51
|
Sainlos M, Tigaret C, Poujol C, Olivier NB, Bard L, Breillat C, Thiolon K, Choquet D, Imperiali B. Biomimetic divalent ligands for the acute disruption of synaptic AMPAR stabilization. Nat Chem Biol 2010; 7:81-91. [DOI: 10.1038/nchembio.498] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Accepted: 11/08/2010] [Indexed: 11/09/2022]
|
52
|
Zamotaiev OM, Postupalenko VY, Shvadchak VV, Pivovarenko VG, Klymchenko AS, Mély Y. Improved hydration-sensitive dual-fluorescence labels for monitoring peptide-nucleic acid interactions. Bioconjug Chem 2010; 22:101-7. [PMID: 21174445 DOI: 10.1021/bc100434d] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Environmentally sensitive labels constitute a new, attractive tool for monitoring biomolecular interactions. 3-Hydroxychromone derivatives are of particular interest because they undergo excited-state intramolecular proton transfer (ESIPT) showing dual emission highly sensitive to environmental hydration. To overcome the drawbacks of the previously developed label for sensing protein-DNA interactions based on 2-furanyl-3-hydroxychromone (FC), a series of hydration-sensitive labels based on 3-hydroxy-4'-methoxyflavone have been synthesized. As compared to FC, the new labels display higher sensitivity of the ratio of their two emission bands (N*/T*) to solvent polarity and H-bond donor ability, as well as higher fluorescence quantum yields in water. Moreover, they show higher pK(a) values of their 3-hydroxyl group, allowing their application at neutral pH without interference of anionic forms. To illustrate the applications of these labels, we covalently coupled them to the N-terminus of the Tat(44-61) peptide that corresponds to the basic domain of the HIV-1 Tat protein. This coupling did not modify the nucleic acid chaperone properties of the peptide. Binding of oligonucleotides of varying length, sequence, and strandedness to the labeled peptides induced dramatic change in the N*/T* ratio of their two emission bands. This change indicated that the level of probe hydration in the peptide/oligonucleotide complexes decreases in the following order: short ssDNAs ≫ long ssDNAs > DNA hairpins > dsDNAs. The level of probe hydration was related to the ability of the probe to stack with the DNA bases or base pairs in the various complexes. The changes in the N*/T* ratio upon interaction of the labeled Tat peptides with DNA were about 3-fold larger with the new probes as compared to the parent FC label, in line with the higher sensitivity of the new probes to the environment. One of these labels, presenting the most compact geometry, showed the highest sensitivity, probably due to its optimal stacking with the DNA bases. Thus, the new hydration-sensitive labels appear as improved highly sensitive tools to site-selectively monitor the binding of peptides to oligonucleotides and nucleic acids.
Collapse
Affiliation(s)
- Oleksandr M Zamotaiev
- Department of Chemistry, Kyiv National Taras Shevchenko University, 01033 Kyiv, Ukraine
| | | | | | | | | | | |
Collapse
|
53
|
Unusual large Stokes shift and solvatochromic fluorophore: Synthesis, spectra, and solvent effect of 6-substituted 2,3-naphthalimide. J Photochem Photobiol A Chem 2010. [DOI: 10.1016/j.jphotochem.2010.09.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
54
|
Zhang TL, Han BH. The visualized polarity-sensitive magnetic nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:8893-8900. [PMID: 20143867 DOI: 10.1021/la9046512] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Three polarity-sensitive organic molecules (DIAA, DIUA, and DISA) were designed and synthesized for functionalizing high-quality superparamagnetic Fe(3)O(4) nanoparticles (NPs) via the ligand exchange strategy to prepare polarity-sensitive Fe(3)O(4) NPs. The functional group is chosen to be the carboxyl group (one for DIAA and DIUA, two for DISA) that is a universal coordinating site for iron oxide NPs. The method for binding these functional molecules onto the surface of the NPs is simple and straightforward. Among the three molecules, the DISA molecules passivate the NPs' surface most efficiently owing to their particular structure with two carboxyl groups and a general good solubility. The DISA-functionalized Fe(3)O(4) NPs (DISA-Fe(3)O(4) NPs) display distinctly different fluorescence emissions in various solvents of different polarities with the magnetism well preserving. The prepared polarity-sensitive Fe(3)O(4) NPs that are dual functional can be used as a visualized polarity sensor and perform NPs' superparamagnetic properties simultaneously. It also provides a conceptual design for preparing the polarity-sensitive nanomaterials with multifunction.
