51
|
Trzebicka B, Szweda R, Kosowski D, Szweda D, Otulakowski Ł, Haladjova E, Dworak A. Thermoresponsive polymer-peptide/protein conjugates. Prog Polym Sci 2017. [DOI: 10.1016/j.progpolymsci.2016.12.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
52
|
Foster JC, Radzinski SC, Matson JB. Graft polymer synthesis by RAFT transfer‐to. ACTA ACUST UNITED AC 2017. [DOI: 10.1002/pola.28621] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jeffrey C. Foster
- Department of Chemistry and Macromolecules Innovation InstituteVirginia TechBlacksburg Virginia24061
| | - Scott C. Radzinski
- Department of Chemistry and Macromolecules Innovation InstituteVirginia TechBlacksburg Virginia24061
| | - John B. Matson
- Department of Chemistry and Macromolecules Innovation InstituteVirginia TechBlacksburg Virginia24061
| |
Collapse
|
53
|
Tucker BS, Coughlin ML, Figg CA, Sumerlin BS. Grafting-From Proteins Using Metal-Free PET-RAFT Polymerizations under Mild Visible-Light Irradiation. ACS Macro Lett 2017; 6:452-457. [PMID: 35610863 DOI: 10.1021/acsmacrolett.7b00140] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We report a new strategy toward polymer-protein conjugates using a grafting-from method that employs photoinduced electron/energy transfer-reversible addition-fragmentation chain transfer (PET-RAFT) polymerization. Initial screening of reaction conditions showed rapid polymerization of acrylamides under high dilution in water using eosin Y as a photocatalyst in the presence of a tertiary amine. A lysozyme-modified chain transfer agent allowed the same conditions to be utilized for grafting-from polymerizations, and we further demonstrated the broad scope of this technique by polymerizing acrylic and styrenic monomers. Finally, retention of the RAFT end group was suggested by successful chain extension with N-isopropylacrylamide from the polymer-protein conjugates to form block copolymer-protein conjugates. This strategy should expand the capabilities of grafting-from proteins with RAFT polymerization under mild conditions to afford diverse functional materials.
Collapse
Affiliation(s)
- Bryan S. Tucker
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611-7200, United States
| | - McKenzie L. Coughlin
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611-7200, United States
| | - C. Adrian Figg
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611-7200, United States
| | - Brent S. Sumerlin
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611-7200, United States
| |
Collapse
|
54
|
Wong ASM, Czuba E, Chen MZ, Yuen D, Cupic KI, Yang S, Hodgetts RY, Selby LI, Johnston APR, Such GK. pH-Responsive Transferrin-pHlexi Particles Capable of Targeting Cells in Vitro. ACS Macro Lett 2017; 6:315-320. [PMID: 35650909 DOI: 10.1021/acsmacrolett.7b00044] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Targeting nanoparticles to specific cellular receptors has the potential to deliver therapeutic compounds to target sites while minimizing side effects. To this end, we have conjugated a targeting protein, holo-transferrin (holo-Tf), to pH-responsive polymers, poly(2-(diethylamino)ethyl methacrylate) (PDEAEMA) and poly(2-(diethylamino)ethyl methacrylate)-ran-poly(2-(diisopropylamino)ethyl methacrylate (PDEAEMA-r-PDPAEMA). These protein-polymer hybrid materials were observed to self-assemble when the pH is increased above the pKa of the polymer. We demonstrate that their response to pH could be tuned depending on the polymer constituent attached to holo-Tf. Importantly, the targeting behavior of these nanoparticles could be maximized by tuning the density of holo-Tf on the nanoparticle surface by the introduction of a (PDEAEMA-r-PDPAEMA)-b-poly(ethylene glycol) (PEG) copolymer.
Collapse
Affiliation(s)
- Adelene S. M. Wong
- Department
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
- Drug
Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical
Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Ewa Czuba
- Drug
Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical
Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Moore Z. Chen
- Drug
Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical
Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Daniel Yuen
- Drug
Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical
Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Kristofer I. Cupic
- Department
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
- Drug
Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical
Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Shenglin Yang
- Department
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Rebecca Y. Hodgetts
- Department
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Laura I. Selby
- Drug
Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical
Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Angus P. R. Johnston
- Drug
Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical
Sciences, Monash University, Parkville, Victoria 3052, Australia
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, Australia
| | - Georgina K. Such
- Department
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
55
|
Abstract
The formulation in which therapeutic proteins are administered plays a key role in retaining their biological activity. Enzyme wrapping, using synthetic polymers, is a strategy employed to provide enzymes with lower immunogenicity, longer circulation times, and better targeting capabilities. Protein-polymer complexation methods, involving covalent, noncovalent, and electrostatic interactions, that can provide means to develop formulations for retaining enzyme stability are discussed in this chapter. Amphiphilic self-cross-linkable polymer was used to encapsulate capsase-3 enzyme in the nanogel, while inverse emulsion polymerization method was used to entrap α-glucosidase enzyme in the nanogel. These nanogels were characterized by dynamic light scattering, transmission electron microscopy, and gel electrophoresis. Upon release of caspase-3 enzyme from polymeric nanogel, it retained nearly 86% of its original activity. Similarly, α-glucosidase that was encased in the acid cleavable polymeric nanogel exhibited substantial activity after release under acidic conditions (pH 5, 48h). Nano-armoring of the enzymes were nearly complete and provided high yields of the encased enzyme.
Collapse
|
56
|
Pan X, Lathwal S, Mack S, Yan J, Das SR, Matyjaszewski K. Automated Synthesis of Well-Defined Polymers and Biohybrids by Atom Transfer Radical Polymerization Using a DNA Synthesizer. Angew Chem Int Ed Engl 2017; 56:2740-2743. [PMID: 28164438 PMCID: PMC5341381 DOI: 10.1002/anie.201611567] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 12/30/2016] [Indexed: 11/07/2022]
Abstract
A DNA synthesizer was successfully employed for preparation of well-defined polymers by atom transfer radical polymerization (ATRP), in a technique termed AutoATRP. This method provides well-defined homopolymers, diblock copolymers, and biohybrids under automated photomediated ATRP conditions. PhotoATRP was selected over other ATRP methods because of mild reaction conditions, ambient temperature, tolerance to oxygen, and no need to introduce reducing agents or radical initiators. Both acrylate and methacrylate monomers were successfully polymerized with excellent control in the DNA synthesizer. Diblock copolymers were synthesized with different targeted degrees of polymerization and with high retention of chain-end functionality. Both hydrophobic and hydrophilic monomers were grafted from DNA. The DNA-polymer hybrids were characterized by SEC and DLS. The AutoATRP method provides an efficient route to prepare a range of different polymeric materials, especially polymer-biohybrids.
Collapse
Affiliation(s)
- Xiangcheng Pan
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA, 15213, USA
| | - Sushil Lathwal
- Department of Chemistry and Center for Nucleic Acids Science & Technology, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA, 15213, USA
| | - Stephanie Mack
- Department of Chemistry and Center for Nucleic Acids Science & Technology, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA, 15213, USA
| | - Jiajun Yan
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA, 15213, USA
| | - Subha R Das
- Department of Chemistry and Center for Nucleic Acids Science & Technology, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA, 15213, USA
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA, 15213, USA
| |
Collapse
|
57
|
Dule M, Biswas M, Biswas Y, Mandal K, Jana NR, Mandal TK. Cysteine-based amphiphilic peptide-polymer conjugates via thiol-mediated radical polymerization: Synthesis, self-assembly, RNA polyplexation and N-terminus fluorescent labeling for cell imaging. POLYMER 2017. [DOI: 10.1016/j.polymer.2017.01.083] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
58
|
Pan X, Lathwal S, Mack S, Yan J, Das SR, Matyjaszewski K. Automated Synthesis of Well-Defined Polymers and Biohybrids by Atom Transfer Radical Polymerization Using a DNA Synthesizer. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201611567] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Xiangcheng Pan
- Department of Chemistry; Carnegie Mellon University; 4400 Fifth Avenue Pittsburgh PA 15213 USA
| | - Sushil Lathwal
- Department of Chemistry and Center for Nucleic Acids Science & Technology; Carnegie Mellon University; 4400 Fifth Avenue Pittsburgh PA 15213 USA
| | - Stephanie Mack
- Department of Chemistry and Center for Nucleic Acids Science & Technology; Carnegie Mellon University; 4400 Fifth Avenue Pittsburgh PA 15213 USA
| | - Jiajun Yan
- Department of Chemistry; Carnegie Mellon University; 4400 Fifth Avenue Pittsburgh PA 15213 USA
| | - Subha R. Das
- Department of Chemistry and Center for Nucleic Acids Science & Technology; Carnegie Mellon University; 4400 Fifth Avenue Pittsburgh PA 15213 USA
| | - Krzysztof Matyjaszewski
- Department of Chemistry; Carnegie Mellon University; 4400 Fifth Avenue Pittsburgh PA 15213 USA
| |
Collapse
|
59
|
Xu G, Xu Y, Li A, Chen T, Liu J. Enzymatic bioactivity investigation of glucose oxidase modified with hydrophilic or hydrophobic polymers via in situ RAFT polymerization. ACTA ACUST UNITED AC 2017. [DOI: 10.1002/pola.28503] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Gengfang Xu
- Center for Micro/Nano Luminescent and Electrochemical Materials, College of Materials Science and Engineering; Institute for Graphene Applied Technology Innovation; Laboratory of Fiber Materials and Modern Textiles, the Growing Base for State Key Laboratory; Collaborative Innovation Center for Marine Biomass Fibers Materials and Textiles of Shandong Province; Qingdao University; Qingdao 266071 China
| | - Yuanhong Xu
- Center for Micro/Nano Luminescent and Electrochemical Materials, College of Materials Science and Engineering; Institute for Graphene Applied Technology Innovation; Laboratory of Fiber Materials and Modern Textiles, the Growing Base for State Key Laboratory; Collaborative Innovation Center for Marine Biomass Fibers Materials and Textiles of Shandong Province; Qingdao University; Qingdao 266071 China
| | - Aihua Li
- Center for Micro/Nano Luminescent and Electrochemical Materials, College of Materials Science and Engineering; Institute for Graphene Applied Technology Innovation; Laboratory of Fiber Materials and Modern Textiles, the Growing Base for State Key Laboratory; Collaborative Innovation Center for Marine Biomass Fibers Materials and Textiles of Shandong Province; Qingdao University; Qingdao 266071 China
| | - Tao Chen
- Center for Micro/Nano Luminescent and Electrochemical Materials, College of Materials Science and Engineering; Institute for Graphene Applied Technology Innovation; Laboratory of Fiber Materials and Modern Textiles, the Growing Base for State Key Laboratory; Collaborative Innovation Center for Marine Biomass Fibers Materials and Textiles of Shandong Province; Qingdao University; Qingdao 266071 China
| | - Jingquan Liu
- Center for Micro/Nano Luminescent and Electrochemical Materials, College of Materials Science and Engineering; Institute for Graphene Applied Technology Innovation; Laboratory of Fiber Materials and Modern Textiles, the Growing Base for State Key Laboratory; Collaborative Innovation Center for Marine Biomass Fibers Materials and Textiles of Shandong Province; Qingdao University; Qingdao 266071 China
| |
Collapse
|
60
|
Roveri M, Bernasconi M, Leroux JC, Luciani P. Peptides for tumor-specific drug targeting: state of the art and beyond. J Mater Chem B 2017; 5:4348-4364. [DOI: 10.1039/c7tb00318h] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This review outlines the most recent advances in peptide-mediated tumor-targeting and gives insight into the direction of the field.
