51
|
Lin CY, Huang T, Zhao L, Zhong LLD, Lam WC, Fan BM, Bian ZX. Circulating Spexin Levels Negatively Correlate With Age, BMI, Fasting Glucose, and Triglycerides in Healthy Adult Women. J Endocr Soc 2018; 2:409-419. [PMID: 29687092 PMCID: PMC5905385 DOI: 10.1210/js.2018-00020] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 03/29/2018] [Indexed: 12/15/2022] Open
Abstract
Context Spexin is a newly identified neuropeptide that is involved in satiety control, glucose, and lipids metabolism. It has also been related to human diseases, such as obesity and type 2 diabetes. However, whether spexin changes with age or not is still unclear. Objective The aim of this study is to investigate the relationship between circulating spexin levels and age and to study their interaction effects on body mass index (BMI), fasting glucose, and -lipids. Design and Participants This is a cross-sectional study, including 68 healthy adult women whose ages are in a wide range (minimum: 23; median: 38.5; maximum: 64). Outcome Measures The serum spexin levels were measured by an enzyme-linked immunosorbent assay. Fasting glucose, total cholesterol, triglycerides (TG), alkaline phosphatase, alanine aminotransferase, aspartate aminotransferase, urea, and creatinine were measured by routine biochemical test. Shapiro-Wilk’s test, Spearman and Pearson correlation analyses, χ2 test, and two-way analysis of variance were used to interpret the data. Results Serum spexin levels are significantly correlated with age (Spearman r = −0.277, P = 0.022), BMI (Spearman r = −0.445, P < 0.001), fasting glucose (Spearman r = −0.302, P = 0.014), and TG (Spearman r = −0.324, P = 0.008). Spexin levels independently predict the risk of high BMI and high fasting glucose. No interaction effects of spexin and age on BMI and fasting glucose were found. Conclusions Circulating spexin levels decrease with age, suggesting a possible role of this peptide in aging-related functions and disorders. Further investigations are needed to expand the clinical significance of this finding.
Collapse
Affiliation(s)
- Cheng-Yuan Lin
- Institute of Brain and Gut Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong Special Administrative Region, China.,Hong Kong Chinese Medicine Clinical Study Centre, Hong Kong Baptist University, Hong Kong Special Administrative Region, China.,Yunnan Minzu University-Hong Kong Baptist University Joint Laboratory of Traditional Natural Medicine, Yunnan Minzu University, Kunming, China
| | - Tao Huang
- Institute of Brain and Gut Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong Special Administrative Region, China.,Hong Kong Chinese Medicine Clinical Study Centre, Hong Kong Baptist University, Hong Kong Special Administrative Region, China
| | - Ling Zhao
- Institute of Brain and Gut Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong Special Administrative Region, China.,Hong Kong Chinese Medicine Clinical Study Centre, Hong Kong Baptist University, Hong Kong Special Administrative Region, China
| | - Linda L D Zhong
- Institute of Brain and Gut Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong Special Administrative Region, China.,Hong Kong Chinese Medicine Clinical Study Centre, Hong Kong Baptist University, Hong Kong Special Administrative Region, China
| | - Wai Ching Lam
- Institute of Brain and Gut Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong Special Administrative Region, China.,Hong Kong Chinese Medicine Clinical Study Centre, Hong Kong Baptist University, Hong Kong Special Administrative Region, China
| | - Bao-Min Fan
- Yunnan Minzu University-Hong Kong Baptist University Joint Laboratory of Traditional Natural Medicine, Yunnan Minzu University, Kunming, China
| | - Zhao-Xiang Bian
- Institute of Brain and Gut Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong Special Administrative Region, China.,Hong Kong Chinese Medicine Clinical Study Centre, Hong Kong Baptist University, Hong Kong Special Administrative Region, China
| |
Collapse
|
52
|