Collapse
Affiliation(s)
- Tian-Long Zhang
- National Center for Nanoscience and Technology, Beijing 100190, China
| | | |
Collapse
|
55
|
Sinkeldam RW, Greco NJ, Tor Y. Fluorescent analogs of biomolecular building blocks: design, properties, and applications. Chem Rev 2010; 110:2579-619. [PMID: 20205430 PMCID: PMC2868948 DOI: 10.1021/cr900301e] [Citation(s) in RCA: 668] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Renatus W. Sinkeldam
- Department of Chemistry and Biochemistry, University of California, San Diego 9500 Gilman Drive, La Jolla, California 92093-0358
| | | | - Yitzhak Tor
- Department of Chemistry and Biochemistry, University of California, San Diego 9500 Gilman Drive, La Jolla, California 92093-0358
| |
Collapse
|
56
|
Environmentally sensitive fluorescent sensors based on synthetic peptides. SENSORS 2010; 10:3126-44. [PMID: 22319290 PMCID: PMC3274215 DOI: 10.3390/s100403126] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Revised: 02/27/2010] [Accepted: 03/24/2010] [Indexed: 01/02/2023]
Abstract
Biosensors allow the direct detection of molecular analytes, by associating a biological receptor with a transducer able to convert the analyte-receptor recognition event into a measurable signal. We review recent work aimed at developing synthetic fluorescent molecular sensors for a variety of analytes, based on peptidic receptors labeled with environmentally sensitive fluorophores. Fluorescent indicators based on synthetic peptides are highly interesting alternatives to protein-based sensors, since they can be synthesized chemically, are stable, and can be easily modified in a site-specific manner for fluorophore coupling and for immobilization on solid supports.
Collapse
|
57
|
Li C, Henry E, Mani NK, Tang J, Brochon JC, Deprez E, Xie J. Click Chemistry to Fluorescent Amino Esters: Synthesis and Spectroscopic Studies. European J Org Chem 2010. [DOI: 10.1002/ejoc.201000042] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
58
|
Loving GS, Sainlos M, Imperiali B. Monitoring protein interactions and dynamics with solvatochromic fluorophores. Trends Biotechnol 2010; 28:73-83. [PMID: 19962774 PMCID: PMC2818466 DOI: 10.1016/j.tibtech.2009.11.002] [Citation(s) in RCA: 220] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Revised: 11/03/2009] [Accepted: 11/05/2009] [Indexed: 10/20/2022]
Abstract
Solvatochromic fluorophores possess emission properties that are sensitive to the nature of the local microenvironment. These dyes have been exploited in applications ranging from the study of protein structural dynamics to the detection of protein-binding interactions. Although the solvatochromic indole fluorophore of tryptophan has been utilized extensively for in vitro studies to advance our understanding of basic protein biochemistry, the emergence of new extrinsic synthetic dyes with improved properties, in conjunction with recent developments in site-selective methods to incorporate these chemical tools into proteins, now open the way for studies in more complex systems. Herein, we discuss recent technological advancements and their application in the design of powerful reporters, which serve critical roles in modern cell biology and assay development.
