51
|
Kwon WS, Kim YJ, Ryu DY, Kwon KJ, Song WH, Rahman MS, Pang MG. Fms-like tyrosine kinase 3 is a key factor of male fertility. Theriogenology 2018; 126:145-152. [PMID: 30553232 DOI: 10.1016/j.theriogenology.2018.12.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 10/30/2018] [Accepted: 12/05/2018] [Indexed: 01/14/2023]
Abstract
Fms-like tyrosine kinase 3 (FLT3) is a type III kinase that is highly expressed in seminal plasma of infertile men. FLT3 activation can be blocked by inhibition of its phosphorylation using the nontoxic and selective inhibitor, quizartinib. We investigated the function of FLT3 and the corresponding effects of quizartinib in mouse spermatozoa. Spermatozoa were treated with different concentrations (0.1, 1, 10, 20, and 30 μM) of quizartinib for 90 min at 37 °C in 5% CO2 in air. FLT3 was detected in capacitated and non-capacitated spermatozoa. While the level of FLT3 was unaffected, the levels of phospho-FLT3 were significantly altered in spermatozoa by quizartinib. Exposure of spermatozoa to higher concentrations of quizartinib significantly altered sperm viability, motility, motion kinematics, levels of intracellular ATP, and capacitation status. Fertilization and early embryonic development were suppressed by quizartinib. This may have occurred as a consequence of decreased protein kinase A (PKA) activity and tyrosine phosphorylation. The inhibition of FLT3 by quizartinib may affect the fertilization and embryonic development by reducing tyrosine phosphorylation through a PKA-dependent pathway. Our data implicate FLT3 as a biomarker for diagnosis and prognosis of male fertility. In addition, quizartinib has potential for development as a new contraceptive agent.
Collapse
Affiliation(s)
- Woo-Sung Kwon
- Department of Animal Biotechnology, Kyungpook National University, Sangju, Gyeongsangbuk-do, 37224, Republic of Korea
| | - Ye-Ji Kim
- Department of Animal Science & Technology, Chung-Ang University, Anseong, Gyeonggi-Do, 17546, Republic of Korea
| | - Do-Yeal Ryu
- Department of Animal Science & Technology, Chung-Ang University, Anseong, Gyeonggi-Do, 17546, Republic of Korea
| | - Ki-Jin Kwon
- Department of Animal Science & Technology, Chung-Ang University, Anseong, Gyeonggi-Do, 17546, Republic of Korea
| | - Won-Hee Song
- Department of Animal Science & Technology, Chung-Ang University, Anseong, Gyeonggi-Do, 17546, Republic of Korea
| | - Md Saidur Rahman
- Department of Animal Science & Technology, Chung-Ang University, Anseong, Gyeonggi-Do, 17546, Republic of Korea
| | - Myung-Geol Pang
- Department of Animal Science & Technology, Chung-Ang University, Anseong, Gyeonggi-Do, 17546, Republic of Korea.
| |
Collapse
|
52
|
Ke CC, Lin YH, Wang YY, Wu YY, Chen MF, Ku WC, Chiang HS, Lai TH. TBC1D21 Potentially Interacts with and Regulates Rap1 during Murine Spermatogenesis. Int J Mol Sci 2018; 19:ijms19113292. [PMID: 30360518 PMCID: PMC6274753 DOI: 10.3390/ijms19113292] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 10/20/2018] [Accepted: 10/21/2018] [Indexed: 12/18/2022] Open
Abstract
Few papers have focused on small guanosine triphosphate (GTP)-binding proteins and their regulation during spermatogenesis. TBC1D21 genes (also known as male germ cell RAB GTPase-activating protein MGCRABGAP) are related to sterility, as determined through cDNA microarray testing of human testicular tissues exhibiting spermatogenic defects. TBC1D21 is a protein specifically expressed in the testes that exhibits specific localizations of elongating and elongated spermatids during mammalian spermiogenesis. Furthermore, through co-immunoprecipitation (co-IP) and nano liquid chromatography–tandem mass spectrometry (nano LC–MS/MS), Rap1 has been recognized as a potential TBC1D21 interactor. This study determined the possible roles of Rap1 and TBC1D21 during mammalian spermiogenesis. First, the binding ability between Rap1 and TBC1D21 was verified using co-IP. Second, the stronger signals of Rap1 expressed in elongating and elongated murine spermatids extracted from testicular sections, namely spermatogonia, spermatocytes, and round spermatids, were compared. Third, Rap1 and TBC1D21 exhibited similar localizations at postacrosomal regions of spermatids and at the midpieces of mature sperms, through isolated male germ cells. Fourth, the results of an activating Rap1 pull-down assay indicated that TBC1D21 overexpression inactivates Rap1 activity in cell models. In conclusion, TBC1D21 may interact with and potentially regulate Rap1 during murine spermatogenesis.