Collapse
Affiliation(s)
- Maurizio Roveri
- Institute of Pharmaceutical Sciences
- ETH Zurich
- 8093 Zurich
- Switzerland
- Experimental Infectious Diseases and Cancer Research
| | - Michele Bernasconi
- Experimental Infectious Diseases and Cancer Research
- Children's Research Center
- University Children's Hospital Zurich
- 8032 Zurich
- Switzerland
| | | | - Paola Luciani
- Institute of Pharmacy
- Department of Pharmaceutical Technology
- Friedrich Schiller University
- 07743 Jena
- Germany
| |
Collapse
|
61
|
Meißig;ler M, Wieczorek S, ten Brummelhuis N, Börner HG. Synthetic Aspects of Peptide– and Protein–Polymer Conjugates in the Post-click Era. BIO-INSPIRED POLYMERS 2016. [DOI: 10.1039/9781782626664-00001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Biomacromolecules offer complex and precise functions embedded in their monomer sequence such as enzymatic activity or specific interactions towards other molecules. Their informational content and capability to organize in higher ordered structures is superior to those of synthetic molecules. In comparison, synthetic polymers are easy to access even at large production scales and they are chemically more diverse. Solubilization, shielding against enzymatic degradation to more advanced functions like switchability or protein mimicry, etc., are accessible through the world of polymer chemistry. Bio-inspired hybrid materials consisting of peptides or proteins and synthetic polymers thereby combine the properties of both molecules to give rise to a new class of materials with unique characteristics and performance. To obtain well-defined bioconjugate materials, high yielding and site-specific as well as biorthogonal ligation techniques are mandatory. Since the first attempts of protein PEGylation in the 1970s and the concept of “click” chemistry arising in 2001, continuous progress in the field of peptide– and protein–polymer conjugate preparation has been gained. Herein, we provide an overview on ligation techniques to prepare functional bioconjugates published in the last decade, also referred to as “post-click” methods. Furthermore, chemoenzymatic approaches and biotransformation reactions used in peptide or protein modification, as well as highly site-specific and efficient reactions originated in synthetic macromolecular chemistry, which could potentially be adapted for bioconjugation, are presented. Finally, future perspectives for the preparation and application of bioconjugates at the interface between biology and synthetic materials are given.
Collapse
Affiliation(s)
- Maria Meißig;ler
- Laboratory for Organic Synthesis of Functional Systems, Department of Chemistry, Humboldt-Universität zu Berlin Brook-Taylor-Str. 2 D-12489 Berlin Germany
| | - Sebastian Wieczorek
- Laboratory for Organic Synthesis of Functional Systems, Department of Chemistry, Humboldt-Universität zu Berlin Brook-Taylor-Str. 2 D-12489 Berlin Germany
| | - Niels ten Brummelhuis
- Laboratory for Organic Synthesis of Functional Systems, Department of Chemistry, Humboldt-Universität zu Berlin Brook-Taylor-Str. 2 D-12489 Berlin Germany
| | - Hans G. Börner
- Laboratory for Organic Synthesis of Functional Systems, Department of Chemistry, Humboldt-Universität zu Berlin Brook-Taylor-Str. 2 D-12489 Berlin Germany
| |
Collapse
|
62
|
Araujo JV, Rifaie-Graham O, Apebende EA, Bruns N. Self-reporting Polymeric Materials with Mechanochromic Properties. BIO-INSPIRED POLYMERS 2016. [DOI: 10.1039/9781782626664-00354] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The mechanical transduction of force onto molecules is an essential feature of many biological processes that results in the senses of touch and hearing, gives important cues for cellular interactions and can lead to optically detectable signals, such as a change in colour, fluorescence or chemoluminescence. Polymeric materials that are able to visually indicate deformation, stress, strain or the occurrence of microdamage draw inspiration from these biological events. The field of self-reporting (or self-assessing) materials is reviewed. First, mechanochromic events in nature are discussed, such as the formation of bruises on skin, the bleeding of a wound, or marine glow caused by dinoflagellates. Then, materials based on force-responsive mechanophores, such as spiropyrans, cyclobutanes, cyclooctanes, Diels–Alder adducts, diarylbibenzofuranone and bis(adamantyl)-1,2-dioxetane are reviewed, followed by mechanochromic blends, chromophores stabilised by hydrogen bonds, and pressure sensors based on ionic interactions between fluorescent dyes and polyelectrolyte brushes. Mechanobiochemistry is introduced as an important tool to create self-reporting hybrid materials that combine polymers with the force-responsive properties of fluorescent proteins, protein FRET pairs, and other biomacromolecules. Finally, dye-filled microcapsules, microvascular networks, and hollow fibres are demonstrated to be important technologies to create damage-indicating coatings, self-reporting fibre-reinforced composites and self-healing materials.
