51
|
Prabhu Kumar K, Vasantha Kumar B, Kumar PR, Butcher RJ, Vivek H, Suchetan P, Revanasiddappa H, Foro S. Synthesis, characterization, CT‐DNA binding and docking studies of novel selenated ligands and their palladium complexes. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5634] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- K.M. Prabhu Kumar
- Department of Studies and Research in ChemistryTumkur University Tumkur Karnataka 572 103 India
| | - B.C. Vasantha Kumar
- Department of Studies in ChemistryUniversity of Mysore Mysuru Karnataka 570 006 India
| | - P. Raghavendra Kumar
- Department of Studies and Research in ChemistryTumkur University Tumkur Karnataka 572 103 India
| | | | - H.K. Vivek
- Faculty of Natural SciencesAdichunchanagiri University B. G. Ngara Mandya Karnataka India
| | - P.A. Suchetan
- Department of Studies and Research in ChemistryTumkur University Tumkur Karnataka 572 103 India
| | - H.D. Revanasiddappa
- Department of Studies in ChemistryUniversity of Mysore Mysuru Karnataka 570 006 India
| | - Sabine Foro
- Institute of Materials ScienceDarmstadt University of Technology Petersenstr. 23 D‐64287 Darmstadt Germany
| |
Collapse
|
52
|
The Mammalian High Mobility Group Protein AT-Hook 2 (HMGA2): Biochemical and Biophysical Properties, and Its Association with Adipogenesis. Int J Mol Sci 2020; 21:ijms21103710. [PMID: 32466162 PMCID: PMC7279267 DOI: 10.3390/ijms21103710] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 04/30/2020] [Accepted: 05/12/2020] [Indexed: 12/11/2022] Open
Abstract
The mammalian high-mobility-group protein AT-hook 2 (HMGA2) is a small DNA-binding protein and consists of three “AT-hook” DNA-binding motifs and a negatively charged C-terminal motif. It is a multifunctional nuclear protein directly linked to obesity, human height, stem cell youth, human intelligence, and tumorigenesis. Biochemical and biophysical studies showed that HMGA2 is an intrinsically disordered protein (IDP) and could form homodimers in aqueous buffer solution. The “AT-hook” DNA-binding motifs specifically bind to the minor groove of AT-rich DNA sequences and induce DNA-bending. HMGA2 plays an important role in adipogenesis most likely through stimulating the proliferative expansion of preadipocytes and also through regulating the expression of transcriptional factor Peroxisome proliferator-activated receptor γ (PPARγ) at the clonal expansion step from preadipocytes to adipocytes. Current evidence suggests that a main function of HMGA2 is to maintain stemness and renewal capacity of stem cells by which HMGA2 binds to chromosome and lock chromosome into a specific state, to allow the human embryonic stem cells to maintain their stem cell potency. Due to the importance of HMGA2 in adipogenesis and tumorigenesis, HMGA2 is considered a potential therapeutic target for anticancer and anti-obesity drugs. Efforts are taken to identify inhibitors targeting HMGA2.
Collapse
|
53
|
Aubry C, Clerici P, Gerbaud C, Micouin L, Pernodet JL, Lautru S. Revised Structure of Anthelvencin A and Characterization of the Anthelvencin Biosynthetic Gene Cluster. ACS Chem Biol 2020; 15:945-951. [PMID: 32129986 DOI: 10.1021/acschembio.9b00960] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Anthelvencins A and B are pyrrolamide metabolites produced by Streptomyces venezuelae ATCC 14583 and 14585. Isolated in 1965, they were reported to exhibit anthelmintic and moderate antibacterial activities. In this study, we revise the structure of anthelvencin A and identify a third anthelvencin metabolite, bearing two N-methylated pyrrole groups, which we named anthelvencin C. We sequenced the genome of S. venezuelae ATCC 14583 and identified a gene cluster predicted to direct the biosynthesis of anthelvencins. Functional analysis of this gene cluster confirmed its involvement in anthelvencin biosynthesis and allowed us to propose a biosynthetic pathway for anthelvencins. In addition to a nonribosomal peptide synthetase (NRPS), the assembly of anthelvencins involves an enzyme from the ATP-grasp ligase family, Ant23. We propose that Ant23 uses a PCP-loaded 4-aminopyrrole-2-carboxylate as substrate. As observed for the biosynthesis of the other pyrrolamides congocidine (produced by Streptomyces ambofaciens ATCC 25877) and distamycin (produced by Streptomyces netropsis DSM 40846), the NRPS assembling anthelvencins is composed of stand-alone domains only. Such NRPSs, sometimes called type II NRPSs, are less studied than the classical multimodular NRPSs. Yet, they constitute an interesting model to study protein-protein interactions in NRPSs and are good candidates for combinatorial biosynthesis approaches.
Collapse
Affiliation(s)
- Céline Aubry
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Paolo Clerici
- Université de Paris, Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, LCBPT, UMR 8601 CNRS, F-75006 Paris, France
| | - Claude Gerbaud
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Laurent Micouin
- Université de Paris, Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, LCBPT, UMR 8601 CNRS, F-75006 Paris, France
| | - Jean-Luc Pernodet
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Sylvie Lautru
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| |
Collapse
|
54
|
Fudickar W, Linker T. Structural motives controlling the binding affinity of 9,10-bis(methylpyridinium)anthracenes towards DNA. Bioorg Med Chem 2020; 28:115432. [DOI: 10.1016/j.bmc.2020.115432] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/20/2020] [Accepted: 03/02/2020] [Indexed: 10/24/2022]
|
55
|
Fuentes L, Quiroga AG, Organero JA, Matesanz AI. Exploring DNA binding ability of two novel α-N-heterocyclic thiosemicarbazone palladium(II) complexes. J Inorg Biochem 2020; 203:110875. [DOI: 10.1016/j.jinorgbio.2019.110875] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 09/16/2019] [Accepted: 10/01/2019] [Indexed: 12/15/2022]
|
56
|
Franco J, Scarone L, Comini MA. Novel distamycin analogues that block the cell cycle of African trypanosomes with high selectivity and potency. Eur J Med Chem 2020; 189:112043. [PMID: 31978782 DOI: 10.1016/j.ejmech.2020.112043] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/03/2019] [Accepted: 01/06/2020] [Indexed: 02/07/2023]
Abstract
Polyamides-based compounds related to the Streptomycetal distamycin and netropsin are potent cytostatic molecules that bind to AT-rich regions of the minor groove of the DNA, hence interfering with DNA replication and transcription. Recently, derivatives belonging to this scaffold have been reported to halt the proliferation of deadly African trypanosomes by different and unrelated mechanisms. Here we describe the synthesis and preliminary characterization of the anti-trypanosomal mode of action of new potent and selective distamycin analogues. Two tri-heterocyclic derivatives containing a central N-methyl pyrrole ring (16 and 17) displayed high activity (EC50 < 20 nM) and selectivity (selectivity index >5000 with respect to mammalian macrophages) against the infective form of T. brucei. Both compounds caused cell cycle arrest by blocking the replication of the mitochondrial DNA but without affecting its integrity. This mode of action clearly differs from that reported for classical minor groove binder (MGB) drugs, which induce the degradation of the mitochondrial DNA. In line with this, in vitro assays suggest that 16 and 17 have a comparatively lower affinity for different template DNAs than the MGB drug diminazene. Therapeutic efficacy studies and stability assays suggest that the pharmacological properties of the hits should be optimized. The compounds can be rated as excellent scaffolds for the design of highly potent and selective anti-T. brucei agents.
Collapse
Affiliation(s)
- Jaime Franco
- Laboratorio de Química Farmacéutica, Departamento de Química Orgánica, Facultad de Química, Universidad de la República, Montevideo, Uruguay; Group Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Laura Scarone
- Laboratorio de Química Farmacéutica, Departamento de Química Orgánica, Facultad de Química, Universidad de la República, Montevideo, Uruguay.
| | - Marcelo A Comini
- Group Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, Montevideo, Uruguay.
| |
Collapse
|
57
|
Đud M, Glasovac Z, Margetić D, Piantanida I. Guanidino-aryl derivatives: protonation and structure tuning for spectrophotometric recognition of ds-DNA and ds-RNA. NEW J CHEM 2020. [DOI: 10.1039/d0nj01879a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fine interplay between protonation of guanidine and size of Aryl controls DNA/RNA recognition and fluorimetric or CD response.
Collapse
Affiliation(s)
- Mateja Đud
- Laboratory for Physical Organic Chemistry
- Division of Organic Chemistry & Biochemistry
- Ruđer Bošković Institute
- HR 10002 Zagreb
- Croatia
| | - Zoran Glasovac
- Laboratory for Physical Organic Chemistry
- Division of Organic Chemistry & Biochemistry
- Ruđer Bošković Institute
- HR 10002 Zagreb
- Croatia
| | - Davor Margetić
- Laboratory for Physical Organic Chemistry
- Division of Organic Chemistry & Biochemistry
- Ruđer Bošković Institute
- HR 10002 Zagreb
- Croatia
| | - Ivo Piantanida
- Laboratory for Biomolecular Interactions and Spectroscopy
- Division of Organic Chemistry & Biochemistry, Ruđer Bošković Institute
- HR 10002 Zagreb
- Croatia
| |
Collapse
|
58
|
Collings CK, Little DW, Schafer SJ, Anderson JN. HIV chromatin is a preferred target for drugs that bind in the DNA minor groove. PLoS One 2019; 14:e0216515. [PMID: 31887110 PMCID: PMC6936835 DOI: 10.1371/journal.pone.0216515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 12/03/2019] [Indexed: 12/25/2022] Open
Abstract
The HIV genome is rich in A but not G or U and deficient in C. This nucleotide bias controls HIV phenotype by determining the highly unusual composition of all major HIV proteins. The bias is also responsible for the high frequency of narrow DNA minor groove sites in the double-stranded HIV genome as compared to cellular protein coding sequences and the bulk of the human genome. Since drugs that bind in the DNA minor groove disrupt nucleosomes on sequences that contain closely spaced oligo-A tracts which are prevalent in HIV DNA because of its bias, it was of interest to determine if these drugs exert this selective inhibitory effect on HIV chromatin. To test this possibility, nucleosomes were reconstituted onto five double-stranded DNA fragments from the HIV-1 pol gene in the presence and in the absence of several minor groove binding drugs (MGBDs). The results demonstrated that the MGBDs inhibited the assembly of nucleosomes onto all of the HIV-1 segments in a manner that was proportional to the A-bias, but had no detectable effect on the formation of nucleosomes on control cloned fragments or genomic DNA from chicken and human. Nucleosomes preassembled onto HIV DNA were also preferentially destabilized by the drugs as evidenced by enhanced nuclease accessibility in physiological ionic strength and by the preferential loss of the histone octamer in hyper-physiological salt solutions. The drugs also selectively disrupted HIV-containing nucleosomes in yeast as revealed by enhanced nuclease accessibility of the in vivo assembled HIV chromatin and reductions in superhelical densities of plasmid chromatin containing HIV sequences. A comparison of these results to the density of A-tracts in the HIV genome indicates that a large fraction of the nucleosomes that make up HIV chromatin should be preferred in vitro targets for the MGBDs. These results show that the MGBDs preferentially disrupt HIV-1 chromatin in vitro and in vivo and raise the possibility that non-toxic derivatives of certain MGBDs might serve as a novel class of anti-HIV agents.
