Cotton FA, Daniels LM, Lei P, Murillo CA, Wang X. Di- and Trinuclear Complexes with the Mono- and Dianion of 2,6-Bis(phenylamino)pyridine: High-Field Displacement of Chemical Shifts Due to the Magnetic Anisotropy of Quadruple Bonds.
Inorg Chem 2001;
40:2778-84. [PMID:
11375695 DOI:
10.1021/ic001376g]
[Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The monoanion of 2,6-bis(phenylamino)pyridine (HBPAP(-)) has been found to support quadruply bonded Cr(2)(4+) and Mo(2)(4+) units in Cr(2)(HBPAP)(4) (1) and Mo(2)(HBPAP)(4) (2). The corresponding dianion BPAP(2)(-) was able to stabilize the trinuclear complexes, (TBA)(2)Cr(3)(BPAP)(4) (3) and (TBA)(2)Ni(3)(BPAP)(4) (4), where TBA is the tetrabutylammonium cation. The dinuclear complexes have the typical paddlewheel configuration with Cr-Cr distances of about 1.87 A and a Mo-Mo distance of 2.0813(5) A and exhibit a high-field displacement of the corresponding N-H signals caused by the magnetic anisotropy of the quadruple bonds. For the trinuclear complexes, 3 has a linear chain of three chromium atoms arranged in an unsymmetrical fashion with two chromium atoms paired to give a quadruply bonded unit (Cr-Cr distance: 1.904(3) A) and an isolated, square planar Cr(II) unit at 2.589(3) A from the dimetal unit. On the other hand, the three nickel atoms in 4 are evenly spaced, having Ni.Ni distances of 2.3682(8) A. The trinuclear compounds show a twisted conformation with an overall torsion angle of about 30 degrees.
Collapse