Collapse
Affiliation(s)
- Jose V. Araujo
- Adolphe Merkle Institute, University of Fribourg Chemin des Verdiers 4 1700 Fribourg Switzerland
| | - Omar Rifaie-Graham
- Adolphe Merkle Institute, University of Fribourg Chemin des Verdiers 4 1700 Fribourg Switzerland
| | - Edward A. Apebende
- Adolphe Merkle Institute, University of Fribourg Chemin des Verdiers 4 1700 Fribourg Switzerland
| | - Nico Bruns
- Adolphe Merkle Institute, University of Fribourg Chemin des Verdiers 4 1700 Fribourg Switzerland
| |
Collapse
|
63
|
Solimando X, Lherbier C, Babin J, Arnal-Herault C, Romero E, Acherar S, Jamart-Gregoire B, Barth D, Roizard D, Jonquieres A. Pseudopeptide bioconjugate additives for CO2separation membranes. POLYM INT 2016. [DOI: 10.1002/pi.5240] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Xavier Solimando
- Laboratoire de Chimie Physique Macromoléculaire; LCPM UMR CNRS Université de Lorraine 7375, ENSIC; 1 rue Grandville, BP 20451 54 001 Nancy Cedex France
| | - Clément Lherbier
- Laboratoire de Chimie Physique Macromoléculaire; LCPM UMR CNRS Université de Lorraine 7375, ENSIC; 1 rue Grandville, BP 20451 54 001 Nancy Cedex France
| | - Jérôme Babin
- Laboratoire de Chimie Physique Macromoléculaire; LCPM UMR CNRS Université de Lorraine 7375, ENSIC; 1 rue Grandville, BP 20451 54 001 Nancy Cedex France
| | - Carole Arnal-Herault
- Laboratoire de Chimie Physique Macromoléculaire; LCPM UMR CNRS Université de Lorraine 7375, ENSIC; 1 rue Grandville, BP 20451 54 001 Nancy Cedex France
| | - Eugénie Romero
- Laboratoire de Chimie Physique Macromoléculaire; LCPM UMR CNRS Université de Lorraine 7375, ENSIC; 1 rue Grandville, BP 20451 54 001 Nancy Cedex France
| | - Samir Acherar
- Laboratoire de Chimie Physique Macromoléculaire; LCPM UMR CNRS Université de Lorraine 7375, ENSIC; 1 rue Grandville, BP 20451 54 001 Nancy Cedex France
| | - Brigitte Jamart-Gregoire
- Laboratoire de Chimie Physique Macromoléculaire; LCPM UMR CNRS Université de Lorraine 7375, ENSIC; 1 rue Grandville, BP 20451 54 001 Nancy Cedex France
| | - Danielle Barth
- Laboratoire Réactions et Génie des Procédés; LRGP UMR CNRS Université de Lorraine 7274, ENSIC; 1 rue Grandville, BP 20451 54 001 Nancy Cedex France
| | - Denis Roizard
- Laboratoire Réactions et Génie des Procédés; LRGP UMR CNRS Université de Lorraine 7274, ENSIC; 1 rue Grandville, BP 20451 54 001 Nancy Cedex France
| | - Anne Jonquieres
- Laboratoire de Chimie Physique Macromoléculaire; LCPM UMR CNRS Université de Lorraine 7375, ENSIC; 1 rue Grandville, BP 20451 54 001 Nancy Cedex France
| |
Collapse
|
64
|
Charan H, Kinzel J, Glebe U, Anand D, Garakani TM, Zhu L, Bocola M, Schwaneberg U, Böker A. Grafting PNIPAAm from β-barrel shaped transmembrane nanopores. Biomaterials 2016; 107:115-23. [PMID: 27614163 DOI: 10.1016/j.biomaterials.2016.08.033] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 08/16/2016] [Accepted: 08/18/2016] [Indexed: 02/08/2023]
Abstract
The research on protein-polymer conjugates by grafting from the surface of proteins has gained significant interest in the last decade. While there are many studies with globular proteins, membrane proteins have remained untouched to the best of our knowledge. In this study, we established the conjugate formation with a class of transmembrane proteins and grow polymer chains from the ferric hydroxamate uptake protein component A (FhuA; a β-barrel transmembrane protein of Escherichia coli). As the lysine residues of naturally occurring FhuA are distributed over the whole protein, FhuA was reengineered to have up to 11 lysines, distributed symmetrically in a rim on the membrane exposed side (outside) of the protein channel and exclusively above the hydrophobic region. Reengineering of FhuA ensures a polymer growth only on the outside of the β-barrel and prevents blockage of the channel as a result of the polymerization. A water-soluble initiator for controlled radical polymerization (CRP) was consecutively linked to the lysine residues of FhuA and N-isopropylacrylamide (NIPAAm) polymerized under copper-mediated CRP conditions. The conjugate formation was analyzed by using MALDI-ToF mass spectrometry, SDS-PAGE, circular dichroism spectroscopy, analytical ultracentrifugation, dynamic light scattering, transmission electron microscopy and size exclusion chromatography. Such conjugates combine the specific functions of the transmembrane proteins, like maintaining membrane potential gradients or translocation of substrates with the unique properties of synthetic polymers such as temperature and pH stimuli handles. FhuA-PNIPAAm conjugates will serve as functional nanosized building blocks for applications in targeted drug delivery, self-assembly systems, functional membranes and transmembrane protein gated nanoreactors.
Collapse
Affiliation(s)
- Himanshu Charan
- Fraunhofer Institute for Applied Polymer Research IAP, Geiselbergstr. 69, 14476, Potsdam-Golm, Germany; Lehrstuhl für Polymermaterialien und Polymertechnologie, Universität Potsdam, 14476, Potsdam-Golm, Germany
| | - Julia Kinzel
- Institute of Biotechnology, RWTH Aachen University, Worringer Weg 3, D-52074, Aachen, Germany
| | - Ulrich Glebe
- Fraunhofer Institute for Applied Polymer Research IAP, Geiselbergstr. 69, 14476, Potsdam-Golm, Germany
| | - Deepak Anand
- Institute of Biotechnology, RWTH Aachen University, Worringer Weg 3, D-52074, Aachen, Germany
| | - Tayebeh Mirzaei Garakani
- Institute of Biotechnology, RWTH Aachen University, Worringer Weg 3, D-52074, Aachen, Germany; DWI - Leibniz Institute for Interactive Materials e.V., Forckenbeckstr. 50, 52056, Aachen, Germany
| | - Leilei Zhu
- Institute of Biotechnology, RWTH Aachen University, Worringer Weg 3, D-52074, Aachen, Germany
| | - Marco Bocola
- Institute of Biotechnology, RWTH Aachen University, Worringer Weg 3, D-52074, Aachen, Germany
| | - Ulrich Schwaneberg
- Institute of Biotechnology, RWTH Aachen University, Worringer Weg 3, D-52074, Aachen, Germany; DWI - Leibniz Institute for Interactive Materials e.V., Forckenbeckstr. 50, 52056, Aachen, Germany.
| | - Alexander Böker
- Fraunhofer Institute for Applied Polymer Research IAP, Geiselbergstr. 69, 14476, Potsdam-Golm, Germany; Lehrstuhl für Polymermaterialien und Polymertechnologie, Universität Potsdam, 14476, Potsdam-Golm, Germany.
| |
Collapse
|
65
|
Chudasama NA, Prasad K, Siddhanta AK. Agarose functionalization: Synthesis of PEG-agarose amino acid nano-conjugate - its structural ramifications and interactions with BSA in a varying pH regime. Carbohydr Polym 2016; 151:735-742. [PMID: 27474620 DOI: 10.1016/j.carbpol.2016.06.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 05/24/2016] [Accepted: 06/03/2016] [Indexed: 12/30/2022]
Abstract
In a rapid one-step method protein-mimicking large agarose amino acid framework (AAE; GPC 156.7kDa) was conjugated with polyethylene glycol (PEG 9kDa) affording nano-sized PEGylated amphoteric agarose (PEG-AAE; <10nm; DLS) containing amino, carboxyl and ester groups [overall degree of substitution (DS) 0.91]. The PEG groups were at the residual free carboxylic acid groups of succinate half-ester moiety at C-6 positions of the 1, 3 β-d-galactopyranose moieties of AAE. This new nano-sized PEG-AAE performed like a giant protein conjugate (GPC 331.2kDa) and exhibited pH-responsive interconversion between the triple helix and single-stranded random structures (optical rotatory dispersion) presenting a mixed solubility pattern like random coil (soluble), helical (soluble) and aggregate (precipitation) formations. Circular dichroism studies showed its pH-dependent complexation and decomplexation with bovine serum albumin (BSA). Such pH-responsive PEG-conjugate may be of pronounced therapeutic potential in the area of pharmacology as well as in sensing applications.
Collapse
Affiliation(s)
- Nishith A Chudasama
- Natural Product and Green Chemistry Division, CSIR-Central Salt & Marine Chemicals Research Institute, G. B. Marg, Bhavnagar, 364002 Gujarat, India
| | - Kamalesh Prasad
- Natural Product and Green Chemistry Division, CSIR-Central Salt & Marine Chemicals Research Institute, G. B. Marg, Bhavnagar, 364002 Gujarat, India; Academy of Scientific & Innovative Research, Anusandhan Bhavan, 2 Rafi Marg, New Delhi 110001, India
| | - Arup Kumar Siddhanta
- Marine Biotechnology and Ecology Division, CSIR-Central Salt & Marine Chemicals Research Institute, G. B. Marg, Bhavnagar, 364002 Gujarat, India; Academy of Scientific & Innovative Research, Anusandhan Bhavan, 2 Rafi Marg, New Delhi 110001, India.
| |
Collapse
|
66
|
Jiang Y, Stenzel M. Drug Delivery Vehicles Based on Albumin-Polymer Conjugates. Macromol Biosci 2016; 16:791-802. [DOI: 10.1002/mabi.201500453] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 01/23/2016] [Indexed: 12/16/2022]
Affiliation(s)
- Yanyan Jiang
- Centre for Advanced Macromolecular Design; School of Chemistry and School of Chemical Engineering; University of New South Wales, UNSW; Kensington NSW 2052 Australia
| | - Martina Stenzel
- Centre for Advanced Macromolecular Design; School of Chemistry and School of Chemical Engineering; University of New South Wales, UNSW; Kensington NSW 2052 Australia
| |
Collapse
|
67
|
Kirkham S, Castelletto V, Hamley IW, Reza M, Ruokolainen J, Hermida-Merino D, Bilalis P, Iatrou H. Self-Assembly of Telechelic Tyrosine End-Capped PEO and Poly(alanine) Polymers in Aqueous Solution. Biomacromolecules 2016; 17:1186-97. [DOI: 10.1021/acs.biomac.6b00023] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Steven Kirkham
- School
of Chemistry, Pharmacy and Food Biosciences, University of Reading, Whiteknights, Reading RG6 6AD, United Kingdom
| | - Valeria Castelletto
- School
of Chemistry, Pharmacy and Food Biosciences, University of Reading, Whiteknights, Reading RG6 6AD, United Kingdom
| | - Ian William Hamley
- School
of Chemistry, Pharmacy and Food Biosciences, University of Reading, Whiteknights, Reading RG6 6AD, United Kingdom
| | - Mehedi Reza
- Department
of Applied Physics, Aalto University School of Science, P.O. Box 15100 FI-00076 Aalto, Finland
| | - Janne Ruokolainen
- Department
of Applied Physics, Aalto University School of Science, P.O. Box 15100 FI-00076 Aalto, Finland
| | | | - Panayiotis Bilalis
- University of Athens, Department of Chemistry, Panepistimiopolis Zografou, 157 71 Athens, Greece
| | - Hermis Iatrou
- University of Athens, Department of Chemistry, Panepistimiopolis Zografou, 157 71 Athens, Greece
| |
Collapse
|
68
|
Cao L, Shi X, Cui Y, Yang W, Chen G, Yuan L, Chen H. Protein–polymer conjugates prepared via host–guest interactions: effects of the conjugation site, polymer type and molecular weight on protein activity. Polym Chem 2016. [DOI: 10.1039/c6py00882h] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Protein–polymer conjugates are prepared via host–guest interactions and the effects of various parameters on protein activity are investigated.