Collapse
Affiliation(s)
- Clayton K Collings
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, United States of America.,Broad Institute of MIT and Harvard, Cambridge, MA, United States of America
| | - Donald W Little
- University of Michigan Medical School, Ann Arbor, MI, United States of America
| | - Samuel J Schafer
- Department of Reproductive and Developmental Sciences, University of British Columbia, Vancouver, BC, Canada
| | - John N Anderson
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States of America
| |
Collapse
|
59
|
Khan HY, Tabassum S, Arjmand F. Evaluation of cytotoxic potential of structurally well-characterized RNA targeted ionic non-steroidal anti-inflammatory (NSAID) Cu(ii) & Zn(ii) DACH-mefenamato drug conjugates against human cancer cell lines. RSC Adv 2019; 10:166-178. [PMID: 35492558 PMCID: PMC9048248 DOI: 10.1039/c9ra07464c] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 12/12/2019] [Indexed: 11/21/2022] Open
Abstract
New RNA targeted ionic [Cu(DACH)2(H2O)2](mef)2, 1 and [Zn(DACH)2(H2O)2](mef)2, 2 drug conjugates were synthesized and characterized by spectroscopic techniques FT-IR, UV-vis, EPR in case of 1 and 1H and 13C NMR in case of 2, ESI-MS, thermogravimetric analysis and single-crystal X-ray structure determination in case of 1. The interaction studies of 1 & 2 with most likely drug targets like ctDNA and tRNA were performed which demonstrated that the complexes 1 and 2 exhibited strong preferential binding to tRNA as compared to ctDNA, K b = 2.52(±0.04) × 105 M-1, 7.85(±0.02) × 104 M-1, respectively. Scanning electron microscopy analyses of complex-ctDNA/tRNA condensates suggested the interaction of complexes with ctDNA/tRNA had occurred, followed by lengthening of DNA double helix and bulge region of tRNA. Cytotoxic activity of 1 and 2 against human cancer cell lines namely; MCF-7 (breast), HeLa (cervical), MIA-PA-CA 2 (pancreatic), A-498 (kidney), Hep-G2 (hepatoma) was evaluated by SRB assay. The obtained results showed that copper complex 1 was an outstanding cytotoxic agent with remarkably good GI50 value (<10 μg ml-1) against the tested cancer cell lines except for MIA-PA-CA 2, while zinc complex 2 revealed moderate cytotoxicity against all the tested cancer cell lines.
Collapse
Affiliation(s)
- Huzaifa Yasir Khan
- Department of Chemistry, Aligarh Muslim University Aligarh 202002 Uttar Pradesh India
| | - Sartaj Tabassum
- Department of Chemistry, Aligarh Muslim University Aligarh 202002 Uttar Pradesh India
| | - Farukh Arjmand
- Department of Chemistry, Aligarh Muslim University Aligarh 202002 Uttar Pradesh India
| |
Collapse
|
60
|
Nguyen GTH, Leung WY, Tran TN, Wang H, Murray V, Donald WA. Mechanism for the Binding of Netropsin to Hairpin DNA Revealed Using Nanoscale Ion Emitters in Native Mass Spectrometry. Anal Chem 2019; 92:1130-1137. [PMID: 31778608 DOI: 10.1021/acs.analchem.9b04209] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Netropsin is one of the first ligands to be discovered that selectively binds to the minor groove of DNA and is actively used as a scaffold for developing potential anticancer and antibiotic agents. The mechanism by which netropsin binds to hairpin DNA remains controversial with two competing mechanisms having been proposed. In one mechanism, netropsin binding induces a hairpin-to-duplex DNA transition. Alternatively, netropsin binds in two thermodynamically different modes at a single duplexed AATT site. Here, results from native mass spectrometry (MS) with nanoscale ion emitters indicate that netropsin can simultaneously and sequentially bind to both hairpin and duplex DNA. Duplex DNA was not detected using conventional MS with larger emitters because nanoscale emitters significantly reduce the extent of salt adduction to ligand-DNA complex ions, including in the presence of relatively high concentrations of nonvolatile salts. Based on native MS and polyacrylamide gel electrophoresis results, the abundances of hairpin and duplex DNA are unaffected by the addition of netropsin. By native MS, the binding affinities for five ligand-DNA and DNA-DNA interactions can be rapidly obtained simultaneously. This research indicates a "simultaneous binding mechanism" for the interactions of netropsin with DNA.
Collapse
Affiliation(s)
- Giang T H Nguyen
- School of Chemistry , University of New South Wales , Sydney New South Wales 2052 , Australia
| | - Wai Yu Leung
- School of Biotechnology and Biomolecular Sciences , University of New South Wales , Sydney New South Wales 2052 , Australia
| | - Thinh N Tran
- School of Chemistry , University of New South Wales , Sydney New South Wales 2052 , Australia
| | - Huixin Wang
- School of Chemistry , University of New South Wales , Sydney New South Wales 2052 , Australia.,Mark Wainwright Analytical Centre , University of New South Wales , Sydney New South Wales 2052 , Australia
| | - Vincent Murray
- School of Biotechnology and Biomolecular Sciences , University of New South Wales , Sydney New South Wales 2052 , Australia
| | - William A Donald
- School of Chemistry , University of New South Wales , Sydney New South Wales 2052 , Australia
| |
Collapse
|
61
|
Liu L, Wang F, Tong Y, Li LF, Liu Y, Gao WQ. Pentamidine inhibits prostate cancer progression via selectively inducing mitochondrial DNA depletion and dysfunction. Cell Prolif 2019; 53:e12718. [PMID: 31721355 PMCID: PMC6985668 DOI: 10.1111/cpr.12718] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/17/2019] [Accepted: 10/11/2019] [Indexed: 01/28/2023] Open
Abstract
Objectives We investigated the anti‐cancer activity of pentamidine, an anti‐protozoal cationic aromatic diamidine drug, in prostate cancer cells and aimed to provide valuable insights for improving the efficacy of prostate cancer treatment. Materials and methods Prostate cancer cell lines and epithelial RWPE‐1 cells were used in the study. Cell viability, wound‐healing, transwell and apoptosis assays were examined to evaluate the influences of pentamidine in vitro. RNA‐seq and qPCR were performed to analyse changes in gene transcription levels upon pentamidine treatment. Mitochondrial changes were assessed by measuring mitochondrial DNA content, morphology, membrane potential, cellular glucose uptake, ATP production and ROS generation. Nude mouse xenograft models were used to test anti‐tumour effects of pentamidine in vivo. Results Pentamidine exerted profound inhibitory effects on proliferation, colony formation, migration and invasion of prostate cancer cells. In addition, the drug suppressed growth of xenograft tumours without exhibiting any obvious toxicity in nude mice. Mechanistically, pentamidine caused mitochondrial DNA content reduction and induced mitochondrial morphological changes, mitochondrial membrane potential dissipation, ATP level reduction, ROS production elevation and apoptosis in prostate cancer cells. Conclusions Pentamidine can efficiently suppress prostate cancer progression and may serve as a novel mitochondria‐targeted therapeutic agent for prostate cancer.
Collapse
Affiliation(s)
- Lin Liu
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Fan Wang
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yu Tong
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lin-Feng Li
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yanfeng Liu
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wei-Qiang Gao
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,School of Biomedical Engineering & Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
62
|
Filipović NR, Ristić P, Janjić G, Klisurić O, Puerta A, Padrón JM, Donnard M, Gulea M, Todorović TR. Silver-based monomer and coordination polymer with organic thiocyanate ligand: Structural, computational and antiproliferative activity study. Polyhedron 2019. [DOI: 10.1016/j.poly.2019.114132] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
63
|
Nguyen TM, Nakata E, Zhang Z, Saimura M, Dinh H, Morii T. Rational design of a DNA sequence-specific modular protein tag by tuning the alkylation kinetics. Chem Sci 2019; 10:9315-9325. [PMID: 32110294 PMCID: PMC7006624 DOI: 10.1039/c9sc02990g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 08/19/2019] [Indexed: 01/03/2023] Open
Abstract
Sequence-selective chemical modification of DNA by synthetic ligands has been a long-standing challenge in the field of chemistry. Even when the ligand consists of a sequence-specific DNA binding domain and reactive group, sequence-selective reactions by these ligands are often accompanied by off-target reactions. A basic principle to design DNA modifiers that react at specific sites exclusively governed by DNA sequence recognition remains to be established. We have previously reported selective DNA modification by a self-ligating protein tag conjugated with a DNA-binding domain, termed as a modular adaptor, and orthogonal application of modular adaptors by relying on the chemoselectivity of the protein tag. The sequence-specific crosslinking reaction by the modular adaptor is thought to proceed in two steps: the first step involves the formation of a DNA-protein complex, while in the second step, a proximity-driven intermolecular crosslinking occurs. According to this scheme, the specific crosslinking reaction of a modular adaptor would be driven by the DNA recognition process only when the dissociation rate of the DNA complex is much higher than the rate constant for the alkylation reaction. In this study, as a proof of principle, a set of combinations for modular adaptors and their substrates were utilized to evaluate the reactions. Three types of modular adaptors consisting of a single type of self-ligating tag and three types of DNA binding proteins fulfill the kinetic requirements for the reaction of the self-ligating tag with a substrate and the dissociation of the DNA-protein complex. These modular adaptors actually undergo sequence-specific crosslinking reactions exclusively driven by the recognition of a specific DNA sequence. The design principle of sequence-specific modular adaptors based on the kinetic aspects of complex formation and chemical modification is applicable for developing recognition-driven selective modifiers for proteins and other biological macromolecules.