Collapse
Affiliation(s)
- Galen S Loving
- Department of Chemistry and Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139-4307, USA
| | | | | |
Collapse
|
59
|
Loving G, Imperiali B. Thiol-reactive derivatives of the solvatochromic 4-N,N-dimethylamino-1,8-naphthalimide fluorophore: a highly sensitive toolset for the detection of biomolecular interactions. Bioconjug Chem 2010; 20:2133-41. [PMID: 19821578 DOI: 10.1021/bc900319z] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The solvatochromic fluorophore 4-N,N-dimethylamino-1,8-naphthalimide (4-DMN) possesses extremely sensitive emission properties due largely to the low intrinsic fluorescence it exhibits in polar protic solvents such as water. This makes it well suited as a probe for the detection of a wide range of biomolecular interactions. Herein we report the development and evaluation of a new series of thiol-reactive agents derived from this fluorophore. The members of this series vary according to linker type and the electrophilic group required for the labeling of proteins and other biologically relevant molecules. Using the calcium-binding protein calmodulin as a model system, we compare the performance of the 4-DMN derivatives to that of several commercially available solvatochromic fluorophores identifying many key factors important to the successful application of such tools. This study also demonstrates the power of this new series of labeling agents by yielding a fluorescent calmodulin construct capable of producing a greater than 100-fold increase in emission intensity upon binding to calcium.
Collapse
Affiliation(s)
- Galen Loving
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | | |
Collapse
|
60
|
Vázquez O, Sánchez MI, Mascareñas JL, Vázquez ME. dsDNA-triggered energy transfer and lanthanide sensitization processes. Luminescent probing of specific A/T sequences. Chem Commun (Camb) 2010; 46:5518-20. [DOI: 10.1039/b927305k] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
61
|
Sainlos M, Iskenderian WS, Imperiali B. A general screening strategy for peptide-based fluorogenic ligands: probes for dynamic studies of PDZ domain-mediated interactions. J Am Chem Soc 2009; 131:6680-2. [PMID: 19388649 DOI: 10.1021/ja900371q] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A systematic and general approach for identifying efficient probes for class I PDZ domains based on environment-sensitive chromophores is presented. A series of peptides derived from the C-terminal sequence of Stargazin was first used with PDZ domains of PSD-95 and Shank3 to identify the optimal position and linker length for the 4-DMAP chromophore. The results were applied to well-characterized ligand sequences for each set of domains to generate high affinity probes that retain their native sequence specificity and yield remarkable fluorescence increases upon binding. These probes constitute efficient tools to study the dynamics and regulatory mechanisms of PDZ domain-mediated interactions.
Collapse
Affiliation(s)
- Matthieu Sainlos
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139-4307, USA
| | | | | |
Collapse
|
62
|
|
63
|
Shvadchak VV, Klymchenko AS, de Rocquigny H, Mély Y. Sensing peptide-oligonucleotide interactions by a two-color fluorescence label: application to the HIV-1 nucleocapsid protein. Nucleic Acids Res 2009; 37:e25. [PMID: 19151084 PMCID: PMC2647317 DOI: 10.1093/nar/gkn1083] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
We present a new methodology for site-specific sensing of peptide–oligonucleotide (ODN) interactions using a solvatochromic fluorescent label based on 3-hydroxychromone (3HC). This label was covalently attached to the N-terminus of a peptide corresponding to the zinc finger domain of the HIV-1 nucleocapsid protein (NC). On interaction with target ODNs, the labeled peptide shows strong changes in the ratio of its two emission bands, indicating an enhanced screening of the 3HC fluorophore from the bulk water by the ODN bases. Remarkably, this two-color response depends on the ODN sequence and correlates with the 3D structure of the corresponding complexes, suggesting that the 3HC label monitors the peptide–ODN interactions site-specifically. By measuring the two-color ratio, we were also able to determine the peptide–ODN-binding parameters and distinguish multiple binding sites in ODNs, which is rather difficult using other fluorescence methods. Moreover, this method was found to be more sensitive than the commonly used steady-state fluorescence anisotropy, especially in the case of small ODNs. The described methodology could become a new universal tool for investigating peptide–ODN interactions.