Collapse
Affiliation(s)
- Chih-Chun Ke
- PhD Program in Nutrition & Food Science, Fu Jen Catholic University, New Taipei City 24205, Taiwan.
- Department of Urology, En Chu Kong Hospital, New Taipei City 23702, Taiwan.
| | - Ying-Hung Lin
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu-Jen Catholic University, New Taipei City 24205, Taiwan.
| | - Ya-Yun Wang
- Department of Chemistry, Fu Jen Catholic University, New Taipei City 24205, Taiwan.
| | - Ying-Yu Wu
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu-Jen Catholic University, New Taipei City 24205, Taiwan.
| | - Mei-Feng Chen
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan County 33305, Taiwan.
| | - Wei-Chi Ku
- School of Medicine, Fu Jen Catholic University, New Taipei City 24205, Taiwan.
| | - Han-Sun Chiang
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu-Jen Catholic University, New Taipei City 24205, Taiwan.
| | - Tsung-Hsuan Lai
- School of Medicine, Fu Jen Catholic University, New Taipei City 24205, Taiwan.
- Department of Obstetrics and Gynecology, Cathay General Hospital, Taipei 10630, Taiwan.
- Institute of Systems Biology and Bioinformatics, National Central University, Jhongli City, Taoyuan County 32001, Taiwan.
| |
Collapse
|
53
|
Shang Y, Zhang F, Li D, Li C, Li H, Jiang Y, Zhang D. Overexpression of UQCRC2 is correlated with tumor progression and poor prognosis in colorectal cancer. Pathol Res Pract 2018; 214:1613-1620. [DOI: 10.1016/j.prp.2018.08.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 07/31/2018] [Accepted: 08/10/2018] [Indexed: 12/17/2022]
|
54
|
Xiong Z, Zhang H, Huang B, Liu Q, Wang Y, Shi D, Li X. Expression pattern of prohibitin, capping actin protein of muscle Z-line beta subunit and tektin-2 gene in Murrah buffalo sperm and its relationship with sperm motility. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2018; 31:1729-1737. [PMID: 29642674 PMCID: PMC6212766 DOI: 10.5713/ajas.18.0025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 03/19/2018] [Indexed: 01/13/2023]
Abstract
Objective The aim of the current study is to investigate the relationship between prohibitin (PHB), capping actin protein of muscle Z-line beta subunit (CAPZB), and tektin-2 (TEKT2) and sperm motility in Murrah buffalo. Methods We collected the high-motility and low-motility semen samples, testis, ovary, muscle, kidney, liver, brain and pituitary from Murrah buffalo, and analysed the expression of PHB, CAPZB, and TEKT2 in mRNA (message RNA) and protein level. Results Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) result showed that the expression of PHB was higher and CAPZB, TEKT2 were specifically expressed in testis as compared to the other 6 tissues, and that in testis, the expression of TEKT2 was higher than that of CAPZB and PHB. Immunohistochemistry test revealed that all three genes were located on the convoluted seminiferous tubule and enriched in spermatogenic cells. Both qRT-PCR and Western Blot results showed that the expression levels of PHB, CAPZB, and TEKT2 were significantly lower in the low-motility semen group compared to the high-motility semen group (p<0.05). Conclusion The expression levels of PHB, CAPZB, and TEKT2 in Murrah buffalo sperm have a high positive correlation with sperm motility. And the three genes may be potential molecular markers for the decline of buffalo sperm motility.