Collapse
Affiliation(s)
- Thang Minh Nguyen
- Institute of Advanced Energy , Kyoto University , Uji , Kyoto 611-0011 , Japan .
| | - Eiji Nakata
- Institute of Advanced Energy , Kyoto University , Uji , Kyoto 611-0011 , Japan .
| | - Zhengxiao Zhang
- Institute of Advanced Energy , Kyoto University , Uji , Kyoto 611-0011 , Japan .
| | - Masayuki Saimura
- Institute of Advanced Energy , Kyoto University , Uji , Kyoto 611-0011 , Japan .
| | - Huyen Dinh
- Institute of Advanced Energy , Kyoto University , Uji , Kyoto 611-0011 , Japan .
| | - Takashi Morii
- Institute of Advanced Energy , Kyoto University , Uji , Kyoto 611-0011 , Japan .
| |
Collapse
|
64
|
Singhal S, Khanna P, Khanna L. Synthesis, DFT studies, molecular docking, antimicrobial screening and UV fluorescence studies on ct-DNA for novel Schiff bases of 2-(1-aminobenzyl) benzimidazole. Heliyon 2019; 5:e02596. [PMID: 31667415 PMCID: PMC6812229 DOI: 10.1016/j.heliyon.2019.e02596] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/27/2019] [Accepted: 10/01/2019] [Indexed: 01/26/2023] Open
Abstract
Novel Schiff bases (SBs) were synthesized by condensation of 2-(1-Amino benzyl) benzimidazole with heterocyclic and aromatic carbonyl compounds. The structural characterization was done using 1H, 13C NMR, FTIR and ES-MS spectroscopic techniques. The in silico pharmacokinetics showed that nearly all compounds obeyed Lipinski rule of 5 with low toxicity and metabolic stability. The global reactivity descriptors were calculated using DFT approach. The molecular docking result of SBs with ct-DNA suggested interaction via groove binding mode. The antibacterial activity was tested against S. aureus and E. coli, indicated significant inhibition than reference drug. The compound 4d gave best results at 50 μg ml-1 concentrations. UV/Vis and Fluorescence spectroscopy tools were used to evaluate ct-DNA binding ability of compounds 4a-e through hypochromic shift. The steady state fluorescence predicted a moderate binding constant of 1.12 × 104 for 4d, indicative of non-intercalative mode.
Collapse
Affiliation(s)
- Sugandha Singhal
- University School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, Sector 16-C, Dwarka, New Delhi, 110078, India
| | - Pankaj Khanna
- Department of Chemistry, Acharya Narendra Dev College, University of Delhi, Kalkaji, New Delhi, 110019, India
| | - Leena Khanna
- University School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, Sector 16-C, Dwarka, New Delhi, 110078, India
| |
Collapse
|
65
|
Sánchez MI, Rama G, Calo-Lapido R, Ucar K, Lincoln P, López MV, Melle-Franco M, Mascareñas JL, Vázquez ME. Canonical DNA minor groove insertion of bisbenzamidine-Ru(ii) complexes with chiral selectivity. Chem Sci 2019; 10:8668-8674. [PMID: 31803441 PMCID: PMC6849638 DOI: 10.1039/c9sc03053k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 07/30/2019] [Indexed: 11/24/2022] Open
Abstract
We report the first Ru(ii) coordination compounds that interact with DNA through a canonical minor groove insertion mode and with selectivity for A/T rich sites. This was made possible by integrating a bis-benzamidine minor groove DNA-binding agent with a ruthenium(ii) complex. Importantly, one of the enantiomers (Δ-[Ru(bpy)2 b4bpy]2+, Δ-4Ru) shows a considerably higher DNA affinity than the parent organic ligand and the other enantiomer, particularly for the AATT sequence, while the other enantiomer preferentially targets long AAATTT sites with overall lower affinity. Finally, we demonstrate that the photophysical properties of these new binders can be exploited for DNA cleavage using visible light.
Collapse
Affiliation(s)
- Mateo I Sánchez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) , Departamento de Química Orgánica , Universidade de Santiago de Compostela , 15782 Santiago de Compostela , Spain .
| | - Gustavo Rama
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) , Departamento de Química Inorgánica , Universidade de Santiago de Compostela , 15782 Santiago de Compostela , Spain
| | - Renata Calo-Lapido
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) , Departamento de Química Orgánica , Universidade de Santiago de Compostela , 15782 Santiago de Compostela , Spain .
| | - Kübra Ucar
- Department of Chemistry and Chemical Engineering , Chalmers University of Technology , SE 412 96 Gothenburg , Sweden
| | - Per Lincoln
- Department of Chemistry and Chemical Engineering , Chalmers University of Technology , SE 412 96 Gothenburg , Sweden
| | - Miguel Vázquez López
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) , Departamento de Química Inorgánica , Universidade de Santiago de Compostela , 15782 Santiago de Compostela , Spain
| | - Manuel Melle-Franco
- Ciceco - Aveiro Institute of Materials , University of Aveiro Campus Universitario de Santiago , Aveiro , 3810-193 , Portugal
| | - José L Mascareñas
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) , Departamento de Química Orgánica , Universidade de Santiago de Compostela , 15782 Santiago de Compostela , Spain .
| | - M Eugenio Vázquez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) , Departamento de Química Orgánica , Universidade de Santiago de Compostela , 15782 Santiago de Compostela , Spain .
| |
Collapse
|
66
|
Nair MS, Shukla A. Molecular modeling, simulation and principal component analysis of binding of resveratrol and its analogues with DNA. J Biomol Struct Dyn 2019; 38:3087-3097. [PMID: 31476951 DOI: 10.1080/07391102.2019.1662849] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Structure-based drug designing has become a significant subject of research, and several clinically promising DNA binding compounds were evolved using this technique. The interaction of an octamer DNA sequence d(CCAATTGG)2 with a natural stilbene, resveratrol and its analogues have been studied using molecular docking method. Out of the ten compounds studied, seven compounds were found to bind to the minor groove of AATT segment of the sequence. Pterostilbene, a natural analogue of resveratrol, showed the lowest binding energy. Rhaponticin, a natural analogue of resveratrol and digalloylresveratrol, a synthetic ester of resveratrol bind to the major groove of the AATT segment while dihydroresveratrol binds to the minor groove of GC terminal base pair. ADMET (Absorption, distribution, metabolism, excretion and toxicity) study showed that all compounds obey Lipinski rule and are accepted as orally active drugs based on different physicochemical descriptors. Molecular dynamics simulations were performed for the complex with lowest binding energy and trajectory analysis were performed. Principal component analysis has been performed to underline the prominent motions in alone DNA and when it is bound to pterostilbene. AbbreviationsADMETAbsorption, distribution, metabolism, excretion and toxicityDIGDigalloyl resveratrolDNADeoxyribonucleic acidELElectrostatic energyENPOLARNonpolar solvation energyESURFSurface areaGBGeneralized BornHBAHydrogen bond acceptorsHBDHydrogen bond donorsLGALamarckian genetic algorithmMDMolecular dynamicsPBPoisson-BoltzmannPCAPrincipal component analysisPTPterostilbeneRMSDRoot mean square deviationSASimulated annealingTLX3T-cell leukemia homeobox 3VDWvan der WaalsCommunicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Maya S Nair
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, India
| | - Aishwarya Shukla
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, India
| |
Collapse
|
67
|
Das AK, Ihmels H, Kölsch S. Diphenylaminostyryl-substituted quinolizinium derivatives as fluorescent light-up probes for duplex and quadruplex DNA. Photochem Photobiol Sci 2019; 18:1373-1381. [PMID: 30916703 DOI: 10.1039/c9pp00096h] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
(E)-2-[1'-((Diphenylamino)styryl)quinolizinium (3a) and 2,2'-{(phenylimino)-bis[(E)-1'',1'''-styryl]}-bis[quinolizinium] (3b) were synthesized, and their interactions with duplex DNA and quadruplex DNA were investigated with a particular focus on their ability to operate as DNA-sensitive fluorescent probes. Due to the significantly different size and steric demand of these quinolizinium derivatives they exhibit different binding modes. Thus, 3a intercalates into duplex DNA and binds through π stacking to quadruplex DNA, whereas 3b favours groove binding to both DNA forms. The emission intensity of these compounds is very low in aqueous solution, but it increases drastically upon association with duplex DNA by a factor of 11 (3a) and >100 (3b) and with quadruplex DNA by a factor of >100 (3a) and 10 (3b), with emission bands between 600 and 750 nm.