Pałasz A, Janas-Kozik M, Borrow A, Arias-Carrión O, Worthington JJ. The potential role of the novel hypothalamic neuropeptides nesfatin-1, phoenixin, spexin and kisspeptin in the pathogenesis of anxiety and anorexia nervosa. Neurochem Int 2018; 113:120-136. [DOI: 10.1016/j.neuint.2017.12.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 12/13/2017] [Accepted: 12/14/2017] [Indexed: 02/07/2023]
|
53
|
Sternberg F, Vidali S, Holub BS, Stockinger J, Brunner SM, Ebner S, Koller A, Trost A, Reitsamer HA, Schwarzenbacher D, Lang R, Kofler B. Lack of Galanin Receptor 3 Alleviates Psoriasis by Altering Vascularization, Immune Cell Infiltration, and Cytokine Expression. J Invest Dermatol 2018; 138:199-207. [PMID: 28844939 DOI: 10.1016/j.jid.2017.08.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 07/26/2017] [Accepted: 08/01/2017] [Indexed: 01/30/2023]
Abstract
The neuropeptide galanin is distributed in the central and peripheral nervous systems and in non-neuronal peripheral organs, including the skin. Galanin acts via three G protein-coupled receptors which, except galanin receptor 1, are expressed in various skin structures. The galanin system has been associated with inflammatory processes of the skin and of several other organs. Psoriasis is an inflammatory skin disease with increased neovascularization, keratinocyte hyperproliferation, a proinflammatory cytokine milieu, and immune cell infiltration. In this study, we showed that galanin receptor 3 is present in endothelial cells in human and murine dermal vessels and is co-expressed with nestin in neo-vessels of psoriatic patients. Moreover, in a murine psoriasis model, we showed that C57/BL6 mice lacking galanin receptor 3 display a milder course of psoriasis upon imiquimod treatment, leading to decreased disease severity, delayed neo-vascularization, reduced infiltration of neutrophils, and significantly lower levels of proinflammatory cytokines compared with wild-type mice. In contrast, galanin receptor 2-knockout animals did not differ significantly from wild type mice at both the macroscopic and molecular levels in their inflammatory response to imiquimod treatment. Our data indicate that galanin receptor 3, but not galanin receptor 2, plays an important role in psoriasis-like skin inflammation.
Collapse
Affiliation(s)
- Felix Sternberg
- Laura Bassi Centre of Expertise-THERAPEP, Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, Paracelsus Medical University, Salzburg, Austria
| | - Silvia Vidali
- Laura Bassi Centre of Expertise-THERAPEP, Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, Paracelsus Medical University, Salzburg, Austria
| | - Barbara S Holub
- Laura Bassi Centre of Expertise-THERAPEP, Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, Paracelsus Medical University, Salzburg, Austria; Department of Dermatology, Paracelsus Medical University, Salzburg, Austria
| | - Julia Stockinger
- Laura Bassi Centre of Expertise-THERAPEP, Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, Paracelsus Medical University, Salzburg, Austria
| | - Susanne M Brunner
- Laura Bassi Centre of Expertise-THERAPEP, Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, Paracelsus Medical University, Salzburg, Austria
| | - Sabine Ebner
- Laura Bassi Centre of Expertise-THERAPEP, Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, Paracelsus Medical University, Salzburg, Austria
| | - Andreas Koller
- Laura Bassi Centre of Expertise-THERAPEP, Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, Paracelsus Medical University, Salzburg, Austria
| | - Andrea Trost
- Department of Ophthalmology/Optometry, Research Program Experimental Ophthalmology, Paracelsus Medical University Salzburg, Austria
| | - Herbert A Reitsamer
- Department of Ophthalmology/Optometry, Research Program Experimental Ophthalmology, Paracelsus Medical University Salzburg, Austria
| | - David Schwarzenbacher
- Laura Bassi Centre of Expertise-THERAPEP, Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, Paracelsus Medical University, Salzburg, Austria
| | - Roland Lang
- Department of Dermatology, Paracelsus Medical University, Salzburg, Austria
| | - Barbara Kofler
- Laura Bassi Centre of Expertise-THERAPEP, Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, Paracelsus Medical University, Salzburg, Austria.