Collapse
Affiliation(s)
- Zhaocheng Xiong
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning 530004, China
| | - Haihang Zhang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning 530004, China
| | - Ben Huang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning 530004, China
| | - Qingyou Liu
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning 530004, China
| | - Yingqun Wang
- Guangxi Livestock and Poultry Variety Reforming Station, Nanning 530001, China
| | - Deshun Shi
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning 530004, China
| | - Xiangping Li
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning 530004, China
| |
Collapse
|
55
|
Velho ALC, Menezes E, Dinh T, Kaya A, Topper E, Moura AA, Memili E. Metabolomic markers of fertility in bull seminal plasma. PLoS One 2018; 13:e0195279. [PMID: 29634739 PMCID: PMC5892889 DOI: 10.1371/journal.pone.0195279] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Accepted: 03/19/2018] [Indexed: 12/27/2022] Open
Abstract
Metabolites play essential roles in biological systems, but detailed identities and significance of the seminal plasma metabolome related to bull fertility are still unknown. The objectives of this study were to determine the comprehensive metabolome of seminal plasma from Holstein bulls and to ascertain the potential of metabolites as biomarkers of bull fertility. The seminal plasma metabolome from 16 Holstein bulls with two fertility rates were determined by gas chromatography-mass spectrometry (GC-MS). Multivariate and univariate analyses of the data were performed, and the pathways associated with the seminal plasma metabolome were identified using bioinformatics approaches. Sixty-three metabolites were identified in the seminal plasma of all bulls. Fructose was the most abundant metabolite in the seminal fluid, followed for citric acid, lactic acid, urea and phosphoric acid. Androstenedione, 4-ketoglucose, D-xylofuranose, 2-oxoglutaric acid and erythronic acid represented the least predominant metabolites. Partial-Least Squares Discriminant Analysis (PLSDA) revealed a distinct separation between high and low fertility bulls. The metabolites with the greatest Variable Importance in Projection score (VIP > 2) were 2-oxoglutaric acid and fructose. Heat-map analysis, based on VIP score, and univariate analysis indicated that 2-oxoglutaric acid was less (P = 0.02); whereas fructose was greater (P = 0.02) in high fertility than in low fertility bulls. The current study is the first to describe the metabolome of bull seminal plasma using GC-MS and presented metabolites such as 2-oxoglutaric acid and fructose as potential biomarkers of bull fertility.
Collapse
Affiliation(s)
- Ana Luiza Cazaux Velho
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS, United States of America
- Department of Animal Sciences, Federal University of Ceara, Fortaleza, Ceara, Brazil
| | - Erika Menezes
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS, United States of America
| | - Thu Dinh
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS, United States of America
| | - Abdullah Kaya
- Alta Genetic Inc., Watertown, WI, United States of America
- Department of Reproduction and Artificial Insemination, Selcuk University, Konya, Turkey
| | - Einko Topper
- Alta Genetic Inc., Watertown, WI, United States of America
| | - Arlindo Alencar Moura
- Department of Animal Sciences, Federal University of Ceara, Fortaleza, Ceara, Brazil
| | - Erdogan Memili
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS, United States of America
| |
Collapse
|
56
|
Rahman MS, Kwon WS, Ryu DY, Khatun A, Karmakar PC, Ryu BY, Pang MG. Functional and Proteomic Alterations of F1 Capacitated Spermatozoa of Adult Mice Following Gestational Exposure to Bisphenol A. J Proteome Res 2017; 17:524-535. [PMID: 29198108 DOI: 10.1021/acs.jproteome.7b00668] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Studies regarding bisphenol A (BPA) exposure and male (in)fertility have conventionally focused on modifications in ejaculated spermatozoa function from exposed individuals. However, mammalian spermatozoa are incapable of fertilization prior to achieving capacitation, the penultimate step in maturation. Therefore, it is necessary to investigate BPA-induced changes in capacitated spermatozoa and assess the consequences on subsequent fertilization. Here, we demonstrate the effect of gestational BPA exposure (50 μg/kg bw/day, 5 mg/kg bw/day, and 50 mg/kg bw/day) on the functions, biochemical properties, and proteomic profiles of F1 capacitated spermatozoa from adult mice. The data showed that high concentrations of BPA inhibited motility, motion kinematics, and capacitation of spermatozoa, perhaps because of increased lipid peroxidation and protein tyrosine nitration, and decreased intracellular ATP levels and protein kinase-A activity in spermatozoa. We also found that BPA compromised the rates of fertilization and early embryonic development. Differentially expressed proteins identified between BPA-exposed and control groups play a critical role in energy metabolism, stress responses, and fertility. Protein function abnormalities were responsible for the development of several diseases according to bioinformatics analysis. On the basis of these results, gestational exposure to BPA may alter capacitated spermatozoa function and the proteomic profile, ultimately affecting their fertility potential.