Collapse
Affiliation(s)
- Avijit Kumar Das
- Department of Chemistry and Biology, University of Siegen, Center of Micro- and Nanochemistry and Engineering, Adolf-Reichwein-Str. 2, 57068 Siegen, Germany.
| | | | | |
Collapse
|
68
|
Hassan FU, Rehman MSU, Khan MS, Ali MA, Javed A, Nawaz A, Yang C. Curcumin as an Alternative Epigenetic Modulator: Mechanism of Action and Potential Effects. Front Genet 2019; 10:514. [PMID: 31214247 PMCID: PMC6557992 DOI: 10.3389/fgene.2019.00514] [Citation(s) in RCA: 197] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 05/10/2019] [Indexed: 12/21/2022] Open
Abstract
Curcumin (a polyphenolic compound in turmeric) is famous for its potent anti-inflammatory, anti-oxidant, and anti-cancer properties, and has a great potential to act as an epigenetic modulator. The epigenetic regulatory roles of curcumin include the inhibition of DNA methyltransferases (DNMTs), regulation of histone modifications via the regulation of histone acetyltransferases (HATs) and histone deacetylases (HDACs), regulation of microRNAs (miRNA), action as a DNA binding agent and interaction with transcription factors. These mechanisms are interconnected and play a vital role in tumor progression. The recent research has demonstrated the role of epigenetic inactivation of pivotal genes that regulate human pathologies such as cancers. Epigenetics helps to understand the mechanism of chemoprevention of cancer through different therapeutic agents. In this regard, dietary phytochemicals, such as curcumin, have emerged as a potential source to reverse epigenetic modifications and efficiently regulate the expression of genes and molecular targets that are involved in the promotion of tumorigenesis. The curcumin may also act as an epigenetic regulator in neurological disorders, inflammation, and diabetes. Moreover, curcumin can induce the modifications of histones (acetylation/deacetylation), which are among the most important epigenetic changes responsible for altered expression of genes leading to modulating the risks of cancers. Curcumin is an effective medicinal agent, as it regulates several important molecular signaling pathways that modulate survival, govern anti-oxidative properties like nuclear factor E2-related factor 2 (Nrf2) and inflammation pathways, e.g., nuclear factor kappa B (NF-κB). Curcumin is a potent proteasome inhibitor that increases p-53 level and induces apoptosis through caspase activation. Moreover, the disruption of 26S proteasome activity induced by curcumin through inhibiting DYRK2 in different cancerous cells resulting in the inhibition of cell proliferation opens up a new horizon for using curcumin as a potential preventive and treatment approach in proteasome-linked cancers. This review presents a brief summary of knowledge about the mechanism of epigenetic changes induced by curcumin and the potential effects of curcumin such as anti-oxidant activity, enhancement of wound healing, modulation of angiogenesis and its interaction with inflammatory cytokines. The development of curcumin as a clinical molecule for successful chemo-prevention and alternate therapeutic approach needs further mechanistic insights.
Collapse
Affiliation(s)
- Faiz-Ul Hassan
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China.,Institute of Animal and Dairy Sciences, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Muhammad Saif-Ur Rehman
- Institute of Animal and Dairy Sciences, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Muhammad Sajjad Khan
- Institute of Animal and Dairy Sciences, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Muhammad Amjad Ali
- Faculty of Veterinary Sciences, Bahauddin Zakariya University, Multan, Pakistan
| | - Aroosa Javed
- Department of Zoology, Wildlife and Fisheries, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Ayesha Nawaz
- Department of Zoology, Wildlife and Fisheries, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Chengjian Yang
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China
| |
Collapse
|
69
|
I. M, Raza MK, Shahid M, Ansari A, Ahmad M, Khan IM. Unprecedented isolation of a dinuclear tin (II) complex stabilized by pyridine‐2,6‐dimethanol: structure, DFT and in vitro screening of cytotoxic properties. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.5006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Mantasha I.
- Department of ChemistryAligarh Muslim University Aligarh India
| | - Md Kausar Raza
- Department of Inorganic and Physical ChemistryIndian Institute of Science Bangaluru India
| | - M. Shahid
- Department of ChemistryAligarh Muslim University Aligarh India
| | - Azaj Ansari
- Department of ChemistryCentral University of Haryana Mahendergarh India
| | - Musheer Ahmad
- Department of Applied Chemistry, ZHCETAligarh Muslim University Aligarh India
| | - Ishaat M. Khan
- Department of ChemistryAligarh Muslim University Aligarh India
| |
Collapse
|
70
|
Han G, Zhao J, Zhang R, Tian X, Liu Z, Wang A, Liu R, Liu B, Han M, Gao X, Zhang Z. Membrane‐Penetrating Carbon Quantum Dots for Imaging Nucleic Acid Structures in Live Organisms. Angew Chem Int Ed Engl 2019; 58:7087-7091. [DOI: 10.1002/anie.201903005] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Indexed: 11/06/2022]
Affiliation(s)
- Guangmei Han
- Institute of Intelligent MachinesChinese Academy of Sciences Hefei Anhui 230031 China
- Department of ChemistryUniversity of Science and Technology of China Hefei Anhui 230026 China
| | - Jun Zhao
- Institute of Intelligent MachinesChinese Academy of Sciences Hefei Anhui 230031 China
| | - Ruilong Zhang
- School of Chemistry and Chemical Engineering, and Institute of Physical Science and Information TechnologyAnhui University Hefei Anhui 230601 China
| | - Xiaohe Tian
- School of Chemistry and Chemical Engineering, and Institute of Physical Science and Information TechnologyAnhui University Hefei Anhui 230601 China
| | - Zhengjie Liu
- School of Chemistry and Chemical Engineering, and Institute of Physical Science and Information TechnologyAnhui University Hefei Anhui 230601 China
| | - Aidong Wang
- School of Chemistry and Chemical EngineeringHuangshan University Huangshan Anhui 245041 China
| | - Renyong Liu
- Institute of Intelligent MachinesChinese Academy of Sciences Hefei Anhui 230031 China
| | - Bianhua Liu
- Institute of Intelligent MachinesChinese Academy of Sciences Hefei Anhui 230031 China
| | - Ming‐Yong Han
- Institute of Materials Research and EngineeringA-STAR 3 Research Link 117602 Singapore
| | - Xiaohu Gao
- Department of BioengineeringUniversity of Washington Seattle WA 98195 USA
| | - Zhongping Zhang
- Institute of Intelligent MachinesChinese Academy of Sciences Hefei Anhui 230031 China
- Department of ChemistryUniversity of Science and Technology of China Hefei Anhui 230026 China
- School of Chemistry and Chemical Engineering, and Institute of Physical Science and Information TechnologyAnhui University Hefei Anhui 230601 China
| |
Collapse
|
71
|
Ligand-Based Stability Changes in Duplex DNA Measured with a Microscale Electrochemical Platform. BIOSENSORS-BASEL 2019; 9:bios9020054. [PMID: 31013753 PMCID: PMC6628196 DOI: 10.3390/bios9020054] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/03/2019] [Accepted: 04/09/2019] [Indexed: 01/20/2023]
Abstract
Development of technologies for rapid screening of DNA secondary structure thermal stability and the effects on stability for binding of small molecule drugs is important to the drug discovery process. In this report, we describe the capabilities of an electrochemical, microdevice-based approach for determining the melting temperatures (Tm) of electrode-bound duplex DNA structures. We also highlight new features of the technology that are compatible with array development and adaptation for high-throughput screening. As a foundational study to exhibit device performance and capabilities, melting-curve analyses were performed on 12-mer DNA duplexes in the presence/absence of two binding ligands: diminazene aceturate (DMZ) and proflavine. By measuring electrochemical current as a function of temperature, our measurement platform has the ability to determine the effect of binding ligands on Tm values with high signal-to-noise ratios and good reproducibility. We also demonstrate that heating our three-electrode cell with either an embedded microheater or a thermoelectric module produces similar results. The ΔTm values we report show the stabilizing ability of DMZ and proflavine when bound to duplex DNA structures. These initial proof-of-concept studies highlight the operating characteristics of the microdevice platform and the potential for future application toward other immobilized samples.
Collapse
|
72
|
Han G, Zhao J, Zhang R, Tian X, Liu Z, Wang A, Liu R, Liu B, Han M, Gao X, Zhang Z. Membrane‐Penetrating Carbon Quantum Dots for Imaging Nucleic Acid Structures in Live Organisms. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201903005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Guangmei Han
- Institute of Intelligent MachinesChinese Academy of Sciences Hefei Anhui 230031 China
- Department of ChemistryUniversity of Science and Technology of China Hefei Anhui 230026 China
| | - Jun Zhao
- Institute of Intelligent MachinesChinese Academy of Sciences Hefei Anhui 230031 China
| | - Ruilong Zhang
- School of Chemistry and Chemical Engineering, and Institute of Physical Science and Information TechnologyAnhui University Hefei Anhui 230601 China
| | - Xiaohe Tian
- School of Chemistry and Chemical Engineering, and Institute of Physical Science and Information TechnologyAnhui University Hefei Anhui 230601 China
| | - Zhengjie Liu
- School of Chemistry and Chemical Engineering, and Institute of Physical Science and Information TechnologyAnhui University Hefei Anhui 230601 China
| | - Aidong Wang
- School of Chemistry and Chemical EngineeringHuangshan University Huangshan Anhui 245041 China
| | - Renyong Liu
- Institute of Intelligent MachinesChinese Academy of Sciences Hefei Anhui 230031 China
| | - Bianhua Liu
- Institute of Intelligent MachinesChinese Academy of Sciences Hefei Anhui 230031 China
| | - Ming‐Yong Han
- Institute of Materials Research and EngineeringA-STAR 3 Research Link 117602 Singapore
| | - Xiaohu Gao
- Department of BioengineeringUniversity of Washington Seattle WA 98195 USA
| | - Zhongping Zhang
- Institute of Intelligent MachinesChinese Academy of Sciences Hefei Anhui 230031 China
- Department of ChemistryUniversity of Science and Technology of China Hefei Anhui 230026 China
- School of Chemistry and Chemical Engineering, and Institute of Physical Science and Information TechnologyAnhui University Hefei Anhui 230601 China
| |
Collapse
|
73
|
Leijendekker LH, Weweler J, Leuther TM, Kratzert D, Streuff J. Development, Scope, and Applications of Titanium(III)-Catalyzed Cyclizations to Aminated N-Heterocycles. Chemistry 2019; 25:3382-3390. [PMID: 30615817 DOI: 10.1002/chem.201805909] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Indexed: 01/30/2023]
Affiliation(s)
- Leonardus H. Leijendekker
- Institut für Organische Chemie; Albert-Ludwigs-Universität Freiburg; Albertstr. 21 79104 Freiburg im Breisgau Germany
| | - Jens Weweler
- Institut für Organische Chemie; Albert-Ludwigs-Universität Freiburg; Albertstr. 21 79104 Freiburg im Breisgau Germany
| | - Tobias M. Leuther
- Institut für Organische Chemie; Albert-Ludwigs-Universität Freiburg; Albertstr. 21 79104 Freiburg im Breisgau Germany
| | - Daniel Kratzert
- Institut für Anorganische und Analytische Chemie; Albert-Ludwigs-Universität Freiburg; Albertstr. 21 79104 Freiburg im Breisgau Germany
| | - Jan Streuff
- Institut für Organische Chemie; Albert-Ludwigs-Universität Freiburg; Albertstr. 21 79104 Freiburg im Breisgau Germany
| |
Collapse
|
74
|
Song Y, Niederschulte J, Bales KN, Bashkin JK, Dupureur CM. Thermodynamics and site stoichiometry of DNA binding by a large antiviral hairpin polyamide. Biochimie 2019; 157:149-157. [PMID: 30481539 DOI: 10.1016/j.biochi.2018.11.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 11/22/2018] [Indexed: 12/16/2022]
Abstract
PA1 (dIm-PyPyβPyPyPy-γ-PyPyβPyPyPyPyβ-Ta) is a large (14-ring) hairpin polyamide that was designed to recognize the DNA sequence 5'-W2GW7-3', where W is either A or T. As is common among the smaller 6-8-ring hairpin polyamides (PAs), it binds its target recognition sequence with low nM affinity. However, in addition to its large size, it is distinct from these more extensively characterized PAs in its high tolerance for mismatches and antiviral properties. In ongoing attempts to understand the basis for these distinctions, we conducted thermodynamics studies of PA1-DNA interactions. The temperature dependence of binding affinity was measured using TAMRA-labeled hairpin DNAs containing a single target sequence. PA1 binding to either an ATAT/TATA or an AAAA/TTTT pattern is consistently entropically driven. This is in contrast to the A/T pattern-dependent driving forces for DNA binding by netropsin, distamycin, and smaller hairpin polyamides. Analysis of the salt dependence of PA1-DNA binding reveals that within experimental error, there is no dependence on ionic strength, indicating that the polyelectrolyte effect does not contribute to PA1-DNA binding energetics. This is similar to that observed for smaller PAs. PA1-DNA recognition sequence binding stoichiometries were determined at both nM (fluorescence) and μM (circular dichroism) concentrations. With all sequences and under both conditions, multiple PA1 molecules bind the small DNA hairpin that contains only a single recognition sequence. Implications for these observations are discussed.