Collapse
Affiliation(s)
- Volodymyr V Shvadchak
- Laboratoire de Biophotonique et Pharmacologie, Faculté de Pharmacie, UMR 7213 du CNRS, Université de Strasbourg, 67401 Illkirch, France
| | | | | | | |
Collapse
|
64
|
Fowler LS, Ellis D, Sutherland A. Synthesis of fluorescent enone derived α-amino acids. Org Biomol Chem 2009; 7:4309-16. [DOI: 10.1039/b912782h] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
65
|
Katritzky AR, Narindoshvili T. Fluorescent amino acids: advances in protein-extrinsic fluorophores. Org Biomol Chem 2009; 7:627-34. [DOI: 10.1039/b818908k] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
66
|
Pazos E, Vázquez O, Mascareñas JL, Eugenio Vázquez M. Peptide-based fluorescent biosensors. Chem Soc Rev 2009; 38:3348-59. [DOI: 10.1039/b908546g] [Citation(s) in RCA: 140] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
67
|
Loving G, Imperiali B. A versatile amino acid analogue of the solvatochromic fluorophore 4-N,N-dimethylamino-1,8-naphthalimide: a powerful tool for the study of dynamic protein interactions. J Am Chem Soc 2008; 130:13630-8. [PMID: 18808123 DOI: 10.1021/ja804754y] [Citation(s) in RCA: 185] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have developed a new unnatural amino acid based on the solvatochromic fluorophore 4-N,N-dimethylamino-1,8-naphthalimide (4-DMN) for application in the study of protein-protein interactions. The fluorescence quantum yield of this chromophore is highly sensitive to changes in the local solvent environment, demonstrating "switch-like" emission properties characteristic of the dimethylaminophthalimide family of fluorophores. In particular, this new species possesses a number of significant advantages over related fluorophores, including greater chemical stability under a wide range of conditions, a longer wavelength of excitation (408 nm), and improved synthetic accessibility. This amino acid has been prepared as an Fmoc-protected building block and may readily be incorporated into peptides via standard solid-phase peptide synthesis. A series of comparative studies are presented to demonstrate the advantageous properties of the 4-DMN amino acid relative to those of the previously reported 4-N,N-dimethylaminophthalimidoalanine and 6-N,N-dimethylamino-2,3-naphthalimidoalanine amino acids. Other commercially available solvatochromic fluorophores are also include in these studies. The potential of this new probe as a tool for the study of protein-protein interactions is demonstrated by introducing it into a peptide that is recognized by calcium-activated calmodulin. The binding interaction between these two components yields an increase in fluorescence emission greater than 900-fold.
Collapse
Affiliation(s)
- Galen Loving
- Department of Chemistry, Massachusetts Institute of Technology, 77 Mass Avenue, Cambridge, Massachusetts 02139, USA
| | | |
Collapse
|
68
|
Sainlos M, Imperiali B. Tools for investigating peptide-protein interactions: peptide incorporation of environment-sensitive fluorophores through SPPS-based 'building block' approach. Nat Protoc 2008; 2:3210-8. [PMID: 18079721 DOI: 10.1038/nprot.2007.443] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This protocol presents the synthesis and peptide incorporation of environment-sensitive fluorescent amino acids derived from the dimethylamino-phthalimide family. The procedure uses anhydride precursors of 4-dimethylaminophthalimide (4-DMAP) or 6-dimethylaminonaphthalimide (6-DMN), whose syntheses are described in a related protocol by these authors. In this study, the corresponding fluorescent amino acids can be readily obtained in Fmoc-protected form for convenient use as building blocks in solid phase peptide synthesis (SPPS). The time required to complete the procedure depends on the size and the number of peptides targeted. Alternatively, the chromophores can be incorporated directly after SPPS via on-resin derivatization of peptides, which is an option described in a related protocol by these authors.
