogens contain 10–30 TALEs per strain. Although TALEs play critical roles in pathogenesis, their studies have so far been limited to a few examples, due to their highly repetitive gene structure and extreme similarity among different members, which constrict sequencing and assembling. To facilitate TALE studies, we developed an efficient and rapid pipeline for genome-wide cloning of tal genes as many as possible from a strain. Here, we report the pipeline and its use to identify all 18 tal genes from a newly isolated strain of the rice pathogen Xathomonas oryzae. Target prediction revealed a number of potential rice targets including several notable genes such as genes encoding SWEET, WRKY, Hen1, and BAK1 proteins, which provide candidates for further experimental functional analysis of the TALEs.
Collapse
|
69
|
Origgi FC, Tecilla M, Pilo P, Aloisio F, Otten P, Aguilar-Bultet L, Sattler U, Roccabianca P, Romero CH, Bloom DC, Jacobson ER. A Genomic Approach to Unravel Host-Pathogen Interaction in Chelonians: The Example of Testudinid Herpesvirus 3. PLoS One 2015; 10:e0134897. [PMID: 26244892 PMCID: PMC4526542 DOI: 10.1371/journal.pone.0134897] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 07/15/2015] [Indexed: 11/29/2022] Open
Abstract
We report the first de novo sequence assembly and analysis of the genome of Testudinid herpesvirus 3 (TeHV3), one of the most pathogenic chelonian herpesviruses. The genome of TeHV3 is at least 150,080 nucleotides long, is arranged in a type D configuration and comprises at least 102 open reading frames extensively co-linear with those of Human herpesvirus 1. Consistently, the phylogenetic analysis positions TeHV3 among the Alphaherpesvirinae, closely associated with Chelonid herpesvirus 5, a Scutavirus. To date, there has been limited genetic characterization of TeHVs and a resolution beyond the genotype was not feasible because of the lack of informative DNA sequences. To exemplify the potential benefits of the novel genomic information provided by this first whole genome analysis, we selected the glycoprotein B (gB) gene, for detailed comparison among different TeHV3 isolates. The rationale for selecting gB is that it encodes for a well-conserved protein among herpesviruses but is coupled with a relevant antigenicity and is consequently prone to accumulate single nucleotide polymorphisms. These features were considered critical for an ideal phylogenetic marker to investigate the potential existence of distinct TeHV3 genogroups and their associated pathology. Fifteen captive tortoises presumptively diagnosed to be infected with TeHVs or carrying compatible lesions on the basis of either the presence of intranuclear inclusions (presumptively infected) and/or diphtheronecrotic stomatitis-glossitis or pneumonia (compatible lesions) were selected for the study. Viral isolation, TeHV identification, phylogenetic analysis and pathological characterization of the associated lesions, were performed. Our results revealed 1) the existence of at least two distinct TeHV3 genogroups apparently associated with different pathologies in tortoises and 2) the first evidence for a putative homologous recombination event having occurred in a chelonian herpesvirus. This novel information is not only fundamental for the genetic characterization of this virus but is also critical to lay the groundwork for an improved understanding of host-pathogen interactions in chelonians and contribute to tortoise conservation.
Collapse
Affiliation(s)
- Francesco C. Origgi
- Centre for Fish and Wildlife Health (FIWI), Vetsuisse Faculty, University of Bern, Bern, Switzerland
- * E-mail:
| | - Marco Tecilla
- Department of veterinary sciences and public health (DIVET) Universita’ degli studi di Milano, Milano, Italy
| | - Paola Pilo
- Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | | | | | - Lisandra Aguilar-Bultet
- Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern Switzerland
| | - Ursula Sattler
- Centre for Fish and Wildlife Health (FIWI), Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Paola Roccabianca
- Department of veterinary sciences and public health (DIVET) Universita’ degli studi di Milano, Milano, Italy
| | - Carlos H. Romero
- Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, Gainesville, Florida, United States of America
| | - David C. Bloom
- Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Elliott R. Jacobson
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida, United States of America
| |
Collapse
|