Collapse
Affiliation(s)
- Limin Cao
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Xiujuan Shi
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Yuecheng Cui
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Weikang Yang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Gaojian Chen
- Center for Soft Condensed Matter Physics and Interdisciplinary Research
- Soochow University
- Suzhou
- P. R. China
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
| | - Lin Yuan
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Hong Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| |
Collapse
|
69
|
Rother M, Nussbaumer MG, Renggli K, Bruns N. Protein cages and synthetic polymers: a fruitful symbiosis for drug delivery applications, bionanotechnology and materials science. Chem Soc Rev 2016; 45:6213-6249. [DOI: 10.1039/c6cs00177g] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Protein cages have become essential tools in bionanotechnology due to their well-defined, monodisperse, capsule-like structure. Combining them with synthetic polymers greatly expands their application, giving rise to novel nanomaterials fore.g.drug-delivery, sensing, electronic devices and for uses as nanoreactors.
Collapse
Affiliation(s)
- Martin Rother
- Department of Chemistry
- University of Basel
- CH-4056 Basel
- Switzerland
| | - Martin G. Nussbaumer
- Wyss Institute for Biologically Inspired Engineering
- Harvard University
- Cambridge
- USA
| | - Kasper Renggli
- Department of Biosystems Science and Engineering
- ETH Zürich
- 4058 Basel
- Switzerland
| | - Nico Bruns
- Adolphe Merkle Institute
- University of Fribourg
- CH-1700 Fribourg
- Switzerland
| |
Collapse
|
70
|
Jiang Y, Lu H, Dag A, Hart-Smith G, Stenzel MH. Albumin–polymer conjugate nanoparticles and their interactions with prostate cancer cells in 2D and 3D culture: comparison between PMMA and PCL. J Mater Chem B 2016; 4:2017-2027. [DOI: 10.1039/c5tb02576a] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Using proteins as the hydrophilic moiety can dramatically improve the biodegradability and biocompatibility of self-assembled amphiphilic nanoparticles in the field of nanomedicine.
Collapse
Affiliation(s)
- Yanyan Jiang
- Centre for Advanced Macromolecular Design (CAMD)
- School of Chemical Engineering and School of Chemistry
- University of New South Wales
- Sydney
- Australia
| | - Hongxu Lu
- Centre for Advanced Macromolecular Design (CAMD)
- School of Chemical Engineering and School of Chemistry
- University of New South Wales
- Sydney
- Australia
| | - Aydan Dag
- Department of Pharmaceutical Chemistry
- Faculty of Pharmacy
- Bezmialem Vakif University
- 34093 Fatih
- Turkey
| | - Gene Hart-Smith
- Systems Biology Initiative
- School of Biotechnology and Biomolecular Sciences
- University of New South Wales
- Sydney 2052
- Australia
| | - Martina H. Stenzel
- Centre for Advanced Macromolecular Design (CAMD)
- School of Chemical Engineering and School of Chemistry
- University of New South Wales
- Sydney
- Australia
| |
Collapse
|
71
|
Zhang Q, Zhao Y, Yang B, Fu C, Zhao L, Wang X, Wei Y, Tao L. Lighting up the PEGylation agents via the Hantzsch reaction. Polym Chem 2016. [DOI: 10.1039/c5py01624j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PEG chain ends have been modified with a protein reactive-group through the Hantzsch reaction to in situ achieve fluorescent PEGylation agents for protein conjugation.
Collapse
Affiliation(s)
- Qingdong Zhang
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education)
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- P. R. China
| | - Yuan Zhao
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education)
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- P. R. China
| | - Bin Yang
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education)
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- P. R. China
| | - Changkui Fu
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education)
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- P. R. China
| | - Lingyun Zhao
- Key Laboratory of Advanced Materials
- Ministry of Education
- School of Material Science & Engineering
- Tsinghua University
- Beijing
| | - Xing Wang
- The State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- P. R. China
| | - Yen Wei
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education)
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- P. R. China
| | - Lei Tao
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education)
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- P. R. China
| |
Collapse
|
72
|
Wu H, Yang B, Zhao Y, Wei Y, Wang Z, Wang X, Tao L. Fluorescent protein-reactive polymers via one-pot combination of the Ugi reaction and RAFT polymerization. Polym Chem 2016. [DOI: 10.1039/c6py00781c] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Well-defined polymers containing both fluorescent and protein-reactive groups at the chain end have been facilely synthesized by the one-pot combination of the four-component Ugi reaction and RAFT polymerization.
Collapse
Affiliation(s)
- Haibo Wu
- School of Petrochemical Engineering
- Changzhou University
- Changzhou
- P. R. China
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education)
| | - Bin Yang
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education)
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- P. R. China
| | - Yuan Zhao
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education)
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- P. R. China
| | - Yen Wei
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education)
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- P. R. China
| | - Zhiming Wang
- School of Petrochemical Engineering
- Changzhou University
- Changzhou
- P. R. China
| | - Xing Wang
- The State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- P. R. China
| | - Lei Tao
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education)
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- P. R. China
| |
Collapse
|
73
|
Boyer C, Corrigan NA, Jung K, Nguyen D, Nguyen TK, Adnan NNM, Oliver S, Shanmugam S, Yeow J. Copper-Mediated Living Radical Polymerization (Atom Transfer Radical Polymerization and Copper(0) Mediated Polymerization): From Fundamentals to Bioapplications. Chem Rev 2015; 116:1803-949. [DOI: 10.1021/acs.chemrev.5b00396] [Citation(s) in RCA: 356] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Cyrille Boyer
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Nathaniel Alan Corrigan
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Kenward Jung
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Diep Nguyen
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Thuy-Khanh Nguyen
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Nik Nik M. Adnan
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Susan Oliver
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Sivaprakash Shanmugam
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Jonathan Yeow
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| |
Collapse
|
74
|
Cui Y, Liu F, Li X, Wang L, Wang H, Chen G, Yuan L, Brash JL, Chen H. Improvement in the Thermal Stability of Pyrophosphatase by Conjugation to Poly(N-isopropylacrylamide): Application to the Polymerase Chain Reaction. ACS APPLIED MATERIALS & INTERFACES 2015; 7:21913-21918. [PMID: 26373436 DOI: 10.1021/acsami.5b06494] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Polymerase chain reaction (PCR) is a powerful method for nucleic acid amplification. However, the PCR is inhibited in its yield due to its byproduct, pyrophosphate (PPi), a byproduct of the reaction; the yield is thereby limited. The conventional method for hydrolysis of PPi by pyrophosphatase (PPase) is not well adapted for operation at elevated temperatures over long times as required during the PCR. In this work, we reported a strategy to improve the PCR yield using a conjugate of the enzyme with the thermally responsive polymer poly(N-isopropylacrylamide) (PNIPAM). Pyrophosphatase (PPase) was conjugated to PNIPAM site-specifically near the active center. As compared to the free enzyme, the optimum temperature of the conjugate was shown to increase from 45 to 60 °C. For the conjugate, about 77% enzyme activity was retained after incubation at 60 °C for 3 h, representing a 6.8-fold increase as compared to the unconjugated enzyme. For the PCR using the conjugate, the yield was 1.5-fold greater than using the unconjugated enzyme. As well as improving the yield of the PCR (and possibly other biological reactions) at elevated temperature, polymer conjugation may also provide a strategy to improve the heat resistance of proteins more generally.
Collapse
Affiliation(s)
- Yuecheng Cui
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou 215123, People's Republic of China
| | - Feng Liu
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou 215123, People's Republic of China
| | - Xin Li
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou 215123, People's Republic of China
| | - Lei Wang
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou 215123, People's Republic of China
| | - Hongwei Wang
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou 215123, People's Republic of China
| | - Gaojian Chen
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou 215123, People's Republic of China
| | - Lin Yuan
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou 215123, People's Republic of China
| | - John L Brash
- School of Biomedical Engineering, Department of Chemical Engineering, McMaster University , Hamilton, Ontario L8S 4L8, Canada
| | - Hong Chen
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou 215123, People's Republic of China
| |
Collapse
|
75
|
Moatsou D, Li J, Ranji A, Pitto-Barry A, Ntai I, Jewett MC, O’Reilly RK. Self-Assembly of Temperature-Responsive Protein-Polymer Bioconjugates. Bioconjug Chem 2015; 26:1890-9. [PMID: 26083370 PMCID: PMC4577958 DOI: 10.1021/acs.bioconjchem.5b00264] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 06/12/2015] [Indexed: 12/13/2022]
Abstract
We report a simple temperature-responsive bioconjugate system comprising superfolder green fluorescent protein (sfGFP) decorated with poly[(oligo ethylene glycol) methyl ether methacrylate] (PEGMA) polymers. We used amber suppression to site-specifically incorporate the non-canonical azide-functional amino acid p-azidophenylalanine (pAzF) into sfGFP at different positions. The azide moiety on modified sfGFP was then coupled using copper-catalyzed "click" chemistry with the alkyne terminus of a PEGMA synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization. The protein in the resulting bioconjugate was found to remain functionally active (i.e., fluorescent) after conjugation. Turbidity measurements revealed that the point of attachment of the polymer onto the protein scaffold has an impact on the thermoresponsive behavior of the resultant bioconjugate. Furthermore, small-angle X-ray scattering analysis showed the wrapping of the polymer around the protein in a temperature-dependent fashion. Our work demonstrates that standard genetic manipulation combined with an expanded genetic code provides an easy way to construct functional hybrid biomaterials where the location of the conjugation site on the protein plays an important role in determining material properties. We anticipate that our approach could be generalized for the synthesis of complex functional materials with precisely defined domain orientation, connectivity, and composition.