Collapse
Affiliation(s)
- Matthieu Sainlos
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139-4307, USA
| | | |
Collapse
|
69
|
Sainlos M, Imperiali B. Synthesis of anhydride precursors of the environment-sensitive fluorophores 4-DMAP and 6-DMN. Nat Protoc 2008; 2:3219-25. [PMID: 18079722 DOI: 10.1038/nprot.2007.444] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This protocol describes the synthesis of cyclic anhydride precursors of the environment-sensitive fluorophores 4-dimethylaminophthalimide (4-DMAP) and 6-dimethylaminonaphthalimide (6-DMN). The condensation of these anhydrides with a primary amino group confers on molecules of interest solvatochromic properties. In particular, two strategies for the insertion of the chromophores into peptides are presented in two companion protocols. The anhydride syntheses can be completed on the gram scale in 2 d for the 4-DMAP precursor and 10-15 d for the 6-DMN precursor.
Collapse
Affiliation(s)
- Matthieu Sainlos
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139-4307, USA
| | | |
Collapse
|
70
|
Yunus U, Tahir MK, Bhatti MH, Yousaf N, Helliwell M. 2-(4-Amino-5-thioxo-4,5-dihydro-1H-1,2,4-triazol-3-ylmeth-yl)isoindoline-1,3-dione. Acta Crystallogr Sect E Struct Rep Online 2008; 64:o476-7. [PMID: 21201502 PMCID: PMC2960251 DOI: 10.1107/s1600536808001189] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2007] [Accepted: 01/11/2008] [Indexed: 11/29/2022]
Abstract
The title compound, C11H9N5O2S, was synthesized from N-phthaloylglycine and thiocarbohydrazide by the fusion method. This is the first report of a triazole derivative of N-phthaloylglycine. The title compound exists in the thione form. The molecule is non-planar, with a dihedral angle between the isoindoline ring system and the triazole ring system of 82.24 (5)°. The crystal structure is stabilized by intermolecular hydrogen bonding linking the molecules into a three-dimensional network.
Collapse
|
71
|
|
72
|
Sainlos M, Imperiali B. Tools for investigating peptide–protein interactions: peptide incorporation of environment-sensitive fluorophores via on-resin derivatization. Nat Protoc 2007; 2:3201-9. [DOI: 10.1038/nprot.2007.442] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
73
|
Kotha S, Shah VR, Mishra PP, Datta A. Design and synthesis of a novel anthracene-based fluorescent probe through the application of the Suzuki–Miyaura cross-coupling reaction. Amino Acids 2007; 35:169-73. [PMID: 17914601 DOI: 10.1007/s00726-007-0592-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2007] [Accepted: 07/13/2007] [Indexed: 10/22/2022]
Abstract
We report on a simple synthetic route to a novel anthracene-based bis-armed amino acid derivative as a useful fluorescent probe. Various photophysical studies of this amino acid derivative are also described. Here, Suzuki-Miyaura cross-coupling reaction has been used as a key step for carbon-carbon bond formation.
Collapse
Affiliation(s)
- S Kotha
- Department of Chemistry, Indian Institute of Technology-Bombay, Powai, Mumbai, India.
| | | | | | | |
Collapse
|
74
|
Venkatraman P, Nguyen TT, Sainlos M, Bilsel O, Chitta S, Imperiali B, Stern LJ. Fluorogenic probes for monitoring peptide binding to class II MHC proteins in living cells. Nat Chem Biol 2007; 3:222-8. [PMID: 17351628 PMCID: PMC3444530 DOI: 10.1038/nchembio868] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2006] [Accepted: 02/15/2007] [Indexed: 11/09/2022]
Abstract
A crucial step in the immune response is the binding of antigenic peptides to major histocompatibility complex (MHC) proteins. Class II MHC proteins present their bound peptides to CD4(+) T cells, thereby helping to activate both the humoral and the cellular arms of the adaptive immune response. Peptide loading onto class II MHC proteins is regulated temporally, spatially and developmentally in antigen-presenting cells. To help visualize these processes, we have developed a series of novel fluorogenic probes that incorporate the environment-sensitive amino acid analogs 6-N,N-dimethylamino-2-3-naphthalimidoalanine and 4-N,N-dimethylaminophthalimidoalanine. Upon binding to class II MHC proteins these fluorophores show large changes in emission spectra, quantum yield and fluorescence lifetime. Peptides incorporating these fluorophores bind specifically to class II MHC proteins on antigen-presenting cells and can be used to follow peptide binding in vivo. Using these probes we have tracked a developmentally regulated cell-surface peptide-binding activity in primary human monocyte-derived dendritic cells.
