51
|
Salidroside Regulates Inflammatory Response in Raw 264.7 Macrophages via TLR4/TAK1 and Ameliorates Inflammation in Alcohol Binge Drinking-Induced Liver Injury. Molecules 2016; 21:molecules21111490. [PMID: 27834881 PMCID: PMC6272831 DOI: 10.3390/molecules21111490] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 11/03/2016] [Accepted: 11/04/2016] [Indexed: 01/15/2023] Open
Abstract
The current study was designed to investigate the anti-inflammatory effect of salidroside (SDS) and the underlying mechanism by using lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages in vitro and a mouse model of binge drinking-induced liver injury in vivo. SDS downregulated protein expression of toll-like receptor 4 (TLR4) and CD14. SDS inhibited LPS-triggered phosphorylation of LPS-activated kinase 1 (TAK1), p38, c-Jun terminal kinase (JNK), and extracellular signal-regulated kinase (ERK). Degradation of IκB-α and nuclear translocation of nuclear factor (NF)-κB were effectively blocked by SDS. SDS concentration-dependently suppressed LPS mediated inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) protein levels, as well as their downstream products, NO. SDS significantly inhibited protein secretion and mRNA expression of of interleukin (IL)-1β and tumor necrosis factor (TNF)-α. Additionally C57BL/6 mice were orally administrated SDS for continuous 5 days, followed by three gavages of ethanol every 30 min. Alcohol binge drinking caused the increasing of hepatic lipid accumulation and serum transaminases levels. SDS pretreatment significantly alleviated liver inflammatory changes and serum transaminases levels. Further investigation indicated that SDS markedly decreased protein level of IL-1β in serum. Taken together, these data implied that SDS inhibits liver inflammation both in vitro and in vivo, and may be a promising candidate for the treatment of inflammatory liver injury.
Collapse
|
52
|
Expression of Codon-Optimized Plant Glycosyltransferase UGT72B14 in Escherichia coli Enhances Salidroside Production. BIOMED RESEARCH INTERNATIONAL 2016; 2016:9845927. [PMID: 27597978 PMCID: PMC5002478 DOI: 10.1155/2016/9845927] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 07/18/2016] [Accepted: 07/21/2016] [Indexed: 11/18/2022]
Abstract
Salidroside, a plant secondary metabolite in Rhodiola, has been demonstrated to have several adaptogenic properties as a medicinal herb. Due to the limitation of plant source, microbial production of salidroside by expression of plant uridine diphosphate glycosyltransferase (UGT) is promising. However, glycoside production usually remains hampered by poor expression of plant UGTs in microorganisms. Herein, we achieved salidroside production by expression of Rhodiola UGT72B14 in Escherichia coli (E. coli) and codon optimization was accordingly applied. UGT72B14 expression was optimized by changing 278 nucleotides and decreasing the G+C content to 51.05% without altering the amino acid sequence. The effect of codon optimization on UGT72B14 catalysis for salidroside production was assessed both in vitro and in vivo. In vitro, salidroside production by codon-optimized UGT72B14 is enhanced because of a significantly improved protein yield (increased by 4.8-fold) and an equivalently high activity as demonstrated by similar kinetic parameters (KM and Vmax), compared to that by wild-type protein. In vivo, both batch and fed-batch cultivation using the codon-optimized gene resulted in a significant increase in salidroside production, which was up to 6.7 mg/L increasing 3.2-fold over the wild-type UGT72B14.
Collapse
|
53
|
Zhuang Y, Jiang J, Bi H, Yin H, Liu S, Liu T. Synthesis of rosmarinic acid analogues in Escherichia coli. Biotechnol Lett 2016; 38:619-27. [PMID: 26667131 DOI: 10.1007/s10529-015-2011-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Accepted: 12/02/2015] [Indexed: 12/17/2022]
Abstract
OBJECTIVES To produce rosmarinic acid analogues in the recombinant Escherichia coli BLRA1, harboring a 4-coumarate: CoA ligase from Arabidopsis thaliana (At4CL) and a rosmarinic acid synthase from Coleus blumei (CbRAS). RESULTS Incubation of the recombinant E. coli strain BLRA1 with exogenously supplied phenyllactic acid (PL) and analogues as acceptor substrates, and coumaric acid and analogues as donor substrates led to production of 18 compounds, including 13 unnatural RA analogues. CONCLUSION This work demonstrates the viability of synthesizing a broad range of rosmarinic acid analogues in E. coli, and sheds new light on the substrate specificity of CbRAS.