Collapse
Affiliation(s)
- Md Saidur Rahman
- Department of Animal Science and Technology, Chung-Ang University , Anseong, Gyeonggi-do 456-756, Republic of Korea
| | - Woo-Sung Kwon
- Department of Animal Science and Technology, Chung-Ang University , Anseong, Gyeonggi-do 456-756, Republic of Korea
| | - Do-Yeal Ryu
- Department of Animal Science and Technology, Chung-Ang University , Anseong, Gyeonggi-do 456-756, Republic of Korea
| | - Amena Khatun
- Department of Animal Science and Technology, Chung-Ang University , Anseong, Gyeonggi-do 456-756, Republic of Korea
| | - Polash Chandra Karmakar
- Department of Animal Science and Technology, Chung-Ang University , Anseong, Gyeonggi-do 456-756, Republic of Korea
| | - Buom-Yong Ryu
- Department of Animal Science and Technology, Chung-Ang University , Anseong, Gyeonggi-do 456-756, Republic of Korea
| | - Myung-Geol Pang
- Department of Animal Science and Technology, Chung-Ang University , Anseong, Gyeonggi-do 456-756, Republic of Korea
| |
Collapse
|
57
|
Kwon WS, Shin DH, Ryu DY, Khatun A, Rahman MS, Pang MG. Applications of capacitation status for litter size enhancement in various pig breeds. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2017; 31:842-850. [PMID: 29268576 PMCID: PMC5933982 DOI: 10.5713/ajas.17.0760] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 11/19/2017] [Accepted: 12/02/2017] [Indexed: 11/27/2022]
Abstract
Objective Several studies have reported the development of new molecular methods for the prognosis and diagnosis of male fertility based on biomarkers aimed at overcoming the limitations of conventional male fertility analysis tools. However, further studies are needed for the field application of these methods. Therefore, alternative methods based on existing semen analysis methods are required to improve production efficiency in the animal industry. Methods we examined the possibility of improving litter size in various pig breeds using combined Hoechst 33258/chlortetracycline fluorescence (H33258/CTC) staining. The correlation between field fertility and capacitation status by combined H33258/CTC staining in different ejaculates spermatozoa (n = 3) from an individual boar (20 Landrace, 20 Yorkshire, and 20 Duroc) was evaluated as well as overall accuracy. Results The acrosome reacted (AR) pattern after capacitation (%) was positively correlated with the litter size of Landrace, Yorkshire, and Duroc pigs and the overall accuracy was 75%, 75%, and 70% in Landrace, Yorkshire, and Duroc pigs, respectively. The difference (Δ) in AR pattern before and after capacitation was positively correlated with the litter size of Landrace, Yorkshire, and Duroc pigs and the overall accuracy was 80%, 65%, and 55% in Landrace, Yorkshire, and Duroc pigs, respectively. However, the difference (Δ) in capacitated (B) pattern before and after capacitation was negatively correlated with the litter size of Landrace pigs and the overall accuracy was 75%. Moreover, average litter size was significantly altered according to different combined H33258/CTC staining parameters. Conclusion These results show that combined H33258/CTC staining may be used to predict male fertility in various breeds. However, the selection of specific efficiency combined H33258/CTC staining parameters requires further consideration. Taken together, these findings suggest that combined H33258/CTC staining may constitute an alternative method for predicting male fertility until such time as fertility-related biomarkers are further validated.