Collapse
Affiliation(s)
- Dafni Moatsou
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Jian Li
- Department
of Chemical and Biological Engineering, Chemistry of Life Processes
Institute, Northwestern University, Evanston, Illinois 60208, United States
| | - Arnaz Ranji
- Department
of Chemical and Biological Engineering, Chemistry of Life Processes
Institute, Northwestern University, Evanston, Illinois 60208, United States
| | - Anaïs Pitto-Barry
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Ioanna Ntai
- Department
of Chemical and Biological Engineering, Chemistry of Life Processes
Institute, Northwestern University, Evanston, Illinois 60208, United States
| | - Michael C. Jewett
- Department
of Chemical and Biological Engineering, Chemistry of Life Processes
Institute, Northwestern University, Evanston, Illinois 60208, United States
| | - Rachel K. O’Reilly
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
76
|
Das A, Theato P. Activated Ester Containing Polymers: Opportunities and Challenges for the Design of Functional Macromolecules. Chem Rev 2015; 116:1434-95. [DOI: 10.1021/acs.chemrev.5b00291] [Citation(s) in RCA: 285] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Anindita Das
- Institute
for Technical and
Macromolecular Chemistry, University of Hamburg, D-20146 Hamburg, Germany
| | - Patrick Theato
- Institute
for Technical and
Macromolecular Chemistry, University of Hamburg, D-20146 Hamburg, Germany
| |
Collapse
|
77
|
Abstract
PEGylation is the covalent conjugation of PEG to therapeutic molecules. Protein PEGylation is a clinically proven approach for extending the circulation half-life and reducing the immunogenicity of protein therapeutics. Most clinically used PEGylated proteins are heterogeneous mixtures of PEG positional isomers conjugated to different residues on the protein main chain. Current research is focused to reduce product heterogeneity and to preserve bioactivity. Recent advances and possible future directions in PEGylation are described in this review. So far protein PEGylation has yielded more than 10 marketed products and in view of the lack of equally successful alternatives to extend the circulation half-life of proteins, PEGylation will still play a major role in drug delivery for many years to come.
Collapse
|
78
|
Graphene/tri-block copolymer composites prepared via RAFT polymerizations for dual controlled drug delivery via pH stimulation and biodegradation. Eur Polym J 2015. [DOI: 10.1016/j.eurpolymj.2015.02.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
79
|
Tucker BS, Stewart JD, Aguirre JI, Holliday LS, Figg CA, Messer JG, Sumerlin BS. Role of Polymer Architecture on the Activity of Polymer–Protein Conjugates for the Treatment of Accelerated Bone Loss Disorders. Biomacromolecules 2015; 16:2374-81. [DOI: 10.1021/acs.biomac.5b00623] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Bryan S. Tucker
- Department of Chemistry, ‡George and Josephine Butler Polymer
Research Laboratory, and §Center for Macromolecular
Science and Engineering, University of Florida, Gainesville, Florida 32611, United States
- Department of Physiological Sciences, College of
Veterinary Medicine and ¶Department of Orthodontics,
College of Dentistry, University of Florida, Gainesville, Florida 32610, United States
| | - Jon D. Stewart
- Department of Chemistry, ‡George and Josephine Butler Polymer
Research Laboratory, and §Center for Macromolecular
Science and Engineering, University of Florida, Gainesville, Florida 32611, United States
- Department of Physiological Sciences, College of
Veterinary Medicine and ¶Department of Orthodontics,
College of Dentistry, University of Florida, Gainesville, Florida 32610, United States
| | - J. Ignacio Aguirre
- Department of Chemistry, ‡George and Josephine Butler Polymer
Research Laboratory, and §Center for Macromolecular
Science and Engineering, University of Florida, Gainesville, Florida 32611, United States
- Department of Physiological Sciences, College of
Veterinary Medicine and ¶Department of Orthodontics,
College of Dentistry, University of Florida, Gainesville, Florida 32610, United States
| | - L. Shannon Holliday
- Department of Chemistry, ‡George and Josephine Butler Polymer
Research Laboratory, and §Center for Macromolecular
Science and Engineering, University of Florida, Gainesville, Florida 32611, United States
- Department of Physiological Sciences, College of
Veterinary Medicine and ¶Department of Orthodontics,
College of Dentistry, University of Florida, Gainesville, Florida 32610, United States
| | - C. Adrian Figg
- Department of Chemistry, ‡George and Josephine Butler Polymer
Research Laboratory, and §Center for Macromolecular
Science and Engineering, University of Florida, Gainesville, Florida 32611, United States
- Department of Physiological Sciences, College of
Veterinary Medicine and ¶Department of Orthodontics,
College of Dentistry, University of Florida, Gainesville, Florida 32610, United States
| | - Jonathan G. Messer
- Department of Chemistry, ‡George and Josephine Butler Polymer
Research Laboratory, and §Center for Macromolecular
Science and Engineering, University of Florida, Gainesville, Florida 32611, United States
- Department of Physiological Sciences, College of
Veterinary Medicine and ¶Department of Orthodontics,
College of Dentistry, University of Florida, Gainesville, Florida 32610, United States
| | - Brent S. Sumerlin
- Department of Chemistry, ‡George and Josephine Butler Polymer
Research Laboratory, and §Center for Macromolecular
Science and Engineering, University of Florida, Gainesville, Florida 32611, United States
- Department of Physiological Sciences, College of
Veterinary Medicine and ¶Department of Orthodontics,
College of Dentistry, University of Florida, Gainesville, Florida 32610, United States
| |
Collapse
|
80
|
Gok O, Kosif I, Dispinar T, Gevrek TN, Sanyal R, Sanyal A. Design and Synthesis of Water-Soluble Multifunctionalizable Thiol-Reactive Polymeric Supports for Cellular Targeting. Bioconjug Chem 2015; 26:1550-60. [PMID: 26030527 DOI: 10.1021/acs.bioconjchem.5b00182] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Design and synthesis of novel water-soluble polymers bearing reactive side chains are actively pursued due to their increasing demand in areas such as bioconjugation and drug delivery. This study reports the fabrication of poly(ethylene glycol) methacrylate based thiol-reactive water-soluble polymeric supports that can serve as targeted drug delivery vehicles. Thiol-reactive maleimide units were incorporated into polymers as side chains by use of a furan-protected maleimide containing monomer. Atom transfer radical polymerization (ATRP) was employed to obtain a family of well-defined copolymers with narrow molecular weight distributions. After the polymerization, the maleimide groups were activated to their reactive form, ready for conjugation with thiol-containing molecules. Efficient functionalization of the maleimide moieties was demonstrated by conjugation of a tripeptide glutathione under mild and reagent-free aqueous conditions. Additionally, hydrophobic thiol-containing dye (Bodipy-SH) and a cyclic peptide-based targeting group (cRGDfC) were sequentially appended onto the maleimide bearing polymers to demonstrate their efficient multifunctionalization. The conjugates were utilized for in vitro experiments over both cancerous and healthy breast cell lines. Obtained results demonstrate that the conjugates were nontoxic, and displayed efficient cellular uptake. The presence of the peptide based targeting group had a clear effect on increasing the uptake of the dye-conjugated polymers into cells when compared to the construct devoid of the peptide. Overall, the facile synthesis and highly efficient multifunctionalization of maleimide-containing thiol-reactive copolymers offer a novel and attractive class of polyethylene glycol-based water-soluble supports for drug delivery.