Collapse
Affiliation(s)
- Yibin Zhuang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Jingjie Jiang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- Department of Food Science and Technology, School of Biological Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Huiping Bi
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Hua Yin
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Shaowei Liu
- Department of Food Science and Technology, School of Biological Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Tao Liu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
| |
Collapse
|
54
|
Liu X, Lin J, Hu H, Zhou B, Zhu B. De novobiosynthesis of resveratrol by site-specific integration of heterologous genes inEscherichia coli. FEMS Microbiol Lett 2016; 363:fnw061. [DOI: 10.1093/femsle/fnw061] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2016] [Indexed: 12/19/2022] Open
|
55
|
Tang H, Gao L, Mao J, He H, Liu J, Cai X, Lin H, Wu T. Salidroside protects against bleomycin-induced pulmonary fibrosis: activation of Nrf2-antioxidant signaling, and inhibition of NF-κB and TGF-β1/Smad-2/-3 pathways. Cell Stress Chaperones 2016; 21:239-49. [PMID: 26577463 PMCID: PMC4786523 DOI: 10.1007/s12192-015-0654-4] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 10/15/2015] [Accepted: 10/17/2015] [Indexed: 02/08/2023] Open
Abstract
Pulmonary fibrosis (PF) can severely disrupt lung function, leading to fatal consequences. Salidroside is a principal active ingredient of Rhodiola rosea and has recently been reported to protect against lung injures. The present study was aimed at exploring its therapeutic effects on PF. Lung fibrotic injuries were induced in SD rats by a single intratracheal instillation of 5 mg/kg bleomycin (BLM). Then, these rats were administrated with 50, 100, or 200 mg/kg salidroside for 28 days. BLM-triggered structure distortion, collagen overproduction, excessive inflammatory infiltration, and pro-inflammatory cytokine release, and oxidative stress damages in lung tissues were attenuated by salidroside in a dose-dependent manner. Furthermore, salidroside was noted to inhibit IκBα phosphorylation and nuclear factor kappa B (NF-κB) p65 nuclear accumulation while activating Nrf2-antioxidant signaling in BLM-treated lungs. Downregulation of E-cadherin and upregulation of vimentin, fibronectin, and α-smooth muscle actin (α-SMA) indicated an epithelial-mesenchymal transition (EMT)-like shift in BLM-treated lungs. These changes were suppressed by salidroside. The expression of TGF-β1 and the phosphorylation of its downstream targets, Smad-2/-3, were enhanced by BLM, but weakened by salidroside. Additionally, salidroside was capable of reversing the recombinant TGF-β1-induced EMT-like changes in alveolar epithelial cells in vitro. Our study reveals that salidroside's protective effects against fibrotic lung injuries are correlated to its anti-inflammatory, antioxidative, and antifibrotic properties.
Collapse
Affiliation(s)
- Haiying Tang
- Department of Respiratory Medicine, The First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Dalian, 116011, People's Republic of China
| | - Lili Gao
- Department of Respiratory Medicine, The First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Dalian, 116011, People's Republic of China
| | - Jingwei Mao
- Department of Gastroenterology, The First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Dalian, 116011, People's Republic of China
| | - Huanyu He
- Department of Respiratory Medicine, The First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Dalian, 116011, People's Republic of China
| | - Jia Liu
- Department of Respiratory Medicine, The First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Dalian, 116011, People's Republic of China
| | - Xin Cai
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Dalian, 116011, People's Republic of China
| | - Hongli Lin
- Department of Nephrology, The First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Dalian, 116011, People's Republic of China.
| | - Taihua Wu
- Department of Respiratory Medicine, The First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Dalian, 116011, People's Republic of China.
| |
Collapse
|
56
|
Bai Y, Yin H, Bi H, Zhuang Y, Liu T, Ma Y. De novo biosynthesis of Gastrodin in Escherichia coli. Metab Eng 2016; 35:138-147. [PMID: 26804288 DOI: 10.1016/j.ymben.2016.01.002] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 01/04/2016] [Accepted: 01/05/2016] [Indexed: 01/16/2023]
Abstract
Gastrodin, a phenolic glycoside, is the key ingredient of Gastrodia elata, a notable herbal plant that has been used to treat various conditions in oriental countries for centuries. Gastrodin is extensively used clinically for its sedative, hypnotic, anticonvulsive and neuroprotective properties in China. Gastrodin is usually produced by plant extraction or chemical synthesis, which has many disadvantages. Herein, we report unprecedented microbial synthesis of gastrodin via an artificial pathway. A Nocardia carboxylic acid reductase, endogenous alcohol dehydrogenases and a Rhodiola glycosyltransferase UGT73B6 transformed 4-hydroxybenzoic acid, an intermediate of ubiquinone biosynthesis, into gastrodin in Escherichia coli. Pathway genes were overexpressed to enhance metabolic flux toward precursor 4-hydroxybenzyl alcohol. Furthermore, the catalytic properties of the UGT73B6 toward phenolic alcohols were improved through directed evolution. The finally engineered strain produced 545mgl(-1) gastrodin in 48h. This work creates a new route to produce gastrodin, instead of plant extractions and chemical synthesis.