Collapse
Affiliation(s)
- Woo-Sung Kwon
- Department of Animal Biotechnology, Kyungpook National University, Sangju 37224, Korea
| | - Dong-Ha Shin
- Department of Animal Science & Technology, Chung-Ang University, Anseong 17546, Korea
| | - Do-Yeal Ryu
- Department of Animal Science & Technology, Chung-Ang University, Anseong 17546, Korea
| | - Amena Khatun
- Department of Animal Science & Technology, Chung-Ang University, Anseong 17546, Korea
| | - Md Saidur Rahman
- Department of Animal Science & Technology, Chung-Ang University, Anseong 17546, Korea
| | - Myung-Geol Pang
- Department of Animal Science & Technology, Chung-Ang University, Anseong 17546, Korea
| |
Collapse
|
58
|
Chauhan DS, Swain DK, Shah N, Yadav HP, Sharma A, Yadav B, Yadav S, Nigam R, Garg SK. Modulation of voltage-gated sodium channels induces capacitation in bull spermatozoa through phosphorylation of tyrosine containing proteins. Theriogenology 2017; 108:207-216. [PMID: 29248843 DOI: 10.1016/j.theriogenology.2017.11.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 10/31/2017] [Accepted: 11/21/2017] [Indexed: 11/16/2022]
Abstract
In our previous study, we have reported the molecular presence of Nav 1.8 in bull spermatozoa and its potential involvement in regulation of sperm functions. With the selective blocking of Nav 1.8 using A-803467, alterations in sperm functions were observed, therefore, we envisaged of investigating the involvement of Nav in regulating sperm function and the mechanism(s) involved in it using veratridine, a selective opener of Nav channels. Forty ejaculates were collected from four Hariana bulls and semen samples were pooled in view of the non-significant variations between the different ejaculates. Treatment of sperm cells with veratridine (6, 8, and 10 μM) resulted in concentration- and time-dependent increase in forward progressive sperm motility and it persisted up to 6 h. However, hyperactive motility was induced by veratridine at higher concentrations (8 and 10 μM) and after 2 h of incubation, which was confirmed by subjective assessment followed by chlortetracycline staining showing the increased B-pattern spermatozoa, and thereby suggesting the involvement of Nav in regulation of capacitation in spermatozoa. To substantiate the functional study observations especially veratridine-induced capacitation, immunoblotting and indirect immune fluorescence assays were performed for detection of the tyrosine-phosphorylated proteins. The immune blot study revealed the presence of five tyrosine phosphorylated proteins, namely-p17, p30, p54, p90 and p100. The p17 protein showed the highest band intensity compared to other protein bands indicating its potential involvement in the process of capacitation. Immunolocalization study revealed positive immunoreactivity for tyrosine phosphorylated proteins in the middle piece, post acrosomal region (high fluorescence) and tail of the spermatozoa (low fluorescence). From the results of present study, it is evident that activation of NaV by veratridine, especially at higher concentrations, induced capacitation which is evidently mediated through phosphorylation of the tyrosine containing proteins localized in the post acrosomal regions, middle piece and tail of the spermatozoa. However, further studies will help in unraveling the involvement of Nav and other ion channels regulating different physiological functions of sperm.
Collapse
Affiliation(s)
- Dharmendra Singh Chauhan
- College of Biotechnology, U.P. Pandit Deendayal Upadhayaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan, Mathura, 281001, Uttar Pradesh, India
| | - Dilip Kumar Swain
- Department of Veterinary Physiology, College of Veterinary Science & Animal Husbandry, U.P. Pandit Deendayal Upadhayaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan, Mathura, 281001, Uttar Pradesh, India.