| |
Collapse
|
54
|
Moazen P, Taherianfard M, Ahmadi Soleimani M, Norozpor M. Synergistic effect of spexin and progesterone on pain sensitivity attenuation in ovariectomized rats. Clin Exp Pharmacol Physiol 2017; 45:349-354. [PMID: 28949407 DOI: 10.1111/1440-1681.12862] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 08/25/2017] [Accepted: 09/10/2017] [Indexed: 11/30/2022]
Abstract
Spexin is a central modulator of nociception. The aim of the present study was to investigate the effect of intra-hippocampal CA3 (IHCA3) injection of spexin and spexin-progesterone co-administration on pain sensitivity in ovariectomized rat. Thirty-five adult female rats were divided into five groups. Sham: the animals received injection of 0.5 μL ACSF by IHCA3. Experiments 1 and 2: the animals received injection of 0.5 μL of spexin bilaterally (10 and 30 nmol/rat respectively). Experiments 3 and 4: the animals received injection of 0.5 μL of spexin bilaterally (10 and 30 nmol/rat respectively) + subcutaneous (s.c.) injection of progesterone (5 mg/kg). Ovariectomy was performed in all groups to eliminate the effects of cyclic changes in the female rats. The formalin test (formalin 2.5%) was performed following the administration of spexin and progesterone. Results showed that bilateral injection of spexin in IHCA3 at both concentrations a significant (P < .05) decrease in the pain sensitivity in the two phases of formalin test. Similarly, the bilateral injection of spexin in IHCA3 at both concentrations following the s.c. injection of progesterone significantly (P < .05) decreases pain sensitivity in two phases of the formalin test. This pain attenuation due to the co-administration of spexin and progesterone was more potent than spexin-induced analgesia. According to the present results, spexin has a modulatory effect on pain sensitivity, which becomes more pronounced by progesterone administration.
Collapse
Affiliation(s)
- Parisa Moazen
- Department of Physiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Mahnaz Taherianfard
- Department of Physiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | | | - Mitra Norozpor
- Department of Physiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| |
Collapse
|
55
|
Spexin Suppress Food Intake in Zebrafish: Evidence from Gene Knockout Study. Sci Rep 2017; 7:14643. [PMID: 29116147 PMCID: PMC5677112 DOI: 10.1038/s41598-017-15138-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 10/19/2017] [Indexed: 11/08/2022] Open
Abstract
Spexin1 (SPX1) is a newly discovered neuropeptide in vertebrates. Its biological function remains to be elucidated. In this study, we have generated the zebrafish spx1 -/- mutant lines using transcription activator-like effector nucleases. Phenotypes of the spx1 -/- mutant zebrafish were analyzed in order to understand the effects on reproduction and food intake. The reproductive capability is not impaired in spx1 mutant zebrafish. However, we found that the spx1 -/- mutant fish had a higher food intake than the wild type (WT) fish. Real-time PCR revealed that the expression level of agouti-relate protein 1 (AgRP1), a significant appetite stimulant, was significantly higher in spx1 -/- mutant fish after feeding. Intracranial administration of SPX1 could also reduce the mRNA expression of the AgRP1. These data suggest that SPX1 might decrease the food intake by down regulating the expression level of agrp1. Furthermore, spx1 -/- mutant fish exhibited higher glucose, triacylglycerol and cholesterol in the serum than WT fish. However, the hyperphagia did not lead to a higher growth rate or body fat percentage. Taken together, our study suggests that SPX1 may serve as a satiety signal molecular by suppressing the AgRP1 in the brain.
Collapse
|
56
|
Furlong M, Seong JY. Evolutionary and Comparative Genomics to Drive Rational Drug Design, with Particular Focus on Neuropeptide Seven-Transmembrane Receptors. Biomol Ther (Seoul) 2017; 25:57-68. [PMID: 28035082 PMCID: PMC5207463 DOI: 10.4062/biomolther.2016.199] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 11/03/2016] [Accepted: 11/15/2016] [Indexed: 12/18/2022] Open
Abstract
Seven transmembrane receptors (7TMRs), also known as G protein-coupled receptors, are popular targets of drug development, particularly 7TMR systems that are activated by peptide ligands. Although many pharmaceutical drugs have been discovered via conventional bulk analysis techniques the increasing availability of structural and evolutionary data are facilitating change to rational, targeted drug design. This article discusses the appeal of neuropeptide-7TMR systems as drug targets and provides an overview of concepts in the evolution of vertebrate genomes and gene families. Subsequently, methods that use evolutionary concepts and comparative analysis techniques to aid in gene discovery, gene function identification, and novel drug design are provided along with case study examples.