Collapse
Affiliation(s)
- Ozgul Gok
- Department of Chemistry, Bogazici University, Bebek 34342, Istanbul, Turkey
| | - Irem Kosif
- Department of Chemistry, Bogazici University, Bebek 34342, Istanbul, Turkey
| | - Tugba Dispinar
- Department of Chemistry, Bogazici University, Bebek 34342, Istanbul, Turkey
| | - Tugce Nihal Gevrek
- Department of Chemistry, Bogazici University, Bebek 34342, Istanbul, Turkey
| | - Rana Sanyal
- Department of Chemistry, Bogazici University, Bebek 34342, Istanbul, Turkey
| | - Amitav Sanyal
- Department of Chemistry, Bogazici University, Bebek 34342, Istanbul, Turkey
| |
Collapse
|
81
|
Dag A, Jiang Y, Karim KJA, Hart-Smith G, Scarano W, Stenzel MH. Polymer-Albumin Conjugate for the Facilitated Delivery of Macromolecular Platinum Drugs. Macromol Rapid Commun 2015; 36:890-897. [DOI: 10.1002/marc.201400576] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Affiliation(s)
- Aydan Dag
- Centre for Advanced Macromolecular Design; School of Chemistry and School of Chemical Engineering; University of New South Wales; Sydney 2052 Australia
- Department of Pharmaceutical Chemistry; Faculty of Pharmacy; Bezmialem Vakif University; 34093 Fatih Istanbul Turkey
| | - Yanyan Jiang
- Centre for Advanced Macromolecular Design; School of Chemistry and School of Chemical Engineering; University of New South Wales; Sydney 2052 Australia
| | - Khairil Juhanni Abd Karim
- Centre for Advanced Macromolecular Design; School of Chemistry and School of Chemical Engineering; University of New South Wales; Sydney 2052 Australia
- Department of Chemistry; Faculty of Science; Universiti Teknologi Malaysia (UTM); 81310 UTM Skudai Johor Malaysia
| | - Gene Hart-Smith
- Systems Biology Initiative; School of Biotechnology and Biomolecular Sciences; University of New South Wales; Sydney 2052 Australia
| | - Wei Scarano
- Centre for Advanced Macromolecular Design; School of Chemistry and School of Chemical Engineering; University of New South Wales; Sydney 2052 Australia
| | - Martina H. Stenzel
- Centre for Advanced Macromolecular Design; School of Chemistry and School of Chemical Engineering; University of New South Wales; Sydney 2052 Australia
| |
Collapse
|
82
|
Jiang Y, Wong CK, Stenzel MH. An Oligonucleotide Transfection Vector Based on HSA and PDMAEMA Conjugation: Effect of Polymer Molecular Weight on Cell Proliferation and on Multicellular Tumor Spheroids. Macromol Biosci 2015; 15:965-78. [PMID: 25809941 DOI: 10.1002/mabi.201500006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 03/09/2015] [Indexed: 02/03/2023]
Abstract
A novel gene transfection vector was fabricated based on the conjugation of human serum albumin (HSA) and maleimide end functionalized poly[(N,N-dimethylamino) ethyl methacrylate] (PDMAEMA). The bioconjugation was achieved in a site-specific manner to yield well-defined polymer-protein conjugates. The biohybrid was able to bind DNA with high affinity resulting in nanoparticles with a HSA shell. This paper mainly focuses on the influence of polymeric chain length on the particle properties and their drug-carrying ability to deliver oligonucleotides into breast cancer cells. The cytotoxic agent of interest, ISIS5132, is an oligonucleotide which disrupts DNA function within the cell. There was no evidence that the polymeric chain length had any effects on the conjugation efficiency and the subsequent condensation ability of the conjugates to oligonucleotide. However, the polymeric chain length had an obvious effect on the size of the complex micelles. Low molecular weights only led to loosely compacted complexes with the oligonucleotide, while large molecular weight led to well-defined nanoparticle structures. More importantly, it was found that the variation in the length of the PDMAEMA block resulted in a change in cytotoxicity of the drug loaded complex micelle. That is, the concentration of 50% inhibition (IC50 ) of the complex micelle on MDA-MB-231 and MCF-7 cells reached the lowest value at a chain length of around 21 000 g mol(-1) . The IC50 value increased when the polymeric chain length was shorter (8000 g mol(-1) and 10 000 g mol(-1) ) while it increased again when PDMAMEA of M¯n = 47 000 g mol(-1) , probably due to insufficient release of the drug. These result were reflected when investigating the performance of the polyplex using MCF-7 multicellular tumor spheroids, where again the medium PDMAEMA chain length led to the best delivery vehicle for ISIS5132.
Collapse
Affiliation(s)
- Yanyan Jiang
- Centre for Advanced Macromolecular Design, School of Chemistry and School of Chemical Engineering, University of New South Wales UNSW, Kensington NSW 2052, Australia
| | - Chin Ken Wong
- Centre for Advanced Macromolecular Design, School of Chemistry and School of Chemical Engineering, University of New South Wales UNSW, Kensington NSW 2052, Australia
| | - Martina H Stenzel
- Centre for Advanced Macromolecular Design, School of Chemistry and School of Chemical Engineering, University of New South Wales UNSW, Kensington NSW 2052, Australia.
| |
Collapse
|
83
|
Huang J, Lin L, Liang H, Lu J. A facile synthesis of branched graft copolymers via combination of RAFT self-condensing vinyl polymerization and aldehyde–aminooxy reaction. Polym Chem 2015. [DOI: 10.1039/c5py00436e] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A facile synthetic route to the branched graft copolymer BPDEM-g-PEO has been developed by combination of the RAFT-SCVP technique and aldehyde–aminooxy reaction.
Collapse
Affiliation(s)
- Jianbing Huang
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education
- Guangdong Provincial Key Laboratory for High Performance Polymer-based Composites
- School of Chemistry and Chemical Engineering
- Sun Yat-sen University
- Guangzhou
| | - Lvhuan Lin
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education
- Guangdong Provincial Key Laboratory for High Performance Polymer-based Composites
- School of Chemistry and Chemical Engineering
- Sun Yat-sen University
- Guangzhou
| | - Hui Liang
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education
- Guangdong Provincial Key Laboratory for High Performance Polymer-based Composites
- School of Chemistry and Chemical Engineering
- Sun Yat-sen University
- Guangzhou
| | - Jiang Lu
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education
- Guangdong Provincial Key Laboratory for High Performance Polymer-based Composites
- School of Chemistry and Chemical Engineering
- Sun Yat-sen University
- Guangzhou
| |
Collapse
|
84
|
Glassner M, Maji S, de la Rosa VR, Vanparijs N, Ryskulova K, De Geest BG, Hoogenboom R. Solvent-free mechanochemical synthesis of a bicyclononyne tosylate: a fast route towards bioorthogonal clickable poly(2-oxazoline)s. Polym Chem 2015. [DOI: 10.1039/c5py01280e] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The mechanochemical synthesis of a bicyclononyne tosylate (BCN-OTs) and its subsequent use for the CROP of 2-ethyl-2-oxazoline yielding bioorthogonal clickable poly(2-ethyl-2-oxazoline) is presented.
Collapse
Affiliation(s)
- Mathias Glassner
- Supramolecular Chemistry Group
- Department of Organic and Macromolecular Chemistry
- Ghent University
- 9000 Ghent
- Belgium
| | - Samarendra Maji
- Supramolecular Chemistry Group
- Department of Organic and Macromolecular Chemistry
- Ghent University
- 9000 Ghent
- Belgium
| | - Victor R. de la Rosa
- Supramolecular Chemistry Group
- Department of Organic and Macromolecular Chemistry
- Ghent University
- 9000 Ghent
- Belgium
| | - Nane Vanparijs
- Department of Pharmaceutics
- Ghent University
- B-9000 Ghent
- Belgium
| | - Kanykei Ryskulova
- Supramolecular Chemistry Group
- Department of Organic and Macromolecular Chemistry
- Ghent University
- 9000 Ghent
- Belgium
| | | | - Richard Hoogenboom
- Supramolecular Chemistry Group
- Department of Organic and Macromolecular Chemistry
- Ghent University
- 9000 Ghent
- Belgium
| |
Collapse
|
85
|
Tan H, Zhao L, Liu W, Ren L, Xu S, Chen L, Li W. Synthesis of thermo-responsive polymer–protein conjugates through disulfide bonding. RSC Adv 2014. [DOI: 10.1039/c4ra06813k] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
86
|
Jiang Y, Lu H, Khine YY, Dag A, Stenzel MH. Polyion complex micelle based on albumin-polymer conjugates: multifunctional oligonucleotide transfection vectors for anticancer chemotherapeutics. Biomacromolecules 2014; 15:4195-205. [PMID: 25290019 DOI: 10.1021/bm501205x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Novel biocompatible polyion complex micelles, containing bovine serum albumin (BSA), polymer, and oligonucleotide, were synthesized as a generation of vectors for the gene transfection. Maleimide-terminated poly((N,N-dimethyl amino) ethyl methacrylate) (PDMAEMA) was prepared via reversible addition-fragmentation chain transfer (RAFT) polymerization and subsequently deprotected. Precise one to one albumin-PDMAEMA bioconjugates have been achieved via 1,4-addition with the free thiol group on Cys34 on the BSA protein. SDS-PAGE and GPC (water) confirmed and quantified the successful conjugation. The conjugation efficiency was found to be independent of the molecular weight of PDMAEMA. After careful pH adjustment, the conjugate could efficiently condense anticancer oligonucleotide, ISIS 5132, which resulted in particles of 15-35 nm with a negative zeta-potential. The size was easily controlled by the polymer chain length. The albumin corona provides complete protection of the cationic polymer and genetic drug, which gave rise to lower potential toxicity from the polymer and higher gene transfection efficiency. Although a control experiment with a traditional PEG-based polyion complex micelle could deliver the drug just as effectively, if not more so, to the ovarian cancer cell line OVCAR-3, this carrier had no selectivity toward cancerous cells and proved just as toxic to HS27 (fibroblast) cell line. In contrast, the albumin-coated particles demonstrated desirable selectivity toward cancerous cells and have been shown to have outstanding performance in the cytotoxicity tests of several carcinoma monolayer cell models. In addition, the complex micelles were able to destroy pancreatic multicellular tumor spheroids, while free ISIS 5132 could not penetrate the spheroid at all. Hence, albumin-coated/oligonucleotide complex micelles are far more promising than the most classical gene delivery vectors.