Collapse
Affiliation(s)
- Yang Song
- Department of Chemistry & Biochemistry, University of Missouri St. Louis, St. Louis, MO, 63121, USA
| | - Jacquelyn Niederschulte
- Department of Chemistry & Biochemistry, University of Missouri St. Louis, St. Louis, MO, 63121, USA
| | - Kristin N Bales
- Department of Chemistry & Biochemistry, University of Missouri St. Louis, St. Louis, MO, 63121, USA
| | - James K Bashkin
- Department of Chemistry & Biochemistry, University of Missouri St. Louis, St. Louis, MO, 63121, USA
| | - Cynthia M Dupureur
- Department of Chemistry & Biochemistry, University of Missouri St. Louis, St. Louis, MO, 63121, USA.
| |
Collapse
|
75
|
Thamban Chandrika N, Dennis EK, Shrestha SK, Ngo HX, Green KD, Kwiatkowski S, Deaciuc AG, Dwoskin LP, Watt DS, Garneau-Tsodikova S. N,N'-diaryl-bishydrazones in a biphenyl platform: Broad spectrum antifungal agents. Eur J Med Chem 2018; 164:273-281. [PMID: 30597328 DOI: 10.1016/j.ejmech.2018.12.042] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 11/11/2018] [Accepted: 12/17/2018] [Indexed: 11/18/2022]
Abstract
N,N'-Diaryl-bishydrazones of [1,1'-biphenyl]-3,4'-dicarboxaldehyde, [1,1'-biphenyl]-4,4'-dicarboxaldehyde, and 4,4'-bisacetyl-1,1-biphenyl exhibited excellent antifungal activity against a broad spectrum of filamentous and non-filamentous fungi. These N,N'-diaryl-bishydrazones displayed no antibacterial activity in contrast to previously reported N,N'-diamidino-bishydrazones and N-amidino-N'-aryl-bishydrazones. The leading candidate, 4,4'-bis((E)-1-(2-(4-fluorophenyl)hydrazono)ethyl)-1,1'-biphenyl, displayed less hemolysis of murine red blood cells at concentrations at or below that of a control antifungal agent (voriconazole), was fungistatic in a time-kill study, and possessed no mammalian cytotoxicity and no toxicity with respect to hERG inhibition.
Collapse
Affiliation(s)
- Nishad Thamban Chandrika
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, 40536-0596, USA
| | - Emily K Dennis
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, 40536-0596, USA
| | - Sanjib K Shrestha
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, 40536-0596, USA
| | - Huy X Ngo
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, 40536-0596, USA
| | - Keith D Green
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, 40536-0596, USA
| | - Stefan Kwiatkowski
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, 40536-0596, USA; Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, KY, 40536-0596, USA
| | - Agripina Gabriela Deaciuc
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, 40536-0596, USA
| | - Linda P Dwoskin
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, 40536-0596, USA
| | - David S Watt
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, KY, 40536-0596, USA; Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY, 40536-0509, USA; Lucille Parker Markey Cancer Center, University of Kentucky, Lexington, KY, 40536-0093, USA.
| | - Sylvie Garneau-Tsodikova
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, 40536-0596, USA.
| |
Collapse
|
76
|
Rahman A, O'Sullivan P, Rozas I. Recent developments in compounds acting in the DNA minor groove. MEDCHEMCOMM 2018; 10:26-40. [PMID: 30774852 DOI: 10.1039/c8md00425k] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 12/11/2018] [Indexed: 12/12/2022]
Abstract
The macromolecule that carries genetic information, DNA, is considered as an exceptional target for diseases depending on cellular division of malignant cells (i.e. cancer), microbes (i.e. bacteria) or parasites (i.e. protozoa). To aim for a comprehensive review to cover all aspects related to DNA targeting would be an impossible task and, hence, the objective of the present review is to present, from a medicinal chemistry point of view, recent developments of compounds targeting the minor groove of DNA. Accordingly, we discuss the medicinal chemistry aspects of heterocyclic small-molecules binding the DNA minor groove, as novel anticancer, antibacterial and antiparasitic agents.
Collapse
Affiliation(s)
- Adeyemi Rahman
- School of Chemistry , Trinity Biomedical Sciences Institute , Trinity College Dublin , 152-160-Pearse Street , Dublin 2 , Ireland .
| | - Patrick O'Sullivan
- School of Chemistry , Trinity Biomedical Sciences Institute , Trinity College Dublin , 152-160-Pearse Street , Dublin 2 , Ireland .
| | - Isabel Rozas
- School of Chemistry , Trinity Biomedical Sciences Institute , Trinity College Dublin , 152-160-Pearse Street , Dublin 2 , Ireland .
| |
Collapse
|
77
|
Bhuiya S, Chowdhury S, Haque L, Das S. Spectroscopic, photophysical and theoretical insight into the chelation properties of fisetin with copper (II) in aqueous buffered solutions for calf thymus DNA binding. Int J Biol Macromol 2018; 120:1156-1169. [DOI: 10.1016/j.ijbiomac.2018.08.162] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 08/21/2018] [Accepted: 08/27/2018] [Indexed: 01/29/2023]
|
78
|
Guo P, Farahat AA, Paul A, Harika NK, Boykin DW, Wilson WD. Compound Shape Effects in Minor Groove Binding Affinity and Specificity for Mixed Sequence DNA. J Am Chem Soc 2018; 140:14761-14769. [PMID: 30353731 PMCID: PMC6399738 DOI: 10.1021/jacs.8b08152] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
AT specific heterocyclic cations that bind in the DNA duplex minor groove have had major successes as cell and nuclear stains and as therapeutic agents which can effectively enter human cells. Expanding the DNA sequence recognition capability of the minor groove compounds could also expand their therapeutic targets and have an impact in many areas, such as modulation of transcription factor biological activity. Success in the design of mixed sequence binding compounds has been achieved with N-methylbenzimidazole ( N-MeBI) thiophenes which are preorganized to fit the shape of the DNA minor groove and H-bond to the -NH of G·C base pairs that project into the minor groove. Initial compounds bind strongly to a single G·C base pair in an AT context with a specificity ratio of 50 ( KD AT-GC/ KD AT) or less and this is somewhat low for biological use. We felt that modifications of compound shape could be used to probe local DNA microstructure in target mixed base pair sequences of DNA and potentially improve the compound binding selectivity. Modifications were made by increasing the size of the benzimidazole N-substituent, for example, by using N-isobutyl instead of N-Me, and by changing the molecular twist by introducing substitutions at specific positions on the aromatic core of the compounds. In both cases, we have been able to achieve a dramatic increase in binding specificity, including no detectible binding to pure AT sequences, without a significant loss in affinity to mixed base pair target sequences.
