51
|
Zeller-Plumhoff B, Roose T, Katsamenis OL, Mavrogordato MN, Torrens C, Schneider P, Clough GF. Phase contrast synchrotron radiation computed tomography of muscle spindles in the mouse soleus muscle. J Anat 2017; 230:859-865. [PMID: 28369928 DOI: 10.1111/joa.12606] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2017] [Indexed: 12/29/2022] Open
Abstract
Muscle spindles are skeletal muscle sensory organs involved in the sensation of position and movement of the body. We have explored the capability of phase contrast computed tomography to visualise muscle spindles in murine skeletal muscle. In particular, we have validated the visualisation of nerve fibres through phase contrast computed tomography using light microscopy on stained histological sections. We further present the first three-dimensional visualisation of muscle spindles in mouse soleus skeletal muscle in conjunction with the neurovascular bundle associated with it.
Collapse
Affiliation(s)
- B Zeller-Plumhoff
- Faculty of Engineering and the Environment, University of Southampton, Southampton, UK.,Helmholtz-Zentrum für Material- und Küstenforschung, Geesthacht, Germany
| | - T Roose
- Faculty of Engineering and the Environment, University of Southampton, Southampton, UK
| | - O L Katsamenis
- Faculty of Engineering and the Environment, University of Southampton, Southampton, UK.,μ-VIS X-ray Imaging Centre, University of Southampton, Southampton, UK
| | - M N Mavrogordato
- Faculty of Engineering and the Environment, University of Southampton, Southampton, UK.,μ-VIS X-ray Imaging Centre, University of Southampton, Southampton, UK
| | - C Torrens
- Faculty of Medicine, University of Southampton, Southampton, UK
| | - P Schneider
- Faculty of Engineering and the Environment, University of Southampton, Southampton, UK
| | - G F Clough
- Faculty of Medicine, University of Southampton, Southampton, UK
| |
Collapse
|
52
|
Hu J, Li P, Yin X, Wu T, Cao Y, Yang Z, Jiang L, Hu S, Lu H. Nondestructive imaging of the internal microstructure of vessels and nerve fibers in rat spinal cord using phase-contrast synchrotron radiation microtomography. JOURNAL OF SYNCHROTRON RADIATION 2017; 24:482-489. [PMID: 28244444 DOI: 10.1107/s1600577517000121] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 01/04/2017] [Indexed: 06/06/2023]
Abstract
The spinal cord is the primary neurological link between the brain and other parts of the body, but unlike those of the brain, advances in spinal cord imaging have been challenged by the more complicated and inhomogeneous anatomy of the spine. Fortunately with the advancement of high technology, phase-contrast synchrotron radiation microtomography has become widespread in scientific research because of its ability to generate high-quality and high-resolution images. In this study, this method has been employed for nondestructive imaging of the internal microstructure of rat spinal cord. Furthermore, digital virtual slices based on phase-contrast synchrotron radiation were compared with conventional histological sections. The three-dimensional internal microstructure of the intramedullary arteries and nerve fibers was vividly detected within the same spinal cord specimen without the application of a stain or contrast agent or sectioning. With the aid of image post-processing, an optimization of vessel and nerve fiber images was obtained. The findings indicated that phase-contrast synchrotron radiation microtomography is unique in the field of three-dimensional imaging and sets novel standards for pathophysiological investigations in various neurovascular diseases.