Collapse
Affiliation(s)
- Yanyan Jiang
- Centre for Advanced Macromolecular Design (CAMD), School of Chemistry, University of New South Wales , Sydney, NSW 2052, Australia
| | | | | | | | | |
Collapse
|
87
|
Pelegri-O'Day EM, Lin EW, Maynard HD. Therapeutic protein-polymer conjugates: advancing beyond PEGylation. J Am Chem Soc 2014; 136:14323-32. [PMID: 25216406 DOI: 10.1021/ja504390x] [Citation(s) in RCA: 472] [Impact Index Per Article: 42.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Protein-polymer conjugates are widely used as therapeutics. All Food and Drug Administration (FDA)-approved protein conjugates are covalently linked to poly(ethylene glycol) (PEG). These PEGylated drugs have longer half-lives in the bloodstream, leading to less frequent dosing, which is a significant advantage for patients. However, there are some potential drawbacks to PEG that are driving the development of alternatives. Polymers that display enhanced pharmacokinetic properties along with additional advantages such as improved stability or degradability will be important to advance the field of protein therapeutics. This perspective presents a summary of protein-PEG conjugates for therapeutic use and alternative technologies in various stages of development as well as suggestions for future directions. Established methods of producing protein-PEG conjugates and new approaches utilizing controlled radical polymerization are also covered.
Collapse
Affiliation(s)
- Emma M Pelegri-O'Day
- Department of Chemistry and Biochemistry and California Nanosystems Institute, University of California, Los Angeles , 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | | | | |
Collapse
|
88
|
Lin EW, Boehnke N, Maynard HD. Protein-polymer conjugation via ligand affinity and photoactivation of glutathione S-transferase. Bioconjug Chem 2014; 25:1902-9. [PMID: 25315970 PMCID: PMC4205000 DOI: 10.1021/bc500380r] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
![]()
A photoactivated,
site-selective conjugation of poly(ethylene glycol)
(PEG) to the glutathione (GSH) binding pocket of glutathione S-transferase (GST) is described. To achieve this, a GSH
analogue (GSH-BP) was designed and chemically synthesized with three
functionalities: (1) the binding affinity of GSH to GST, (2) a free
thiol for polymer functionalization, and (3) a photoreactive benzophenone
(BP) component. Different molecular weights (2 kDa, 5 kDa, and 20
kDa) of GSH-BP modified PEGs (GSBP-PEGs) were synthesized and showed
conjugation efficiencies between 52% and 76% to GST. Diazirine (DA)
PEG were also prepared but gave conjugation yields lower than for
GSBP-PEGs. PEGs with different end-groups were also synthesized to
validate the importance of each component in the end-group design.
End-groups included glutathione (GS-PEG) and benzophenone (BP-PEG).
Results showed that both GSH and BP were crucial for successful conjugation
to GST. In addition, conjugations of 5 kDa GSBP-PEG to different proteins
were investigated, including bovine serum albumin (BSA), lysozyme
(Lyz), ubiquitin (Ubq), and GST-fused ubiquitin (GST-Ubq) to ensure
specific binding to GST. By combining noncovalent and covalent interactions,
we have developed a new phototriggered protein–polymer conjugation
method that is generally applicable to GST-fusion proteins.
Collapse
Affiliation(s)
- En-Wei Lin
- Department of Chemistry & Biochemistry and the California NanoSystems Institute, University of California, Los Angeles , 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | | | | |
Collapse
|
89
|
Liu J, Spulber M, Wu D, Talom RM, Palivan CG, Meier W. Poly(N-isopropylacrylamide-co-tris-nitrilotriacetic acid acrylamide) for a Combined Study of Molecular Recognition and Spatial Constraints in Protein Binding and Interactions. J Am Chem Soc 2014; 136:12607-14. [DOI: 10.1021/ja503632w] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Juan Liu
- Department of Chemistry, University of Basel, Klingelbergstrasse
80, Basel 4056, Switzerland
| | - Mariana Spulber
- Department of Chemistry, University of Basel, Klingelbergstrasse
80, Basel 4056, Switzerland
| | - Dalin Wu
- Department of Chemistry, University of Basel, Klingelbergstrasse
80, Basel 4056, Switzerland
| | - Renee M. Talom
- Department of Chemistry, University of Basel, Klingelbergstrasse
80, Basel 4056, Switzerland
| | - Cornelia G. Palivan
- Department of Chemistry, University of Basel, Klingelbergstrasse
80, Basel 4056, Switzerland
| | - Wolfgang Meier
- Department of Chemistry, University of Basel, Klingelbergstrasse
80, Basel 4056, Switzerland
| |
Collapse
|
90
|
Hovlid ML, Lau JL, Breitenkamp K, Higginson CJ, Laufer B, Manchester M, Finn MG. Encapsidated atom-transfer radical polymerization in Qβ virus-like nanoparticles. ACS NANO 2014; 8:8003-14. [PMID: 25073013 PMCID: PMC4148144 DOI: 10.1021/nn502043d] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Accepted: 07/16/2014] [Indexed: 04/14/2023]
Abstract
Virus-like particles (VLPs) are unique macromolecular structures that hold great promise in biomedical and biomaterial applications. The interior of the 30 nm-diameter Qβ VLP was functionalized by a three-step process: (1) hydrolytic removal of endogenously packaged RNA, (2) covalent attachment of initiator molecules to unnatural amino acid residues located on the interior capsid surface, and (3) atom-transfer radical polymerization of tertiary amine-bearing methacrylate monomers. The resulting polymer-containing particles were moderately expanded in size; however, biotin-derivatized polymer strands were only very weakly accessible to avidin, suggesting that most of the polymer was confined within the protein shell. The polymer-containing particles were also found to exhibit physical and chemical properties characteristic of positively charged nanostructures, including the ability to easily enter mammalian cells and deliver functional small interfering RNA.
Collapse
Affiliation(s)
- Marisa L. Hovlid
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Jolene L. Lau
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Kurt Breitenkamp
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Cody J. Higginson
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Burkhardt Laufer
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Marianne Manchester
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, California 92093, United States
| | - M. G. Finn
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, United States
- School of Chemistry and Biochemistry, School of Biology, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
91
|
Riccardi CM, Cole KS, Benson KR, Ward JR, Bassett KM, Zhang Y, Zore OV, Stromer B, Kasi RM, Kumar CV. Toward “Stable-on-the-Table” Enzymes: Improving Key Properties of Catalase by Covalent Conjugation with Poly(acrylic acid). Bioconjug Chem 2014; 25:1501-10. [DOI: 10.1021/bc500233u] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Caterina M. Riccardi
- Department
of Chemistry, ‡Department of Molecular and Cell Biology, and §Institute of Materials
Science, University of Connecticut, Storrs, Connecticut 06269-3060, United States
| | - Kyle S. Cole
- Department
of Chemistry, ‡Department of Molecular and Cell Biology, and §Institute of Materials
Science, University of Connecticut, Storrs, Connecticut 06269-3060, United States
| | - Kyle R. Benson
- Department
of Chemistry, ‡Department of Molecular and Cell Biology, and §Institute of Materials
Science, University of Connecticut, Storrs, Connecticut 06269-3060, United States
| | - Jessamyn R. Ward
- Department
of Chemistry, ‡Department of Molecular and Cell Biology, and §Institute of Materials
Science, University of Connecticut, Storrs, Connecticut 06269-3060, United States
| | - Kayla M. Bassett
- Department
of Chemistry, ‡Department of Molecular and Cell Biology, and §Institute of Materials
Science, University of Connecticut, Storrs, Connecticut 06269-3060, United States
| | - Yiren Zhang
- Department
of Chemistry, ‡Department of Molecular and Cell Biology, and §Institute of Materials
Science, University of Connecticut, Storrs, Connecticut 06269-3060, United States
| | - Omkar V. Zore
- Department
of Chemistry, ‡Department of Molecular and Cell Biology, and §Institute of Materials
Science, University of Connecticut, Storrs, Connecticut 06269-3060, United States
| | - Bobbi Stromer
- Department
of Chemistry, ‡Department of Molecular and Cell Biology, and §Institute of Materials
Science, University of Connecticut, Storrs, Connecticut 06269-3060, United States
| | - Rajeswari M. Kasi
- Department
of Chemistry, ‡Department of Molecular and Cell Biology, and §Institute of Materials
Science, University of Connecticut, Storrs, Connecticut 06269-3060, United States
| | - Challa V. Kumar
- Department
of Chemistry, ‡Department of Molecular and Cell Biology, and §Institute of Materials
Science, University of Connecticut, Storrs, Connecticut 06269-3060, United States
| |
Collapse
|
92
|
Tappertzhofen K, Bednarczyk M, Koynov K, Bros M, Grabbe S, Zentel R. Toward Anticancer Immunotherapeutics: Well-Defined Polymer-Antibody Conjugates for Selective Dendritic Cell Targeting. Macromol Biosci 2014; 14:1444-57. [DOI: 10.1002/mabi.201400190] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 05/22/2014] [Indexed: 11/05/2022]
Affiliation(s)
- Kristof Tappertzhofen
- Institute of Organic Chemistry; Johannes Gutenberg-University; Duesbergweg 10-14 55128 Mainz Germany
| | - Monika Bednarczyk
- Department of Dermatology; University Medical Center of the Johannes Gutenberg-University; Langenbeckstrasse 1 55131 Mainz Germany
| | - Kaloian Koynov
- Max Planck Institute for Polymer Research; Ackermannweg 10 55128 Mainz Germany
| | - Matthias Bros
- Department of Dermatology; University Medical Center of the Johannes Gutenberg-University; Langenbeckstrasse 1 55131 Mainz Germany
| | - Stephan Grabbe
- Department of Dermatology; University Medical Center of the Johannes Gutenberg-University; Langenbeckstrasse 1 55131 Mainz Germany
- Research Center Immunology (FZI); University Medical Center of the Johannes Gutenberg-University; Langenbeckstrasse 1 55131 Mainz Germany
| | - Rudolf Zentel
- Institute of Organic Chemistry; Johannes Gutenberg-University; Duesbergweg 10-14 55128 Mainz Germany
| |
Collapse
|
93
|
Maione S, Fabregat G, Del Valle LJ, Ballano G, Cativiela C, Alemán C. Electro-biocompatibility of conjugates designed by chemical similarity. J Pept Sci 2014; 20:537-46. [DOI: 10.1002/psc.2660] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 05/05/2014] [Accepted: 05/06/2014] [Indexed: 01/05/2023]
Affiliation(s)
- Silvana Maione
- Departament d'Enginyeria Química, E. T. S. d'Enginyers Industrials; Universitat Politècnica de Catalunya; Diagonal 647 08028 Barcelona Spain
- Center for Research in Nano-engineering; Universitat Politècnica de Catalunya; Campus Sud, Edifici C', C/Pasqual i Vila s/n Barcelona E-08028 Spain
| | - Georgina Fabregat
- Departament d'Enginyeria Química, E. T. S. d'Enginyers Industrials; Universitat Politècnica de Catalunya; Diagonal 647 08028 Barcelona Spain
- Center for Research in Nano-engineering; Universitat Politècnica de Catalunya; Campus Sud, Edifici C', C/Pasqual i Vila s/n Barcelona E-08028 Spain
| | - Luis J. Del Valle
- Departament d'Enginyeria Química, E. T. S. d'Enginyers Industrials; Universitat Politècnica de Catalunya; Diagonal 647 08028 Barcelona Spain
- Center for Research in Nano-engineering; Universitat Politècnica de Catalunya; Campus Sud, Edifici C', C/Pasqual i Vila s/n Barcelona E-08028 Spain
| | - Gema Ballano
- Department of Organic Chemistry, ISQCH; University of Zaragoza-CSIC; 50009 Zaragoza Spain
| | - Carlos Cativiela
- Department of Organic Chemistry, ISQCH; University of Zaragoza-CSIC; 50009 Zaragoza Spain
| | - Carlos Alemán
- Departament d'Enginyeria Química, E. T. S. d'Enginyers Industrials; Universitat Politècnica de Catalunya; Diagonal 647 08028 Barcelona Spain
- Center for Research in Nano-engineering; Universitat Politècnica de Catalunya; Campus Sud, Edifici C', C/Pasqual i Vila s/n Barcelona E-08028 Spain
| |
Collapse
|
94
|
Abstract
The remarkable diversity of the self-assembly behavior of PEG-peptides is reviewed, including self-assemblies formed by PEG-peptides with β-sheet and α-helical (coiled-coil) peptide sequences. The modes of self-assembly in solution and in the solid state are discussed. Additionally, applications in bionanotechnology and synthetic materials science are summarized.