| | - Nadeem Shah
- Department of Veterinary Gynecology & Obstetrics, College of Veterinary Science & Animal Husbandry, U.P. Pandit Deendayal Upadhayaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan, Mathura, 281001, Uttar Pradesh, India
| | - Hanuman Prasad Yadav
- Department of Veterinary Gynecology & Obstetrics, College of Veterinary Science & Animal Husbandry, U.P. Pandit Deendayal Upadhayaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan, Mathura, 281001, Uttar Pradesh, India
| | - Abhishek Sharma
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science & Animal Husbandry, U.P. Pandit Deendayal Upadhayaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan, Mathura, 281001, Uttar Pradesh, India
| | - Brijesh Yadav
- Department of Veterinary Physiology, College of Veterinary Science & Animal Husbandry, U.P. Pandit Deendayal Upadhayaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan, Mathura, 281001, Uttar Pradesh, India
| | - Sarvajeet Yadav
- Department of Veterinary Physiology, College of Veterinary Science & Animal Husbandry, U.P. Pandit Deendayal Upadhayaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan, Mathura, 281001, Uttar Pradesh, India
| | - Rajesh Nigam
- Department of Biochemistry, College of Veterinary Science & Animal Husbandry, U.P. Pandit Deendayal Upadhayaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan, Mathura, 281001, Uttar Pradesh, India
| | - Satish Kumar Garg
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science & Animal Husbandry, U.P. Pandit Deendayal Upadhayaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan, Mathura, 281001, Uttar Pradesh, India
| |
Collapse
|
59
|
Whiston R, Finlay EK, McCabe MS, Cormican P, Flynn P, Cromie A, Hansen PJ, Lyons A, Fair S, Lonergan P, O' Farrelly C, Meade KG. A dual targeted β-defensin and exome sequencing approach to identify, validate and functionally characterise genes associated with bull fertility. Sci Rep 2017; 7:12287. [PMID: 28947819 PMCID: PMC5613009 DOI: 10.1038/s41598-017-12498-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 09/11/2017] [Indexed: 12/30/2022] Open
Abstract
Bovine fertility remains a critical issue underpinning the sustainability of the agricultural sector. Phenotypic records collected on >7,000 bulls used in artificial insemination (AI) were used to identify 160 reliable and divergently fertile bulls for a dual strategy of targeted sequencing (TS) of fertility-related β-defensin genes and whole exome sequencing (WES). A haplotype spanning multiple β-defensin genes and containing 94 SNPs was significantly associated with fertility and functional analysis confirmed that sperm from bulls possessing the haplotype showed significantly enhanced binding to oviductal epithelium. WES of all exons in the genome in 24 bulls of high and low fertility identified 484 additional SNPs significantly associated with fertility. After validation, the most significantly associated SNP was located in the FOXJ3 gene, a transcription factor which regulates sperm function in mice. This study represents the first comprehensive characterisation of genetic variation in bovine β-defensin genes and functional analysis supports a role for β-defensins in regulating bull sperm function. This first application of WES in AI bulls with divergent fertility phenotypes has identified a novel role for the transcription factor FOXJ3 in the regulation of bull fertility. Validated genetic variants associated with bull fertility could prove useful for improving reproductive outcomes in cattle.
Collapse
Affiliation(s)
- Ronan Whiston
- Animal & Bioscience Research Department, Animal & Grassland Research and Innovation Centre, Teagasc, Grange, Co. Meath, Ireland
| | - Emma K Finlay
- Animal & Bioscience Research Department, Animal & Grassland Research and Innovation Centre, Teagasc, Grange, Co. Meath, Ireland
| | - Matthew S McCabe
- Animal & Bioscience Research Department, Animal & Grassland Research and Innovation Centre, Teagasc, Grange, Co. Meath, Ireland
| | - Paul Cormican
- Animal & Bioscience Research Department, Animal & Grassland Research and Innovation Centre, Teagasc, Grange, Co. Meath, Ireland
| | - Paul Flynn
- Weatherbys Scientific, Johnstown, Naas, Co Kildare, Ireland
| | - Andrew Cromie
- Irish Cattle Breeding Federation, Bandon, Co. Cork, Ireland
| | - Peter J Hansen
- Department of Animal Sciences, University of Florida, Gainesville, Florida, USA
| | - Alan Lyons
- Department of Biological Sciences, University of Limerick, Limerick, Ireland
| | - Sean Fair
- Department of Biological Sciences, University of Limerick, Limerick, Ireland
| | - Patrick Lonergan
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Cliona O' Farrelly
- Trinity Biomedical Sciences Institute, Trinity College, Dublin 2, Ireland
| | - Kieran G Meade
- Animal & Bioscience Research Department, Animal & Grassland Research and Innovation Centre, Teagasc, Grange, Co. Meath, Ireland.