Collapse
Affiliation(s)
- Jianzhong Hu
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| | - Ping Li
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| | - Xianzhen Yin
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 200135, People's Republic of China
| | - Tianding Wu
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| | - Yong Cao
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| | - Zhiming Yang
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| | - Liyuan Jiang
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| | - Shiping Hu
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| | - Hongbin Lu
- Department of Sports Medicine, Research Centre of Sports Medicine, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| |
Collapse
|
53
|
Brun F, Massimi L, Fratini M, Dreossi D, Billé F, Accardo A, Pugliese R, Cedola A. SYRMEP Tomo Project: a graphical user interface for customizing CT reconstruction workflows. ACTA ACUST UNITED AC 2017; 3:4. [PMID: 28261542 PMCID: PMC5313567 DOI: 10.1186/s40679-016-0036-8] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Accepted: 12/23/2016] [Indexed: 11/10/2022]
Abstract
When considering the acquisition of experimental synchrotron radiation (SR) X-ray CT data, the reconstruction workflow cannot be limited to the essential computational steps of flat fielding and filtered back projection (FBP). More refined image processing is often required, usually to compensate artifacts and enhance the quality of the reconstructed images. In principle, it would be desirable to optimize the reconstruction workflow at the facility during the experiment (beamtime). However, several practical factors affect the image reconstruction part of the experiment and users are likely to conclude the beamtime with sub-optimal reconstructed images. Through an example of application, this article presents SYRMEP Tomo Project (STP), an open-source software tool conceived to let users design custom CT reconstruction workflows. STP has been designed for post-beamtime (off-line use) and for a new reconstruction of past archived data at user's home institution where simple computing resources are available. Releases of the software can be downloaded at the Elettra Scientific Computing group GitHub repository https://github.com/ElettraSciComp/STP-Gui.
Collapse
Affiliation(s)
- Francesco Brun
- National Research Council-Institute of Nanotechnology (CNR-Nanotec), c/o University La Sapienza, P.le Aldo Moro, 5, 00185 Rome, Italy.,Department of Engineering and Architecture, University of Trieste, Via A. Valerio, 6/1, 34127 Trieste, Italy.,Elettra-Sincrotrone Trieste S.C.p.A., S.S. 14 km 163.5 in Area Science Park, 34149 Basovizza, Trieste Italy
| | - Lorenzo Massimi
- National Research Council-Institute of Nanotechnology (CNR-Nanotec), c/o University La Sapienza, P.le Aldo Moro, 5, 00185 Rome, Italy
| | - Michela Fratini
- National Research Council-Institute of Nanotechnology (CNR-Nanotec), c/o University La Sapienza, P.le Aldo Moro, 5, 00185 Rome, Italy.,Fondazione Santa Lucia, Via Ardeatina, 306, 00179 Roma, Italy
| | - Diego Dreossi
- Elettra-Sincrotrone Trieste S.C.p.A., S.S. 14 km 163.5 in Area Science Park, 34149 Basovizza, Trieste Italy
| | - Fulvio Billé
- Elettra-Sincrotrone Trieste S.C.p.A., S.S. 14 km 163.5 in Area Science Park, 34149 Basovizza, Trieste Italy
| | - Agostino Accardo
- Department of Engineering and Architecture, University of Trieste, Via A. Valerio, 6/1, 34127 Trieste, Italy
| | - Roberto Pugliese
- Elettra-Sincrotrone Trieste S.C.p.A., S.S. 14 km 163.5 in Area Science Park, 34149 Basovizza, Trieste Italy
| | - Alessia Cedola
- National Research Council-Institute of Nanotechnology (CNR-Nanotec), c/o University La Sapienza, P.le Aldo Moro, 5, 00185 Rome, Italy
| |
Collapse
|
54
|
Cao Y, Zhou Y, Ni S, Wu T, Li P, Liao S, Hu J, Lu H. Three Dimensional Quantification of Microarchitecture and Vessel Regeneration by Synchrotron Radiation Microcomputed Tomography in a Rat Model of Spinal Cord Injury. J Neurotrauma 2016; 34:1187-1199. [PMID: 27676128 DOI: 10.1089/neu.2016.4697] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
A full understanding of the mechanisms behind spinal cord injury (SCI) processes requires reliable three-dimensional (3D) imaging tools for a thorough analysis of changes in angiospatial architecture. We aimed to use synchrotron radiation μCT (SRμCT) to characterize 3D temporal-spatial changes in microvasculature post-SCI. Morphometrical measurements revealed a significant decrease in vascular volume fraction, vascular bifurcation density, vascular segment density, and vascular connectivity density 1 day post-injury, followed by a gradual increase at 3, 7, and 14 days. At 1 day post-injury, SRμCT revealed an increase in vascular tortuosity (VT), which reached a plateau after 7 days and decreased slightly during the healing process. In addition, SRμCT images showed that vessels were largely concentrated in the gray matter 1 day post-injury. The maximal endothelial cell proliferation rate was detected at 7 days post-injury. The 3D morphology of the cavity appears in the spinal cord at 28 days post-injury. We describe a methodology for 3D analysis of vascular repair in SCI and reveal that endogenous revascularization occurs during the healing process. The spinal cord microvasculature configuration undergoes 3D remodeling and modification during the post-injury repair process. Examination of these processes might contribute to a full understanding of the compensatory vascular mechanisms after injury and aid in the development of novel and effective treatment for SCI.