Collapse
Affiliation(s)
- Pu Guo
- Department of Chemistry and Center for Diagnostics and Therapeutics , Georgia State University , 50 Decatur Street South East , Atlanta , Georgia 30303 , United States
| | - Abdelbasset A Farahat
- Department of Chemistry and Center for Diagnostics and Therapeutics , Georgia State University , 50 Decatur Street South East , Atlanta , Georgia 30303 , United States
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy , Mansoura University , Mansoura 35516 , Egypt
| | - Ananya Paul
- Department of Chemistry and Center for Diagnostics and Therapeutics , Georgia State University , 50 Decatur Street South East , Atlanta , Georgia 30303 , United States
| | - Narinder K Harika
- Department of Chemistry and Center for Diagnostics and Therapeutics , Georgia State University , 50 Decatur Street South East , Atlanta , Georgia 30303 , United States
| | - David W Boykin
- Department of Chemistry and Center for Diagnostics and Therapeutics , Georgia State University , 50 Decatur Street South East , Atlanta , Georgia 30303 , United States
| | - W David Wilson
- Department of Chemistry and Center for Diagnostics and Therapeutics , Georgia State University , 50 Decatur Street South East , Atlanta , Georgia 30303 , United States
| |
Collapse
|
79
|
Yousefi M, Sedaghat T, Simpson J, Motamedi H, Dayer MR. Bis-substituted diphenylamine arylidene hydrazones for the synthesis of new binuclear organotin(IV) complexes: Crystal structure, DNA cleavage and molecular docking. Polyhedron 2018. [DOI: 10.1016/j.poly.2018.08.040] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
80
|
Lari M, Martínez-Alonso M, Busto N, Manzano BR, Rodríguez AM, Acuña MI, Domínguez F, Albasanz JL, Leal JM, Espino G, García B. Strong Influence of Ancillary Ligands Containing Benzothiazole or Benzimidazole Rings on Cytotoxicity and Photoactivation of Ru(II) Arene Complexes. Inorg Chem 2018; 57:14322-14336. [DOI: 10.1021/acs.inorgchem.8b02299] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Matteo Lari
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain
| | - Marta Martínez-Alonso
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain
| | - Natalia Busto
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain
| | | | | | - M. Isabel Acuña
- CIMUS, Universidad de Santiago de Compostela, Avenida Barcelona s/n, 15782 Santiago de Compostela, Spain
| | - Fernando Domínguez
- CIMUS, Universidad de Santiago de Compostela, Avenida Barcelona s/n, 15782 Santiago de Compostela, Spain
| | | | - José M. Leal
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain
| | - Gustavo Espino
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain
| | - Begoña García
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain
| |
Collapse
|
81
|
Halder D, Purkayastha P. A flavonol that acts as a potential DNA minor groove binder as also an efficient G-quadruplex loop binder. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.05.117] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
82
|
Harika NK, Wilson WD. Bound Compound, Interfacial Water, and Phenyl Ring Rotation Dynamics of a Compound in the DNA Minor Groove. Biochemistry 2018; 57:5050-5057. [PMID: 30048590 DOI: 10.1021/acs.biochem.8b00647] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
DB2277, a heterocyclic diamidine, is a successful design for mixed base pair (bp) DNA sequence recognition. The compound has a central aza-benzimidazole group that forms two H-bonds with a GC bp that has flanking AT bps. The nuclear magnetic resonance structure of the DB2277-DNA complex with an AAGATA recognition site sequence was determined, and here we report extended molecular dynamics (MD) simulations of the structure. DB2277 has two terminal phenyl-amidine groups, one of which is directly linked to the DB2277 heterocyclic core and the other through a flexible -OCH2- group. The flexibly linked phenyl is too far from the minor groove floor to make direct H-bonds but is linked to an AT bp through water-mediated H-bonds. The flexibly linked phenyl-amidine with water-mediated H-bonds to the bases at the floor of the minor groove suggested that it might rotate in time spans accessible in MD. To test this idea, we conducted multimicrosecond MD simulations to determine if these phenyl rotations could be observed for a bound compound. In a 3 μs simulation, highly dynamic torsional motions were observed for the -OCH2-linked phenyl but not for the other phenyl. The dynamics periodically reached a level to allow 180° rotation of the phenyl while it was still bound in the minor groove. This is the first observation of rotation of a phenyl bound to DNA, and the results provide mechanistic details about how a rotation can occur as well as how mixed bp recognition can occur for monomer compounds bound to the minor groove.
Collapse
Affiliation(s)
- Narinder K Harika
- Department of Chemistry , Georgia State University , Atlanta , Georgia 30303-3083 , United States
| | - W David Wilson
- Department of Chemistry , Georgia State University , Atlanta , Georgia 30303-3083 , United States
| |
Collapse
|
83
|
Affiliation(s)
- Hasan Y. Alniss
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
| |
Collapse
|
84
|
Savić ND, Vojnovic S, Glišić BĐ, Crochet A, Pavic A, Janjić GV, Pekmezović M, Opsenica IM, Fromm KM, Nikodinovic-Runic J, Djuran MI. Mononuclear silver(I) complexes with 1,7-phenanthroline as potent inhibitors of Candida growth. Eur J Med Chem 2018; 156:760-773. [PMID: 30053719 DOI: 10.1016/j.ejmech.2018.07.049] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 05/11/2018] [Accepted: 07/17/2018] [Indexed: 01/19/2023]
Abstract
Mononuclear silver(I) complexes with 1,7-phenanthroline (1,7-phen), [Ag(NO3-O,O') (1,7-phen-N7)2] (1) and [Ag(1,7-phen-N7)2]X, X = ClO4- (2), CF3SO3- (3), BF4- (4) and SbF6- (5) were synthesized and structurally characterized by NMR (1H and 13C), IR and UV-Vis spectroscopy and ESI mass spectrometry. The crystal structures of 1, 3 and 4 were determined by single-crystal X-ray diffraction analysis. In all these complexes, 1,7-phen coordinates to the Ag(I) ion in a monodentate fashion via the less sterically hindered N7 nitrogen atom. The investigation of the solution stability of 1-5 in DMSO revealed that they are sufficiently stable in this solvent at room temperature. Complexes 1-5 showed selectivity towards Candida spp. in comparison to bacteria, effectively inhibiting the growth of four different Candida species with minimal inhibitory concentrations (MIC) between 1.2 and 11.3 μM. Based on the lowest MIC values and the lowest cytotoxicity against healthy human fibroblasts with selectivity index of more than 30, the antifungal potential was examined in detail for the complex 1. It had the ability to attenuate C. albicans virulence and to reduce epithelial cell damage in the cell infection model. Induction of reactive oxygen species (ROS) response has been detected in C. albicans, with fungal DNA being one of the possible target biomolecules. The toxicity profile of 1 in the zebrafish model (Danio rerio) revealed improved safety and activity in comparison to that of clinically utilized silver(I) sulfadiazine.
Collapse
Affiliation(s)
- Nada D Savić
- University of Kragujevac, Faculty of Science, Department of Chemistry, R. Domanovića 12, 34000 Kragujevac, Serbia
| | - Sandra Vojnovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11000 Belgrade, Serbia
| | - Biljana Đ Glišić
- University of Kragujevac, Faculty of Science, Department of Chemistry, R. Domanovića 12, 34000 Kragujevac, Serbia
| | - Aurélien Crochet
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, CH-1700 Fribourg, Switzerland
| | - Aleksandar Pavic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11000 Belgrade, Serbia
| | - Goran V Janjić
- Institute of Chemistry, Metallurgy and Technology, University of Belgrade, Njegoševa 12, 11000 Belgrade, Serbia
| | - Marina Pekmezović
- Department of Microbial Pathogenicity Mechanisms, Hans Knöll Institute, Jena, Germany
| | - Igor M Opsenica
- University of Belgrade-Faculty of Chemistry, Studentski trg 16, 11158 Belgrade, Serbia
| | - Katharina M Fromm
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, CH-1700 Fribourg, Switzerland.
| | - Jasmina Nikodinovic-Runic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11000 Belgrade, Serbia.
| | - Miloš I Djuran
- Serbian Academy of Sciences and Arts, Knez Mihailova 35, 11000 Belgrade, Serbia.
| |
Collapse
|
85
|
Muhammad BT, Ullah A, Muhammad MT, Arshad T. DNA physical interaction mediated b-lymphoma treatment offered by tetra benzimidazole-substituted zinc (ii) phthalocyanine derivative. J Mol Recognit 2018; 31:e2733. [PMID: 29952029 DOI: 10.1002/jmr.2733] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 04/13/2018] [Accepted: 05/07/2018] [Indexed: 11/08/2022]
Abstract
Role of heterocyclic compounds with nitrogen substitution in therapeutic frontiers is well established. The efforts made in this study are directed to dissect the biological significance of benzimidazole-substituted zinc phthalocyanine derivative. Its capacity to act as an anticancer agent against the 2 B-lymphoma cell lines (low-grade and high-grade malignancy) was found out by recording florescence using Alamar blue dye. Further cytotoxic effect at the DNA level was analyzed by performing agarose gel electrophoresis. Molecular docking studies made mechanistic details crystal clear by showing potential dual binding modes employed for interaction with DNA that include minor groove binding and intercalation between bases. This advocates this derivative as potential anticancer agent and deserves further rounds of mechanistic study for its final journey to serve as a marketed drug.
Collapse
Affiliation(s)
- Bushra Taj Muhammad
- Dr Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Azeem Ullah
- Fujian Institute of Research on the Structure of Matter, Fujian, China
| | | | - Tanzila Arshad
- Department of Applied Chemistry and Chemical technology, University of Karachi, Karachi, Pakistan
| |
Collapse
|
86
|
Rasouli H, Norooznezhad AH, Rashidi T, Hoseinkhani Z, Mahnam A, Tarlan M, Moasefi N, Mostafaei A, Mansouri K. Comparative in vitro/theoretical studies on the anti-angiogenic activity of date pollen hydro-alcoholic extract: Highlighting the important roles of its hot polyphenols. ACTA ACUST UNITED AC 2018; 8:281-294. [PMID: 30397583 PMCID: PMC6209826 DOI: 10.15171/bi.2018.31] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 05/29/2018] [Accepted: 06/04/2018] [Indexed: 12/13/2022]
Abstract
![]()
Introduction: Date palm pollen (DPP) is the male reproductive soft powder from date flowers widely used as the valuable dietary supplement to fortify the size of testis and ovarian to increase the power of sex. This part of date palm significantly exhibited anti-diabetic, anti-inflammation and protective effects against male and female infertility. Though the anticancer activity of date fruits was previously reported, the DPP anti-angiogenic effects were not reported, and as the first study, its inhibitory effects were examined in the current study.
Methods: The DPP soft powder was collected to prepare its hydro-alcoholic extract to examine its anti-angiogenic activity in an in vitro model. At different concentrations, the cytotoxicity of the prepared extract was examined on human umbilical vein endothelial cells (HUVECs) using lactate dehydrogenase method. Cell proliferation was determined using the MTT assay and cytodex-3D model in collagen gel was used to assay its possible anti-angiogenic activity. The expression of VEGF, MMP-2 and MMP-9 genes was measured using real-time polymerase chain reaction (PCR). Finally, molecular docking simulation was used to highlight the possible role of DPP polyphenols to interact with the associated receptors.
Results: The prepared hydro-alcoholic extract exhibited significant anti-angiogenic activity in a dose-dependent manner and decreased the endothelial cell proliferation. The calculated IC50 value for the examined extract in angiogenesis model was 260 µg·mL, respectively. Also, the expression of VEGF, MMP-2 and MMP-9 genes were significantly decreased. Docking simulation results unveiled that the isolated DPP polyphenols have the affinity to interact with ctDNA, VEGF and its receptors.
Conclusion: The DPP is the new source of non-toxic anti-cancer agents to use as a dietary supplement in the pre-treatment of cancer.