| |
Collapse
|
60
|
Rahman MS, Kwon WS, Pang MG. Prediction of male fertility using capacitation-associated proteins in spermatozoa. Mol Reprod Dev 2017; 84:749-759. [DOI: 10.1002/mrd.22810] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 03/28/2017] [Indexed: 12/17/2022]
Affiliation(s)
- Md Saidur Rahman
- Department of Animal Science and Technology; Chung-Ang University; Anseong Republic of Korea
| | - Woo-Sung Kwon
- Department of Animal Science and Technology; Chung-Ang University; Anseong Republic of Korea
| | - Myung-Geol Pang
- Department of Animal Science and Technology; Chung-Ang University; Anseong Republic of Korea
| |
Collapse
|
61
|
Van Tran L, Malla BA, Kumar S, Tyagi AK. Polyunsaturated Fatty Acids in Male Ruminant Reproduction - A Review. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2017; 30:622-637. [PMID: 26954196 PMCID: PMC5411821 DOI: 10.5713/ajas.15.1034] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 01/23/2016] [Accepted: 02/29/2016] [Indexed: 11/27/2022]
Abstract
Fatty acids such as n-3 and n-6 polyunsaturated fatty acids (PUFA) are critical nutrients, used to improve male reproductive performance through modification of fatty acid profile and maintenance of sperm membrane integrity, especially under cold shock or cryopreservation condition. Also, PUFA provide the precursors for prostaglandin synthesis and can modulate the expression patterns of many key enzymes involved in both prostaglandin and steroid metabolism. Many studies carried out on diets supplemented with PUFA have demonstrated their capability to sustain sperm motility, viability and fertility during chilling and freezing as well as improving testis development and spermatogenesis in a variety of livestock species. In addition to the type and quantity of dietary fatty acids, ways of addition of PUFA to diet or semen extender is very crucial as it has different effects on semen quality in male ruminants. Limitation of PUFA added to ruminant ration is due to biohydrogenation by rumen microorganisms, which causes conversion of unsaturated fatty acids to saturated fatty acids, leading to loss of PUFA quantity. Thus, many strategies for protecting PUFA from biohydrogenation in rumen have been developed over the years. This paper reviews four aspects of PUFA in light of previous research including rumen metabolism, biological roles, influence on reproduction, and strategies to use in male ruminants.
Collapse
Affiliation(s)
- Len Van Tran
- Southern Agricuture College, My Tho City, Tien Giang, Vietnam
| | - Bilal Ahmad Malla
- Division of Dairy Cattle Nutrition, National Dairy Research Institute, Karnal, Haryana-132001, India
| | - Sachin Kumar
- Division of Dairy Cattle Nutrition, National Dairy Research Institute, Karnal, Haryana-132001, India
| | - Amrish Kumar Tyagi
- Division of Dairy Cattle Nutrition, National Dairy Research Institute, Karnal, Haryana-132001, India
| |
Collapse
|
62
|
Kwon WS, Rahman MS, Ryu DY, Khatun A, Pang MG. Comparison of markers predicting litter size in different pig breeds. Andrology 2017; 5:568-577. [DOI: 10.1111/andr.12332] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 12/22/2016] [Accepted: 12/27/2016] [Indexed: 12/25/2022]
Affiliation(s)
- W.-S. Kwon
- Department of Animal Science & Technology; Chung-Ang University; Anseong Gyeonggi-Do Korea
| | - M. S. Rahman
- Department of Animal Science & Technology; Chung-Ang University; Anseong Gyeonggi-Do Korea
| | - D.-Y. Ryu
- Department of Animal Science & Technology; Chung-Ang University; Anseong Gyeonggi-Do Korea
| | - A. Khatun
- Department of Animal Science & Technology; Chung-Ang University; Anseong Gyeonggi-Do Korea
| | - M.-G. Pang
- Department of Animal Science & Technology; Chung-Ang University; Anseong Gyeonggi-Do Korea
| |
Collapse
|
63
|
Lin YH, Ke CC, Wang YY, Chen MF, Chen TM, Ku WC, Chiang HS, Yeh CH. RAB10 Interacts with the Male Germ Cell-Specific GTPase-Activating Protein during Mammalian Spermiogenesis. Int J Mol Sci 2017; 18:ijms18010097. [PMID: 28067790 PMCID: PMC5297731 DOI: 10.3390/ijms18010097] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 12/02/2016] [Accepted: 12/15/2016] [Indexed: 01/23/2023] Open
Abstract