Collapse
Affiliation(s)
- Yanfen Bai
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; University of Chinese Academy of Sciences, Beijing, China
| | - Hua Yin
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Huiping Bi
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Yibin Zhuang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Tao Liu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
| | - Yanhe Ma
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| |
Collapse
|
57
|
Liu X, Lin J, Hu H, Zhou B, Zhu B. Site-specific integration and constitutive expression of key genes into Escherichia coli chromosome increases shikimic acid yields. Enzyme Microb Technol 2016; 82:96-104. [DOI: 10.1016/j.enzmictec.2015.08.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 08/30/2015] [Accepted: 08/31/2015] [Indexed: 01/05/2023]
|
58
|
Jiang J, Bi H, Zhuang Y, Liu S, Liu T, Ma Y. Engineered synthesis of rosmarinic acid in Escherichia coli resulting production of a new intermediate, caffeoyl-phenyllactate. Biotechnol Lett 2016; 38:81-8. [PMID: 26337416 DOI: 10.1007/s10529-015-1945-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Accepted: 08/28/2015] [Indexed: 12/21/2022]
Abstract
OBJECTIVES To achieve high production of rosmarinic acid and derivatives in Escherichia coli which are important phenolic acids found in plants, and display diverse biological activities. RESULTS The synthesis of rosmarinic acid was achieved by feeding caffeic acid and constructing an artificial pathway for 3,4-dihydroxyphenyllactic acid. Genes encoding the following enzymes: rosmarinic acid synthase from Coleus blumei, 4-coumarate: CoA ligase from Arabidopsis thaliana, 4-hydroxyphenyllactate 3-hydroxylase from E. coli and D-lactate dehydrogenase from Lactobacillus pentosus, were overexpressed in an L-tyrosine over-producing E. coli strain. The yield of rosmarinic acid reached ~130 mg l(-1) in the recombinant strain. In addition, a new intermediate, caffeoyl-phenyllactate (~55 mg l(-1)), was also produced by the engineered E. coli strain. CONCLUSION This work not only leads to high yield production of rosmarinic acid and analogues, but also sheds new light on the construction of the pathway of rosmarinic acid in E. coli.
Collapse
Affiliation(s)
- Jingjie Jiang
- Department of Food Science and Technology, School of Biological Engineering, East China University of Science and Technology, Shanghai, 200237, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Huiping Bi
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Yibin Zhuang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Shaowei Liu
- Department of Food Science and Technology, School of Biological Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Tao Liu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
| | - Yanhe Ma
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| |
Collapse
|
59
|
De Bruyn F, Maertens J, Beauprez J, Soetaert W, De Mey M. Biotechnological advances in UDP-sugar based glycosylation of small molecules. Biotechnol Adv 2015; 33:288-302. [PMID: 25698505 DOI: 10.1016/j.biotechadv.2015.02.005] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 12/19/2014] [Accepted: 02/09/2015] [Indexed: 01/04/2023]
Abstract
Glycosylation of small molecules like specialized (secondary) metabolites has a profound impact on their solubility, stability or bioactivity, making glycosides attractive compounds as food additives, therapeutics or nutraceuticals. The subsequently growing market demand has fuelled the development of various biotechnological processes, which can be divided in the in vitro (using enzymes) or in vivo (using whole cells) production of glycosides. In this context, uridine glycosyltransferases (UGTs) have emerged as promising catalysts for the regio- and stereoselective glycosylation of various small molecules, hereby using uridine diphosphate (UDP) sugars as activated glycosyldonors. This review gives an extensive overview of the recently developed in vivo production processes using UGTs and discusses the major routes towards UDP-sugar formation. Furthermore, the use of interconverting enzymes and glycorandomization is highlighted for the production of unusual or new-to-nature glycosides. Finally, the technological challenges and future trends in UDP-sugar based glycosylation are critically evaluated and summarized.
Collapse
Affiliation(s)
- Frederik De Bruyn
- Centre of Expertise-Industrial Biotechnology and Biocatalysis, Department of Biochemical and Microbial Technology, Ghent University, Coupure links 653, 9000 Ghent, Belgium
| | - Jo Maertens
- Centre of Expertise-Industrial Biotechnology and Biocatalysis, Department of Biochemical and Microbial Technology, Ghent University, Coupure links 653, 9000 Ghent, Belgium
| | - Joeri Beauprez
- Centre of Expertise-Industrial Biotechnology and Biocatalysis, Department of Biochemical and Microbial Technology, Ghent University, Coupure links 653, 9000 Ghent, Belgium
| | - Wim Soetaert
- Centre of Expertise-Industrial Biotechnology and Biocatalysis, Department of Biochemical and Microbial Technology, Ghent University, Coupure links 653, 9000 Ghent, Belgium
| | - Marjan De Mey
- Centre of Expertise-Industrial Biotechnology and Biocatalysis, Department of Biochemical and Microbial Technology, Ghent University, Coupure links 653, 9000 Ghent, Belgium.
| |
Collapse
|