Collapse
Affiliation(s)
- Yong Cao
- 1 Department of Spine Surgery, Central South University , Changsha, China
| | - Yuan Zhou
- 2 Department of Thoracic Surgery, Xiangya Hospital, Central South University , Changsha, China
| | - Shuangfei Ni
- 1 Department of Spine Surgery, Central South University , Changsha, China
| | - Tianding Wu
- 1 Department of Spine Surgery, Central South University , Changsha, China
| | - Ping Li
- 1 Department of Spine Surgery, Central South University , Changsha, China
| | - Shenghui Liao
- 3 School of Information Science and Engineering, Central South University , Changsha, Changsha, China
| | - Jianzhong Hu
- 1 Department of Spine Surgery, Central South University , Changsha, China
| | - Hongbin Lu
- 4 Department of Sports Medicine, Research Centre of Sports Medicine, Xiangya Hospital, Central South University , Changsha, China
| |
Collapse
|
55
|
Massimi L, Fratini M, Bukreeva I, Brun F, Mittone A, Campi G, Spanò R, Mastrogiacomo M, de Rosbo NK, Bravin A, Uccelli A, Cedola A. Characterization of mouse spinal cord vascular network by means of synchrotron radiation X-ray phase contrast tomography. Phys Med 2016; 32:1779-1784. [PMID: 27743707 DOI: 10.1016/j.ejmp.2016.09.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 07/24/2016] [Accepted: 09/22/2016] [Indexed: 11/29/2022] Open
Abstract
High resolution Synchrotron-based X-ray Phase Contrast Tomography (XPCT) allows the simultaneous detection of three dimensional neuronal and vascular networks without using contrast agents or invasive casting preparation. We show and discuss the different features observed in reconstructed XPCT volumes of the ex vivo mouse spinal cord in the lumbo-sacral region, including motor neurons and blood vessels. We report the application of an intensity-based segmentation method to detect and quantitatively characterize the modification in the vascular networks in terms of reduction in experimental visibility. In particular, we apply our approach to the case of the experimental autoimmune encephalomyelitis (EAE), i.e. human multiple sclerosis animal model.
Collapse
Affiliation(s)
- Lorenzo Massimi
- Consiglio Nazionale delle Ricerche, Istituto di Nanotecnologia, Rome Unit, I-00195 Rome, Italy.