According to recent estimates, 2%–15% of couples are sterile, and approximately half of the infertility cases are attributed to male reproductive factors. However, the reasons remain undefined in approximately 25% of male infertility cases, and most infertility cases exhibit spermatogenic defects. Numerous genes involved in spermatogenesis still remain unknown. We previously identified Male Germ Cells Rab GTPase-Activating Proteins (MGCRABGAPs) through cDNA microarray analysis of human testicular tissues with spermatogenic defects. MGCRABGAP contains a conserved RABGAP catalytic domain, TBC (Tre2/Bub2/Cdc16). RABGAP family proteins regulate cellular function (e.g., cytoskeletal remodeling, vesicular trafficking, and cell migration) by inactivating RAB proteins. MGCRABGAP is a male germ cell-specific protein expressed in elongating and elongated spermatids during mammalian spermiogenesis. The purpose of this study was to identify proteins that interact with MGCRABGAP during mammalian spermiogenesis using a proteomic approach. We found that MGCRABGAP exhibited GTPase-activating bioability, and several MGCRABGAP interactors, possible substrates (e.g., RAB10, RAB5C, and RAP1), were identified using co-immunoprecipitation (co-IP) and nano liquid chromatography-mass spectrometry/mass spectrometry (nano LC-MS/MS). We confirmed the binding ability between RAB10 and MGCRABGAP via co-IP. Additionally, MGCRABGAP–RAB10 complexes were specifically colocalized in the manchette structure, a critical structure for the formation of spermatid heads, and were slightly expressed at the midpiece of mature spermatozoa. Based on these results, we propose that MGCRABGAP is involved in mammalian spermiogenesis by modulating RAB10.
Collapse
Affiliation(s)
- Ying-Hung Lin
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu-Jen Catholic University, New Taipei City 24205, Taiwan.
| | - Chih-Chun Ke
- Department of Urology, En Chu Kong Hospital, New Taipei City 23702, Taiwan.
| | - Ya-Yun Wang
- Department of Chemistry, Fu Jen Catholic University, New Taipei City 24205, Taiwan.
| | - Mei-Feng Chen
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan.
| | - Tsung-Ming Chen
- Department and Graduate Institute of Aquaculture, National Kaohsiung Marine University, Kaohsiung 81157, Taiwan.
| | - Wei-Chi Ku
- School of Medicine, Fu Jen Catholic University, New Taipei City 24205, Taiwan.
| | - Han-Sun Chiang
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu-Jen Catholic University, New Taipei City 24205, Taiwan.
| | - Chung-Hsin Yeh
- Division of Urology, Department of Surgery, Shin-Kong Wu-Su Memorial Hospital, Taipei 11101, Taiwan.
| |
Collapse
|
64
|
Histological and transcriptome analyses of testes from Duroc and Meishan boars. Sci Rep 2016; 6:20758. [PMID: 26865000 PMCID: PMC4749976 DOI: 10.1038/srep20758] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 01/07/2016] [Indexed: 12/14/2022] Open
Abstract
Meishan boars are known for their early sexual maturity. However, they exhibit a significantly smaller testicular size and a reduced proportion of Sertoli cells and daily sperm production compared with Duroc boars. The testes of Duroc and Meishan boars at 20, 75 and 270 days of age were used for histological and transcriptome analyses. Haematoxylin-eosin staining was conducted to observe histological structure of the testes in Duroc and Meishan boars at different ages. Although spermatogenesis occurred prior to 75 days in Meishan boars, the number of spermatogonia and Sertoli cells in Meishan boars were less than in Duroc boars at adulthood. The diameters of the seminiferous tubules of the testes differed significantly during the initiation of development of the seminiferous tubules between the two breeds. We obtained differentially expressed functional genes and analysed seven pathways involved in male sexual maturity and spermatogenesis using RNA-seq. We also detected four main alternative splicing events and many single nucleotide polymorphisms from testes. Eight functionally important genes were validated by qPCR, and Neurotrophin 3 was subjected to quantification and cellular localization analysis. Our study provides the first transcriptome evidence for the differences in sexual function development between Meishan and Duroc boars.
Collapse
|