Collapse
Affiliation(s)
- Ian W Hamley
- Department of Chemistry, University of Reading , Whiteknights, Reading RG6 6AD, United Kingdom
| |
Collapse
|
95
|
Liu Z, Dong C, Wang X, Wang H, Li W, Tan J, Chang J. Self-assembled biodegradable protein-polymer vesicle as a tumor-targeted nanocarrier. ACS APPLIED MATERIALS & INTERFACES 2014; 6:2393-400. [PMID: 24456410 DOI: 10.1021/am404734c] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Self-assembled nanostructures based on amphiphilic protein-polymer conjugates have shown great advantages in the field of nanomedicine such as inherent biocompatibility with biosystems because of their excellent performance. Herein, a novel biodegradable protein-polymer conjugate was prepared by covalently linking the tailor-made hydrophobic maleimide-functionalized poly(ε-caprolactone) (PCL) to hydrophilic bovine serum albumin (BSA) via the maleimide-sulfhydryl coupling reaction. This protein-based conjugate with a biodegradable polyester was reported for the first time, and the obtained biohybrid displayed well-defined structure, excellent biocompatibility and low cytotoxicity, and self-assembly behaviors similar to those of the traditional amphiphilic small molecules and block copolymers. The amphiphilic BSA-PCL conjugate can self-assemble into a nanosized vesicle with a negative surface charge. Furthermore, the self-assembled vesicle based on the BSA-PCL conjugate was functionalized via linking targeting ligand cetuximab to its surface to enhance cell uptake, and the doxorubicin (DOX)-encapsulated cetuximab-functionalized vesicle exhibited enhanced antitumor activity compared with that of free DOX in vitro. These results indicate that the biodegradable protein-polymer conjugate based on BSA and PCL had great potential as a drug delivery vehicle for cancer therapy.
Collapse
Affiliation(s)
- Zhongyun Liu
- Institute of Nanobiotechnology, School of Materials Science and Engineering, Tianjin Key Laboratory of Composites and Functional Materials, Tianjin University , Tianjin 300072, P. R. China
| | | | | | | | | | | | | |
Collapse
|
96
|
Suthiwangcharoen N, Li T, Wu L, Reno HB, Thompson P, Wang Q. Facile co-assembly process to generate core-shell nanoparticles with functional protein corona. Biomacromolecules 2014; 15:948-56. [PMID: 24517712 DOI: 10.1021/bm401819x] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A simple and robust protocol to maintain the structural feature of polymer-protein core-shell nanoparticles (PPCS-NPs) is developed based on the synergistic interactions between proteins and functional polymers. Using the self-assembly method, a broad range of proteins can be assembled to the selective water-insoluble polymers containing pyridine groups. The detailed analysis of the PPCS-NPs structure was conducted using FESEM and thin-sectioned TEM. The results illustrated that the protein molecules are located on the corona of the PPCS-NPs. While proteins are displacing between water and polymer to minimize the interfacial energy, the polymer offers a unique microenvironment to maintain protein structure and conformation. The proposed mechanism is based on a fine balance between hydrophobicity and hydrophilicity, as well as hydrogen bonding between proteins and polymer. The PPCS-NPs can serve as a scaffold to incorporate both glucose oxidase (GOX) and horseradish peroxidase (HRP) onto a single particle. Such a GOX-HRP bienzymatic system showed a ~20% increase in activity in comparison to the mixed free enzymes. Our method therefore provides a unique platform to preserve protein structure and conformation and can be extended to a number of biomolecules.
Collapse
Affiliation(s)
- Nisaraporn Suthiwangcharoen
- Department of Chemistry and Biochemistry, University of South Carolina , Columbia, South Carolina 29208, United States
| | | | | | | | | | | |
Collapse
|
97
|
Exceptionally stable, redox-active supramolecular protein assemblies with emergent properties. Proc Natl Acad Sci U S A 2014; 111:2897-902. [PMID: 24516140 DOI: 10.1073/pnas.1319866111] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The designed assembly of proteins into well-defined supramolecular architectures not only tests our understanding of protein-protein interactions, but it also provides an opportunity to tailor materials with new physical and chemical properties. Previously, we described that RIDC3, a designed variant of the monomeric electron transfer protein cytochrome cb562, could self-assemble through Zn(2+) coordination into uniform 1D nanotubes or 2D arrays with crystalline order. Here we show that these 1D and 2D RIDC3 assemblies display very high chemical stabilities owing to their metal-mediated frameworks, maintaining their structural order in ≥90% (vol/vol) of several polar organic solvents including tetrahydrofuran (THF) and isopropanol (iPrOH). In contrast, the unassembled RIDC3 monomers denature in ∼30% THF and 50% iPrOH, indicating that metal-mediated self-assembly also leads to considerable stabilization of the individual building blocks. The 1D and 2D RIDC3 assemblies are highly thermostable as well, remaining intact at up to ∼70 °C and ∼90 °C, respectively. The 1D nanotubes cleanly convert into the 2D arrays on heating above 70 °C, a rare example of a thermal crystalline-to-crystalline conversion in a biomolecular assembly. Finally, we demonstrate that the Zn-directed RIDC3 assemblies can be used to spatiotemporally control the templated growth of small Pt(0) nanocrystals. This emergent function is enabled by and absolutely dependent on both the supramolecular assembly of RIDC3 molecules (to form a periodically organized structural template) and their innate redox activities (to direct Pt(2+) reduction).
Collapse
|
98
|
Srivastava A, O’Connor IB, Pandit A, Gerard Wall J. Polymer-antibody fragment conjugates for biomedical applications. Prog Polym Sci 2014. [DOI: 10.1016/j.progpolymsci.2013.09.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
99
|
Fan L, Chen H, Wei S, Cao F. Protein–polymer hybrid oil–absorbing gel using hair keratin as macroinitiator by SET-LRP. REACT FUNCT POLYM 2014. [DOI: 10.1016/j.reactfunctpolym.2013.12.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
100
|
Chang D, Lam CN, Tang S, Olsen BD. Effect of polymer chemistry on globular protein–polymer block copolymer self-assembly. Polym Chem 2014. [DOI: 10.1039/c4py00448e] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Changing polymer chemistry in protein–polymer conjugate block copolymers results in the formation of previously unobserved cubic phases and changes in protein–polymer interactions that create large shifts in phase transitions, providing a powerful tool for nanostructure control.
Collapse
Affiliation(s)
- Dongsook Chang
- Department of Chemical Engineering
- Massachusetts Institute of Technology
- Cambridge, USA
| | - Christopher N. Lam
- Department of Chemical Engineering
- Massachusetts Institute of Technology
- Cambridge, USA
| | - Shengchang Tang
- Department of Chemical Engineering
- Massachusetts Institute of Technology
- Cambridge, USA
| | - Bradley D. Olsen
- Department of Chemical Engineering
- Massachusetts Institute of Technology
- Cambridge, USA
| |
Collapse
|