Collapse
Affiliation(s)
- Prasanna Venkatraman
- Department of Pathology, UMass Medical School, 55 Lake Ave. North, Worcester, MA 01655
| | - Tina T. Nguyen
- Department of Biochemistry and Molecular Pharmacology, UMass Medical School, 55 Lake Ave. North, Worcester, MA 01655
| | - Matthieu Sainlos
- Department of Chemistry, 77 Massachusetts Ave, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Osman Bilsel
- Department of Biochemistry and Molecular Pharmacology, UMass Medical School, 55 Lake Ave. North, Worcester, MA 01655
| | - Sriram Chitta
- Department of Pathology, UMass Medical School, 55 Lake Ave. North, Worcester, MA 01655
| | - Barbara Imperiali
- Department of Chemistry, 77 Massachusetts Ave, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Biology, 77 Massachusetts Ave, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Lawrence J. Stern
- Department of Pathology, UMass Medical School, 55 Lake Ave. North, Worcester, MA 01655
- Department of Biochemistry and Molecular Pharmacology, UMass Medical School, 55 Lake Ave. North, Worcester, MA 01655
| |
Collapse
|
75
|
Sinkeldam RW, Tor Y. To D or not to D? : On estimating the microenvironment polarity of biomolecular cavities. Org Biomol Chem 2007; 5:2523-8. [DOI: 10.1039/b707719j] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
76
|
Vázquez ME, Blanco JB, Salvadori S, Trapella C, Argazzi R, Bryant SD, Jinsmaa Y, Lazarus LH, Negri L, Giannini E, Lattanzi R, Colucci M, Balboni G. 6-N,N-dimethylamino-2,3-naphthalimide: a new environment-sensitive fluorescent probe in delta- and mu-selective opioid peptides. J Med Chem 2006; 49:3653-8. [PMID: 16759107 PMCID: PMC1994907 DOI: 10.1021/jm060343t] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A new environment-sensitive fluorophore, 6-N,N-(dimethylamino)-2,3-naphthalimide (6DMN) was introduced in the delta-selective opioid peptide agonist H-Dmt-Tic-Glu-NH(2) and in the mu-selective opioid peptide agonist endomorphin-2 (H-Tyr-Pro-Phe-Phe-NH(2)). Environment-sensitive fluorophores are a special class of chromophores that generally exhibit a low quantum yield in aqueous solution but become highly fluorescent in nonpolar solvents or when bound to hydrophobic sites in proteins or membranes. New fluorescent delta-selective irreversible antagonists (H-Dmt-Tic-Glu-NH-(CH(2))(5)-CO-Dap(6DMN)-NH(2) (1) and H-Dmt-Tic-Glu-Dap(6DMN)-NH(2) (2)) were identified as potential fluorescent probes showing good properties for use in studies of distribution and internalization of delta receptors by confocal laser scanning microscopy.