Collapse
Affiliation(s)
- Hassan Rasouli
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | - Tahereh Rashidi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zohreh Hoseinkhani
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Azadeh Mahnam
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mitra Tarlan
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Department of physiology, Faculty of veterinary, Shiraz University, Shiraz, Iran
| | - Narges Moasefi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ali Mostafaei
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Kamran Mansouri
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Department of Molecular Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
87
|
McElfresh GW, Deligkaris C. A vibrational entropy term for DNA docking with autodock. Comput Biol Chem 2018; 74:286-293. [DOI: 10.1016/j.compbiolchem.2018.03.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 02/27/2018] [Accepted: 03/29/2018] [Indexed: 11/16/2022]
|
88
|
Boehm BJ, Whidborne C, Button AL, Pukala TL, Huang DM. DNA triplex structure, thermodynamics, and destabilisation: insight from molecular simulations. Phys Chem Chem Phys 2018; 20:14013-14023. [PMID: 29744501 DOI: 10.1039/c8cp02385a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Molecular dynamics simulations are used to elucidate the structure and thermodynamics of DNA triplexes associated with the neurodegenerative disease Friedreich's ataxia (FRDA), as well as complexes of these triplexes with the small molecule netropsin, which is known to destabilise triplexes. The ability of molecular simulations in explicit solvent to accurately capture triplex thermodynamics is verified for the first time, with the free energy to dissociate a 15-base antiparallel purine triplex-forming oligomer (TFO) from the duplex found to be slightly higher than reported experimentally. The presence of netropsin in the minor groove destabilises the triplex as expected, reducing the dissociation free energy by approximately 50%. Netropsin binding is associated with localised narrowing of the minor groove near netropsin, an effect that has previously been under contention. This leads to localised widening of the major groove, weakening hydrogen bonds between the TFO and duplex. Consequently, destabilisation is found to be highly localised, occurring only when netropsin is bound directly opposite the TFO. The simulations also suggest that near saturation of the minor groove with ligand is required for complete triplex dissociation. A structural analysis of the DNA triplexes that can form with the FRDA-related duplex sequence indicates that the triplex with a parallel homopyrimidine TFO is likely to be more stable than the antiparallel homopurine-TFO triplex, which may have implications for disease onset and treatment.
Collapse
Affiliation(s)
- Belinda J Boehm
- Department of Chemistry, School of Physical Sciences, The University of Adelaide, Adelaide, Australia.
| | | | | | | | | |
Collapse
|
89
|
Tripathi S, Barthwal R. NMR based structure reveals groove binding of mitoxantrone to two sites of [d-(TTAGGGT)]4 having human telomeric DNA sequence leading to thermal stabilization of G-quadruplex. Int J Biol Macromol 2018; 111:326-341. [DOI: 10.1016/j.ijbiomac.2017.12.134] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 12/18/2017] [Accepted: 12/27/2017] [Indexed: 01/03/2023]
|
90
|
Liu B, Wang S, Aston K, Koeller KJ, Kermani SFH, Castañeda CH, Scuderi MJ, Luo R, Bashkin JK, Wilson WD. β-Alanine and N-terminal cationic substituents affect polyamide-DNA binding. Org Biomol Chem 2018; 15:9880-9888. [PMID: 29143012 DOI: 10.1039/c7ob02513k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Minor-groove binding hairpin polyamides (PAs) bind specific DNA sequences. Synthetic modifications can improve PA-DNA binding affinity and include flexible modules, such as β-alanine (β) motifs to replace pyrroles (Py), and increasing compound charge using N-terminal cationic substituents. To better understand the variations in kinetics and affinities caused by these modifications on PA-DNA interactions, a comprehensive set of PAs with different numbers and positions of β and different types of N-cationic groups was systematically designed and synthesized to bind their cognate sequence, the λB motif. The λB motif is also a strong binding promoter site of the major groove targeting transcription factor PU.1. The PA binding affinities and kinetics were evaluated using a spectrum of powerful biophysical methods: thermal melting, biosensor surface plasmon resonance and circular dichroism. The results show that β inserts affect PA-DNA interactions in a number and position dependent manner. Specifically, a β replacement between two imidazole heterocycles (ImβIm) generally strengthens binding. In addition, N-terminal cationic groups can accelerate the association between PA and DNA, but the bulky size of TMG can cause steric hindrance and unfavourable repulsive electrostatic interactions in some PAs. The future design of stronger binding PA requires careful combination of βs and cationic substituents.
Collapse
Affiliation(s)
- Beibei Liu
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Fritzsch R, Donaldson PM, Greetham GM, Towrie M, Parker AW, Baker MJ, Hunt NT. Rapid Screening of DNA–Ligand Complexes via 2D-IR Spectroscopy and ANOVA–PCA. Anal Chem 2018; 90:2732-2740. [DOI: 10.1021/acs.analchem.7b04727] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Robby Fritzsch
- Department
of Physics, University of Strathclyde, SUPA, 107 Rottenrow East, Glasgow G4 0NG, U.K
| | - Paul M. Donaldson
- STFC
Central Laser Facility, Research Complex at Harwell, Rutherford Appleton
Laboratory, Harwell Science and Innovation Campus, Didcot, Oxon OX11 0QX, U.K
| | - Gregory M. Greetham
- STFC
Central Laser Facility, Research Complex at Harwell, Rutherford Appleton
Laboratory, Harwell Science and Innovation Campus, Didcot, Oxon OX11 0QX, U.K
| | - Michael Towrie
- STFC
Central Laser Facility, Research Complex at Harwell, Rutherford Appleton
Laboratory, Harwell Science and Innovation Campus, Didcot, Oxon OX11 0QX, U.K
| | - Anthony W. Parker
- STFC
Central Laser Facility, Research Complex at Harwell, Rutherford Appleton
Laboratory, Harwell Science and Innovation Campus, Didcot, Oxon OX11 0QX, U.K
| | - Matthew J. Baker
- WestCHEM,
Department of Pure and Applied Chemistry, Technology and Innovation
Centre, University of Strathclyde, 99 George Street, Glasgow G1 1RD, U.K
| | - Neil T. Hunt
- Department
of Physics, University of Strathclyde, SUPA, 107 Rottenrow East, Glasgow G4 0NG, U.K
| |
Collapse
|
92
|
Angelbello AJ, Chen JL, Childs-Disney JL, Zhang P, Wang ZF, Disney MD. Using Genome Sequence to Enable the Design of Medicines and Chemical Probes. Chem Rev 2018; 118:1599-1663. [PMID: 29322778 DOI: 10.1021/acs.chemrev.7b00504] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Rapid progress in genome sequencing technology has put us firmly into a postgenomic era. A key challenge in biomedical research is harnessing genome sequence to fulfill the promise of personalized medicine. This Review describes how genome sequencing has enabled the identification of disease-causing biomolecules and how these data have been converted into chemical probes of function, preclinical lead modalities, and ultimately U.S. Food and Drug Administration (FDA)-approved drugs. In particular, we focus on the use of oligonucleotide-based modalities to target disease-causing RNAs; small molecules that target DNA, RNA, or protein; the rational repurposing of known therapeutic modalities; and the advantages of pharmacogenetics. Lastly, we discuss the remaining challenges and opportunities in the direct utilization of genome sequence to enable design of medicines.
Collapse
Affiliation(s)
- Alicia J Angelbello
- Departments of Chemistry and Neuroscience, The Scripps Research Institute , 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Jonathan L Chen
- Departments of Chemistry and Neuroscience, The Scripps Research Institute , 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Jessica L Childs-Disney
- Departments of Chemistry and Neuroscience, The Scripps Research Institute , 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Peiyuan Zhang
- Departments of Chemistry and Neuroscience, The Scripps Research Institute , 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Zi-Fu Wang
- Departments of Chemistry and Neuroscience, The Scripps Research Institute , 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Matthew D Disney
- Departments of Chemistry and Neuroscience, The Scripps Research Institute , 130 Scripps Way, Jupiter, Florida 33458, United States
| |
Collapse
|
93
|
Lang X, Gao Y, Wheeldon I. Quantifying Small Molecule Binding Interactions with DNA Nanostructures. Methods Mol Biol 2018; 1814:145-155. [PMID: 29956231 DOI: 10.1007/978-1-4939-8591-3_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
DNA nanostructures and hybrid DNA-protein materials are attractive solutions to many applications in biotechnology and material science because of their controllable molecule-level features. Critical to a complete description and characterization of these technologies is the quantification of binding affinity between DNA nanostructures and small molecules relevant to the application at hand. This protocols chapter described a series of experimental and in silico analyses that can be used to described and quantify ligand binding interactions between DNA nanostructures (DNA DX tiles), short double stranded DNA fragments, and arbitrary small molecules. The described methods include microscale thermophoresis, ligand completion assays, circular dichroism spectroscopy, and AutoDock simulations. The protocols use organophosphates and model chemical nerve agents as examples, but the methods described here are broadly applicable.
Collapse
Affiliation(s)
- Xuye Lang
- Chemical and Environmental Engineering, University of California Riverside, Riverside, CA, USA
| | - Yingning Gao
- Chemical and Environmental Engineering, University of California Riverside, Riverside, CA, USA
| | - Ian Wheeldon
- Chemical and Environmental Engineering, University of California Riverside, Riverside, CA, USA.
| |
Collapse
|
94
|
Ali I, Mukhtar SD, Hsieh MF, Alothman ZA, Alwarthan A. Facile synthesis of indole heterocyclic compounds based micellar nano anti-cancer drugs. RSC Adv 2018; 8:37905-37914. [PMID: 35558619 PMCID: PMC9089882 DOI: 10.1039/c8ra07060a] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 10/31/2018] [Indexed: 11/21/2022] Open
Abstract
Facile synthesis of micellar “nano” indole heterocyclic anti-cancer compounds is described. The synthesized compounds (11–23) were characterized by UV-VIS, 1H NMR, FT-IR and mass spectroscopy. The binding energies of DNA–compound adducts varied from −20.08 to −23.85 kJ mol−1, and they were stabilized by hydrophobic interactions and H-bonding. The synthesized compounds enter into minor grooves of DNA during adduct formation. The DNA binding constant of compounds 11–23 was 1.00 to 2.00 × 105 M−1. The drug-loading efficiency and drug-loading content in their micellar forms were recorded. Compounds 11, 12, 14 and 19 at a micellar concentration of 670 μL mL−1 displayed excellent anticancer activities against the HepG2/C3A line (25–50%). The potency of nano anticancer drugs was predicted by drug likeness using Lipinski's “rule of five”. Taken together, compounds 11–23 could be used to treat cancers. Facile synthesis of micellar “nano” indole heterocyclic anti-cancer compounds is described.![]()
Collapse
Affiliation(s)
- Imran Ali
- Department of Chemistry
- College of Sciences
- Taibah University
- Al-Medina Al-Munawara
- Saudi Arabia
| | - Sofi Danish Mukhtar
- Department of Chemistry
- College of Sciences
- Taibah University
- Al-Medina Al-Munawara
- Saudi Arabia
| | - Ming Fa Hsieh
- Department of Biomedical Engineering
- Chung Yuan Christian University
- Chung Li
- Taiwan
| | - Zeid A. Alothman
- Department of Chemistry
- College of Science
- King Saud University
- Riyadh 11451
- Kingdom of Saudi Arabia
| | - Abdulrahman Alwarthan
- Department of Chemistry
- College of Science
- King Saud University
- Riyadh 11451
- Kingdom of Saudi Arabia
| |
Collapse
|
95
|
Suseela YV, Narayanaswamy N, Pratihar S, Govindaraju T. Far-red fluorescent probes for canonical and non-canonical nucleic acid structures: current progress and future implications. Chem Soc Rev 2018; 47:1098-1131. [DOI: 10.1039/c7cs00774d] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Our review presents the recent progress on far-red fluorescent probes of canonical and non-canonical nucleic acid (NA) structures, critically discusses the design principles, applications, limitations and outline the future prospects of developing newer probes with target-specificity for different NA structures.