Collapse
Affiliation(s)
- Michael Furlong
- Graduate School of Biomedical Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Jae Young Seong
- Graduate School of Biomedical Sciences, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
57
|
Webling K, Runesson J, Lang A, Saar I, Kofler B, Langel Ü. Ala 5-galanin (2-11) is a GAL 2R specific galanin analogue. Neuropeptides 2016; 60:75-82. [PMID: 27592409 DOI: 10.1016/j.npep.2016.08.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 08/11/2016] [Accepted: 08/22/2016] [Indexed: 12/18/2022]
Abstract
It is over 30years since the regulatory peptide galanin was discovered by Professor Mutt and co-workers. Galanin exerts its effects by binding to three galanin G-protein coupled receptors, namely GAL1R, GAL2R and GAL3R. Each galanin receptor has a different distribution in the central nervous system and the peripheral nervous system as well as distinctive signaling pathways, which implicates that the receptors are involved in different biological- and pathological effects. The delineation of the galaninergic system is however difficult due to a lack of stable, specific galanin receptor ligands. Herein, a new short GAL2R specific ligand, Ala5-galanin (2-11), is presented. The galanin (2-11) modified analogue Ala5-galanin (2-11) was tested in 125I-galanin competitive binding studies for the three galanin receptors and the G-protein coupled receptor signaling properties was tested by the ability to influence second-messenger molecules like inositol phosphate and cyclic adenosine monophosphate. In addition, two different label-free real-time assays, namely EnSpire® based on an optical biosensor and xCELLigence® based on an electric biosensor, were used for evaluating the signaling properties using cell lines with different levels of receptor expression. Ala5-galanin (2-11) was subsequently found to be a full agonist for GAL2R with more than 375-fold preference for GAL2R compared to both GAL1R and GAL3R. The single amino acid substitution of serine to alanine at position 5 in the short ligand galanin (2-11) resulted in a ligand subsequently unable to bind neither GAL3R nor GAL1R, even at concentrations as high as 0.1mM.
Collapse
Affiliation(s)
- Kristin Webling
- Department of Neurochemistry, Stockholm University, Svante Arrheniusv. 16B, SE-10691 Stockholm, Sweden.
| | - Johan Runesson
- Department of Neurochemistry, Stockholm University, Svante Arrheniusv. 16B, SE-10691 Stockholm, Sweden
| | - Andreas Lang
- Research Program for Receptorbiochemistry and Tumormetabolism, Laura Bassi Centre of Expertise THERAPEP, Department of Pediatrics, University Hospital Salzburg, Paracelsus Medical University, Müllner Hauptstr. 48, A-5020 Salzburg, Austria
| | - Indrek Saar
- Institute of Technology, University of Tartu, Nooruse 1, 50411 Tartu, Estonia
| | - Barbara Kofler
- Research Program for Receptorbiochemistry and Tumormetabolism, Laura Bassi Centre of Expertise THERAPEP, Department of Pediatrics, University Hospital Salzburg, Paracelsus Medical University, Müllner Hauptstr. 48, A-5020 Salzburg, Austria
| | - Ülo Langel
- Department of Neurochemistry, Stockholm University, Svante Arrheniusv. 16B, SE-10691 Stockholm, Sweden; Institute of Technology, University of Tartu, Nooruse 1, 50411 Tartu, Estonia
| |
Collapse
|
58
|
Galanin subtype 1 and subtype 2 receptors mediate opposite anxiety-like effects in the rat dorsal raphe nucleus. Behav Brain Res 2016; 314:125-33. [DOI: 10.1016/j.bbr.2016.08.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 08/01/2016] [Accepted: 08/03/2016] [Indexed: 01/09/2023]
|
59
|
Sadowska-Bartosz I, Bartosz G. Effect of glycation inhibitors on aging and age-related diseases. Mech Ageing Dev 2016; 160:1-18. [PMID: 27671971 DOI: 10.1016/j.mad.2016.09.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 06/30/2016] [Accepted: 09/21/2016] [Indexed: 02/07/2023]
Abstract
Vast evidence supports the view that glycation of proteins is one of the main factors contributing to aging and is an important element of etiopathology of age-related diseases, especially type 2 diabetes mellitus, cataract and neurodegenerative diseases. Counteracting glycation can therefore be a means of increasing both the lifespan and healthspan. In this review, accumulation of glycation products during aging is presented, pathophysiological effects of glycation are discussed and ways of attenuation of the effects of glycation are described, concentrating on prevention of glycation. The effects of glycation and glycation inhibitors on the course of selected age-related diseases, such as Alzheimer's disease, Parkinson's disease and cataract are also reviewed.
Collapse
Affiliation(s)
- Izabela Sadowska-Bartosz
- Department of Biochemistry and Cell Biology, Faculty of Biology and Agriculture, University of Rzeszow, Zelwerowicza St. 4, 35-604 Rzeszów, Poland.
| | - Grzegorz Bartosz
- Department of Biochemistry and Cell Biology, Faculty of Biology and Agriculture, University of Rzeszow, Zelwerowicza St. 4, 35-604 Rzeszów, Poland; Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland
| |
Collapse
|