Collapse
MESH Headings
- Animals
- Binding, Competitive
- Cell Line, Tumor
- Fluorescent Dyes/chemical synthesis
- Fluorescent Dyes/chemistry
- Fluorescent Dyes/pharmacology
- Guinea Pigs
- Imides/chemistry
- In Vitro Techniques
- Male
- Mice
- Muscle Contraction
- Naphthalenes/chemistry
- Naphthalimides
- Neuroblastoma
- Neuromuscular Junction/drug effects
- Neuromuscular Junction/physiology
- Oligopeptides/chemical synthesis
- Oligopeptides/chemistry
- Oligopeptides/pharmacology
- Opioid Peptides/chemical synthesis
- Opioid Peptides/chemistry
- Opioid Peptides/pharmacology
- Radioligand Assay
- Receptors, Opioid, delta/agonists
- Receptors, Opioid, delta/metabolism
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/metabolism
- Structure-Activity Relationship
Collapse
Affiliation(s)
- M Eugenio Vázquez
- Departamento de Química Organica y Unidad Asociada al CSIC, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Oshima J, Tsujimoto H, Yoshihara T, Yamada K, Katakai R, Tobita S. Photophysical Properties of 3-[2-Cyano-4-(dimethylamino)phenyl]alanine: A Highly Fluorescent and Environment-sensitive Amino Acid with Small Molecular Size. CHEM LETT 2006. [DOI: 10.1246/cl.2006.620] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
78
|
Barooah N, Sarma RJ, Batsanov AS, Baruah JB. N-phthaloylglycinato complexes of cobalt, nickel, copper and zinc. Polyhedron 2006. [DOI: 10.1016/j.poly.2005.06.057] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
79
|
Wu M, Coblitz B, Shikano S, Long S, Cockrell LM, Fu H, Li M. SWTY--a general peptide probe for homogeneous solution binding assay of 14-3-3 proteins. Anal Biochem 2005; 349:186-96. [PMID: 16403428 DOI: 10.1016/j.ab.2005.11.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2005] [Revised: 11/16/2005] [Accepted: 11/19/2005] [Indexed: 10/25/2022]
Abstract
Dimeric 14-3-3 proteins exert diverse functions in eukaryotes by binding to specific phosphorylated sites on diverse target proteins. Critical to the physiological function of 14-3-3 proteins is the wide range of binding affinity to different ligands. The existing information of binding affinity is mainly derived from nonhomogeneous-based methods such as surface plasmon resonance and quantitative affinity precipitation. We have developed a fluorescence anisotropy peptide probe using a genetically isolated 14-3-3-binding SWTY motif. The synthetic 5-(and-6)-carboxyfluorescein(FAM)-RGRSWpTY-COOH peptide, when bound to 14-3-3 proteins, exhibits a seven-fold increase in fluorescence anisotropy. Different from the existing assays for 14-3-3 binding, this homogeneous assay tests the interaction directly in solution. Hence it permits more accurate determination of the dissociation constants of 14-3-3 binding molecules. Protocols for a simple mix-and-read format have been developed to evaluate 14-3-3 protein interactions using either purified recombinant 14-3-3 fusion proteins or native 14-3-3s in crude cell lysate. Optimal assay conditions for high-throughput screening for modulators of 14-3-3 binding have been determined.
Collapse
Affiliation(s)
- Meng Wu
- Department of Neuroscience and High Throughput Biology Center, School of Medicine, Johns Hopkins University, 733 North Broadway, Baltimore, MD 21205, USA
| | | | | | | | | | | | | |
Collapse
|
80
|
Kumar D, Bhalla TC. Microbial proteases in peptide synthesis: approaches and applications. Appl Microbiol Biotechnol 2005; 68:726-36. [PMID: 16133322 DOI: 10.1007/s00253-005-0094-7] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2005] [Revised: 07/06/2005] [Accepted: 07/07/2005] [Indexed: 11/25/2022]
Abstract
Enzymatic synthesis of peptides has attracted a great deal of attention in recent years. The proteases from bacterial, fungal, plant, and animal sources have been successfully applied to the synthesis of several small peptides, mainly dipeptides and tripeptides. Peptide bonds can be synthesized using proteases in either a thermodynamically controlled or a kinetically controlled manner. The development of new methods suitable for the large-scale production of biologically active peptides has been actively pursued over the last decade due to their bioactive nature as well as better understanding of their biological functions and properties. The aim of this study was to review the basic techniques of peptide synthesis and some advancement in biotechnological methods for their production.
Collapse
Affiliation(s)
- Dinesh Kumar
- Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla, 171005, India
| | | |
Collapse
|