| | - Michela Fratini
- Consiglio Nazionale delle Ricerche, Istituto di Nanotecnologia, Rome Unit, I-00195 Rome, Italy; Fondazione Santa Lucia IRCCS, 00179 Roma, Italy
| | - Inna Bukreeva
- Consiglio Nazionale delle Ricerche, Istituto di Nanotecnologia, Rome Unit, I-00195 Rome, Italy; P.N. Lebedev Physical Institute, Russian Academy of Sciences, Leninskii pr., 53 Moscow, Russia
| | - Francesco Brun
- Consiglio Nazionale delle Ricerche, Istituto di Nanotecnologia, Rome Unit, I-00195 Rome, Italy
| | - Alberto Mittone
- European Synchrotron Radiation Facility, F-38043 Grenoble, Cedex 9, France
| | - Gaetano Campi
- Institute of Crystallography-CNR, Monterotondo, Rome, Italy
| | - Raffaele Spanò
- Department of Experimental Medicine, University of Genova & AUO San Martino - IST Istituto Nazionale per la Ricerca sul Cancro, Largo R. Benzi 10, 16132 Genova, Italy
| | - Milena Mastrogiacomo
- Department of Experimental Medicine, University of Genova & AUO San Martino - IST Istituto Nazionale per la Ricerca sul Cancro, Largo R. Benzi 10, 16132 Genova, Italy
| | | | - Alberto Bravin
- European Synchrotron Radiation Facility, F-38043 Grenoble, Cedex 9, France
| | - Antonio Uccelli
- University of Genova DINOGMI Largo Daneo, 3 IT-16132 Genova, Italy
| | - Alessia Cedola
- Consiglio Nazionale delle Ricerche, Istituto di Nanotecnologia, Rome Unit, I-00195 Rome, Italy
| |
Collapse
|
56
|
Cao Y, Yin X, Zhang J, Wu T, Li D, Lu H, Hu J. Visualization of mouse spinal cord intramedullary arteries using phase- and attenuation-contrast tomographic imaging. JOURNAL OF SYNCHROTRON RADIATION 2016; 23:966-974. [PMID: 27359146 DOI: 10.1107/s1600577516006482] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 04/17/2016] [Indexed: 06/06/2023]
Abstract
Many spinal cord circulatory disorders present the substantial involvement of small vessel lesions. The central sulcus arteries supply nutrition to a large part of the spinal cord, and, if not detected early, lesions in the spinal cord will cause irreversible damage to the function of this organ. Thus, early detection of these small vessel lesions could potentially facilitate the effective diagnosis and treatment of these diseases. However, the detection of such small vessels is beyond the capability of current imaging techniques. In this study, an imaging method is proposed and the potential of phase-contrast imaging (PCI)- and attenuation-contrast imaging (ACI)-based synchrotron radiation for high-resolution tomography of intramedullary arteries in mouse spinal cord is validated. The three-dimensional vessel morphology, particularly that of the central sulcus arteries (CSA), detected with these two imaging models was quantitatively analyzed and compared. It was determined that both PCI- and ACI-based synchrotron radiation can be used to visualize the physiological arrangement of the entire intramedullary artery network in the mouse spinal cord in both two dimensions and three dimensions at a high-resolution scale. Additionally, the two-dimensional and three-dimensional vessel morphometric parameter measurements obtained with PCI are similar to the ACI data. Furthermore, PCI allows efficient and direct discrimination of the same branch level of the CSA without contrast agent injection and is expected to provide reliable biological information regarding the intramedullary artery. Compared with ACI, PCI might be a novel imaging method that offers a powerful imaging platform for evaluating pathological changes in small vessels and may also allow better clarification of their role in neurovascular disorders.
Collapse
Affiliation(s)
- Yong Cao
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| | - Xianzhen Yin
- Center for Drug Delivery System, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 20203, People's Republic of China
| | - Jiwen Zhang
- Center for Drug Delivery System, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 20203, People's Republic of China
| | - Tianding Wu
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| | - Dongzhe Li
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| | - Hongbin Lu
- Department of Sports Medicine, Research Centre of Sports Medicine, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| | - Jianzhong Hu
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| |
Collapse
|
57
|
Ultra-high-resolution 3D digitalized imaging of the cerebral angioarchitecture in rats using synchrotron radiation. Sci Rep 2015; 5:14982. [PMID: 26443231 PMCID: PMC4595735 DOI: 10.1038/srep14982] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 09/15/2015] [Indexed: 02/07/2023] Open
Abstract
The angioarchitecture is a fundamental aspect of brain development and physiology. However, available imaging tools are unsuited for non-destructive cerebral mapping of the functionally important three-dimensional (3D) vascular microstructures. To address this issue, we developed an ultra-high resolution 3D digitalized angioarchitectural map for rat brain, based on synchrotron radiation phase contrast imaging (SR-PCI) with pixel size of 5.92 μm. This approach provides a systematic and detailed view of the cerebrovascular anatomy at the micrometer level without any need for contrast agents. From qualitative and quantitative perspectives, the present 3D data provide a considerable insight into the spatial vascular network for whole rodent brain, particularly for functionally important regions of interest, such as the hippocampus, pre-frontal cerebral cortex and the corpus striatum. We extended these results to synchrotron-based virtual micro-endoscopy, thus revealing the trajectory of targeted vessels in 3D. The SR-PCI method for systematic visualization of cerebral microvasculature holds considerable promise for wider application in life sciences, including 3D micro-imaging in experimental models of neurodevelopmental and vascular disorders.