Collapse
Affiliation(s)
- Y. V. Suseela
- Bioorganic Chemistry Laboratory
- New Chemistry Unit
- Jawaharlal Nehru Centre for Advanced Scientific Research
- Bengaluru 560064
- India
| | - Nagarjun Narayanaswamy
- Bioorganic Chemistry Laboratory
- New Chemistry Unit
- Jawaharlal Nehru Centre for Advanced Scientific Research
- Bengaluru 560064
- India
| | - Sumon Pratihar
- Bioorganic Chemistry Laboratory
- New Chemistry Unit
- Jawaharlal Nehru Centre for Advanced Scientific Research
- Bengaluru 560064
- India
| | - Thimmaiah Govindaraju
- Bioorganic Chemistry Laboratory
- New Chemistry Unit
- Jawaharlal Nehru Centre for Advanced Scientific Research
- Bengaluru 560064
- India
| |
Collapse
|
96
|
Mishra A, Pant P, Mrinal N, Jayaram B. A computational protocol for the discovery of lead molecules targeting DNA unique to pathogens. Methods 2017; 131:4-9. [PMID: 28733089 DOI: 10.1016/j.ymeth.2017.07.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 07/11/2017] [Accepted: 07/18/2017] [Indexed: 12/19/2022] Open
Abstract
With the rapid emergence of drug resistant pathogens, it has become imperative to develop alternative medications as well as find new drug targets to overcome this crisis. Hence, this has become prime focus of several academic laboratories and pharmaceutical companies. Here, we report a computational protocol for identifying unique DNA sequence(s) in the pathogen which is absent in human and related non-pathogenic strains of the microbe. In order to use the unique sequence as drug target, the protocol, in the second step, uses virtual screening against a million compound library to identify candidate small molecules which can bind to these unique DNA targets in the pathogen only. Theoretically the molecules identified after screening should not bind to human DNA. This methodology is demonstrated on Mycobacterium tuberculosis H37Rv, wherein a new octamer sequence present only in H37Rv has been identified and a few candidate small molecules as potential drug have been proposed. Being fast and cost effective, this protocol could be of importance in generating new potential drug candidates against infectious organisms for further experimental studies. This methodology is freely available at http://www.scfbio-iitd.res.in/PSDDF/.
Collapse
Affiliation(s)
- Akhilesh Mishra
- Supercomputing Facility for Bioinformatics & Computational Biology, Indian Institute of Technology Delhi, India; Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, India
| | - Pradeep Pant
- Supercomputing Facility for Bioinformatics & Computational Biology, Indian Institute of Technology Delhi, India; Department of Chemistry, Indian Institute of Technology Delhi, India
| | - Nirotpal Mrinal
- Laboratory of Molecular Biology, South Asian University, New Delhi, India
| | - B Jayaram
- Supercomputing Facility for Bioinformatics & Computational Biology, Indian Institute of Technology Delhi, India; Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, India; Department of Chemistry, Indian Institute of Technology Delhi, India.
| |
Collapse
|
97
|
Boga S, Bouzada D, García Peña D, Vázquez López M, Vázquez ME. Sequence-Specific DNA Recognition with Designed Peptides. European J Org Chem 2017. [DOI: 10.1002/ejoc.201700988] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Sonia Boga
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica; Universidade de Santiago de Compostela; 15782 Santiago de Compostela Spain
| | - David Bouzada
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica; Universidade de Santiago de Compostela; 15782 Santiago de Compostela Spain
| | - Diego García Peña
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica; Universidade de Santiago de Compostela; 15782 Santiago de Compostela Spain
| | - Miguel Vázquez López
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Inorgánica; Universidade de Santiago de Compostela; 15782 Santiago de Compostela Spain
| | - M. Eugenio Vázquez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica; Universidade de Santiago de Compostela; 15782 Santiago de Compostela Spain
| |
Collapse
|
98
|
Learte-Aymamí S, Curado N, Rodríguez J, Vázquez ME, Mascareñas JL. Metal-Dependent DNA Recognition and Cell Internalization of Designed, Basic Peptides. J Am Chem Soc 2017; 139:16188-16193. [PMID: 29056048 PMCID: PMC5741177 DOI: 10.1021/jacs.7b07422] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Indexed: 12/18/2022]
Abstract
A fragment of the DNA basic region (br) of the GCN4 bZIP transcription factor has been modified to include two His residues at designed i and i+4 positions of its N-terminus. The resulting monomeric peptide (brHis2) does not bind to its consensus target DNA site (5'-GTCAT-3'). However, addition of Pd(en)Cl2 (en, ethylenediamine) promotes a high-affinity interaction with exquisite selectivity for this sequence. The peptide-DNA complex is disassembled by addition of a slight excess of a palladium chelator, and the interaction can be reversibly switched multiple times by playing with controlled amounts of either the metal complex or the chelator. Importantly, while the peptide brHis2 fails to translocate across cell membranes on its own, addition of the palladium reagent induces an efficient cell internalization of this peptide. In short, we report (1) a designed, short peptide that displays highly selective, major groove DNA binding, (2) a reversible, metal-dependent DNA interaction, and (3) a metal-promoted cell internalization of this basic peptide.
Collapse
Affiliation(s)
- Soraya Learte-Aymamí
- Centro Singular de Investigación
en Química Biolóxica e Materiais Moleculares (CIQUS)
and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Natalia Curado
- Centro Singular de Investigación
en Química Biolóxica e Materiais Moleculares (CIQUS)
and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Jéssica Rodríguez
- Centro Singular de Investigación
en Química Biolóxica e Materiais Moleculares (CIQUS)
and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - M. Eugenio Vázquez
- Centro Singular de Investigación
en Química Biolóxica e Materiais Moleculares (CIQUS)
and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - José L. Mascareñas
- Centro Singular de Investigación
en Química Biolóxica e Materiais Moleculares (CIQUS)
and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
99
|
Maity D, Matković M, Li S, Ehlers M, Wu J, Piantanida I, Schmuck C. Peptide-Based Probes with an Artificial Anion-Binding Motif for Direct Fluorescence "Switch-On" Detection of Nucleic Acid in Cells. Chemistry 2017; 23:17356-17362. [PMID: 28967979 DOI: 10.1002/chem.201703813] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Indexed: 01/08/2023]
Abstract
This work reports two new peptide-based fluorescence probes (1 and 2) for the detection of ds-DNA at physiological pH. Probes 1 and 2 contain a fluorophore, either amino-naphthalimide or diethyl-aminocoumarin, respectively, and two identical peptide arms each equipped with a guanidiniocarbonylpyrrole (GCP) anion-binding motif. These probes show "switch-on" fluorescence response upon binding to ds-DNA, whereby they can differentiate between various types of polynucleotides. For instance, they exhibit more pronounced fluorescence response for AT-rich polynucleotides than GC-rich polynucleotides, and both give only negligible response to ds-RNA. The fluorimetric response of 1 is proportional to the AT-basepair content in DNA, whereas the fluorescence of 2 is sensitive to the secondary structure of the polynucleotide. Fluorescence experiments, thermal melting experiments and circular dichroism studies suggest that 1 interacts with ds-DNA in a combined intercalation and minor groove binding, whereas 2 interacts mainly with the outer surface of DNA/RNA. As 1 and 2 have a very low cytotoxicity, 1 can be applied for the imaging of nuclear DNA in cells.
Collapse
Affiliation(s)
- Debabrata Maity
- Institute of Organic Chemistry, University of Duisburg-Essen, 45117, Essen, Germany
| | | | - Shang Li
- Key Lab for Advanced Materials and Institute of Fine Chemicals, East China University of Science and Technology, 200237, Shanghai, P. R. China
| | - Martin Ehlers
- Institute of Organic Chemistry, University of Duisburg-Essen, 45117, Essen, Germany
| | - Junchen Wu
- Key Lab for Advanced Materials and Institute of Fine Chemicals, East China University of Science and Technology, 200237, Shanghai, P. R. China
| | | | - Carsten Schmuck
- Institute of Organic Chemistry, University of Duisburg-Essen, 45117, Essen, Germany
| |
Collapse
|
100
|
Simha Pulla R, Ummadi N, Gudi Y, Venkatapuram P, Adivireddy P. Synthesis and Antimicrobial Activity of Some New 3,4-Disubstituted Pyrroles and Pyrazoles. J Heterocycl Chem 2017. [DOI: 10.1002/jhet.3012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Reddy Simha Pulla
- Department of Chemistry; Sri Venkateswara University; Tirupati 517 502 Andhra Pradesh India
| | - Nagarjuna Ummadi
- Department of Chemistry; Sri Venkateswara University; Tirupati 517 502 Andhra Pradesh India
| | - Yamini Gudi
- Department of Chemistry; Sri Venkateswara University; Tirupati 517 502 Andhra Pradesh India
| | | | - Padmaja Adivireddy
- Department of Chemistry; Sri Venkateswara University; Tirupati 517 502 Andhra Pradesh India
| |
Collapse
|