Collapse
|
58
|
Bukreeva I, Fratini M, Campi G, Pelliccia D, Spanò R, Tromba G, Brun F, Burghammer M, Grilli M, Cancedda R, Cedola A, Mastrogiacomo M. High-Resolution X-Ray Techniques as New Tool to Investigate the 3D Vascularization of Engineered-Bone Tissue. Front Bioeng Biotechnol 2015; 3:133. [PMID: 26442248 PMCID: PMC4561513 DOI: 10.3389/fbioe.2015.00133] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 08/19/2015] [Indexed: 01/01/2023] Open
Abstract
The understanding of structure–function relationships in normal and pathologic mammalian tissues is at the basis of a tissue engineering (TE) approach for the development of biological substitutes to restore or improve tissue function. In this framework, it is interesting to investigate engineered bone tissue, formed when porous ceramic constructs are loaded with bone marrow stromal cells (BMSC) and implanted in vivo. To monitor the relation between bone formation and vascularization, it is important to achieve a detailed imaging and a quantitative description of the complete three-dimensional vascular network in such constructs. Here, we used synchrotron X-ray phase-contrast micro-tomography to visualize and analyze the three-dimensional micro-vascular networks in bone-engineered constructs, in an ectopic bone formation mouse-model. We compared samples seeded and not seeded with BMSC, as well as samples differently stained or unstained. Thanks to the high quality of the images, we investigated the 3D distribution of both vessels and collagen matrix and we obtained quantitative information for all different samples. We propose our approach as a tool for quantitative studies of angiogenesis in TE and for any pre-clinical investigation where a quantitative analysis of the vascular network is required.
Collapse
Affiliation(s)
- Inna Bukreeva
- Consiglio Nazionale delle Ricerche - Istituto NANOTEC, c/o Dipartimento di Fisica, Università Sapienza , Rome , Italy
| | - Michela Fratini
- Consiglio Nazionale delle Ricerche - Istituto NANOTEC, c/o Dipartimento di Fisica, Università Sapienza , Rome , Italy ; Department of Science, Roma Tre University , Rome , Italy
| | - Gaetano Campi
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche , Rome , Italy
| | - Daniele Pelliccia
- School of Applied Sciences, RMIT University , Melbourne, VIC , Australia ; Australian Synchrotron , Clayton, VIC , Australia ; School of Physics and Astronomy, Monash University , Clayton, VIC , Australia
| | - Raffaele Spanò
- Dipartimento di Medicina Sperimentale dell'Università di Genova, AOU San Martino-IST , Genova , Italy
| | - Giuliana Tromba
- Elettra - Synchrotron Radiation Trieste S.C.p.A , Trieste , Italy
| | - Francesco Brun
- Elettra - Synchrotron Radiation Trieste S.C.p.A , Trieste , Italy ; Dipartimento di Ingegneria e Architettura, Università di Trieste , Trieste , Italy
| | - Manfred Burghammer
- European Synchrotron Radiation Facility , Grenoble , France ; Department of Analytical Chemistry, Ghent University , Ghent , Belgium
| | - Marco Grilli
- Dipartimento di Fisica, Università Sapienza , Rome , Italy ; Consiglio Nazionale delle Ricerche - Istituto dei Sistemi Complessi, c/o Dipartimento di Fisica, Università Sapienza , Rome , Italy
| | - Ranieri Cancedda
- Dipartimento di Medicina Sperimentale dell'Università di Genova, AOU San Martino-IST , Genova , Italy
| | - Alessia Cedola
- Consiglio Nazionale delle Ricerche - Istituto NANOTEC, c/o Dipartimento di Fisica, Università Sapienza , Rome , Italy
| | - Maddalena Mastrogiacomo
- Dipartimento di Medicina Sperimentale dell'Università di Genova, AOU San Martino-IST , Genova , Italy
| |
Collapse
|