51
|
The Composition of the Cell Envelope Affects Conjugation in Bacillus subtilis. J Bacteriol 2016; 198:1241-9. [PMID: 26833415 DOI: 10.1128/jb.01044-15] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Accepted: 01/27/2016] [Indexed: 01/13/2023] Open
Abstract
UNLABELLED Conjugation in bacteria is the contact-dependent transfer of DNA from one cell to another via donor-encoded conjugation machinery. It is a major type of horizontal gene transfer between bacteria. Conjugation of the integrative and conjugative element ICEBs1 into Bacillus subtilis is affected by the composition of phospholipids in the cell membranes of the donor and recipient. We found that reduction (or elimination) of lysyl-phosphatidylglycerol caused by loss of mpr F caused a decrease in conjugation efficiency. Conversely, alterations that caused an increase in lysyl-phosphatidylglycerol, including loss of ugtP or overproduction of mprF, caused an increase in conjugation efficiency. In addition, we found that mutations that alter production of other phospholipids, e.g., loss of clsA and yfnI, also affected conjugation, apparently without substantively altering levels of lysyl-phosphatidylglycerol, indicating that there are multiple pathways by which changes to the cell envelope affect conjugation. We found that the contribution of mprF to conjugation was affected by the chemical environment. Wild-type cells were generally more responsive to addition of anions that enhanced conjugation, whereas mprF mutant cells were more sensitive to combinations of anions that inhibited conjugation at pH 7. Our results indicate that mprF and lysyl-phosphatidylglycerol allow cells to maintain relatively consistent conjugation efficiencies under a variety of ionic conditions. IMPORTANCE Horizontal gene transfer is a driving force in microbial evolution, enabling cells that receive DNA to acquire new genes and phenotypes. Conjugation, the contact-dependent transfer of DNA from a donor to a recipient by a donor-encoded secretion machine, is a prevalent type of horizontal gene transfer. Although critically important, it is not well understood how the recipient influences the success of conjugation. We found that the composition of phospholipids in the membranes of donors and recipients influences the success of transfer of the integrative and conjugative element ICEBs1 in Bacillus subtilis Specifically, the presence of lysyl-phosphatidylglycerol enables relatively constant conjugation efficiencies in a range of diverse chemical environments.
Collapse
|
52
|
Gordon SE, Weber DK, Downton MT, Wagner J, Perugini MA. Dynamic Modelling Reveals 'Hotspots' on the Pathway to Enzyme-Substrate Complex Formation. PLoS Comput Biol 2016; 12:e1004811. [PMID: 26967332 PMCID: PMC4788353 DOI: 10.1371/journal.pcbi.1004811] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 02/12/2016] [Indexed: 11/29/2022] Open
Abstract
Dihydrodipicolinate synthase (DHDPS) catalyzes the first committed step in the diaminopimelate pathway of bacteria, yielding amino acids required for cell wall and protein biosyntheses. The essentiality of the enzyme to bacteria, coupled with its absence in humans, validates DHDPS as an antibacterial drug target. Conventional drug design efforts have thus far been unsuccessful in identifying potent DHDPS inhibitors. Here, we make use of contemporary molecular dynamics simulation and Markov state models to explore the interactions between DHDPS from the human pathogen Staphylococcus aureus and its cognate substrate, pyruvate. Our simulations recover the crystallographic DHDPS-pyruvate complex without a priori knowledge of the final bound structure. The highly conserved residue Arg140 was found to have a pivotal role in coordinating the entry of pyruvate into the active site from bulk solvent, consistent with previous kinetic reports, indicating an indirect role for the residue in DHDPS catalysis. A metastable binding intermediate characterized by multiple points of intermolecular interaction between pyruvate and key DHDPS residue Arg140 was found to be a highly conserved feature of the binding trajectory when comparing alternative binding pathways. By means of umbrella sampling we show that these binding intermediates are thermodynamically metastable, consistent with both the available experimental data and the substrate binding model presented in this study. Our results provide insight into an important enzyme-substrate interaction in atomistic detail that offers the potential to be exploited for the discovery of more effective DHDPS inhibitors and, in a broader sense, dynamic protein-drug interactions. Interactions between proteins and ligands underpin many important biological processes, such as binding of substrates to their cognate enzymes in the process of catalysis. These interactions are complex, often requiring several intermediate steps to fully transition into the bound state. Here, we have used computational simulation to study binding of pyruvate to Dihydrodipicolinate synthase (DHDPS), an enzyme in the bacterial diaminopimelate pathway. In bacteria, such as the human pathogen S. aureus, DHDPS functions to make building blocks necessary for protein and bacterial cell wall biosyntheses. As the enzyme is absent in humans, yet essential for bacterial growth, DHDPS is a valid target for broad-range antibiotics. However, known DHDPS inhibitors show poor potency. One avenue that has not yet been taken into consideration for inhibitor design is the dynamics of DHDPS’s interaction with its reaction substrates (e.g. pyruvate). Using molecular dynamics simulation, we find that pyruvate binding to DHDPS must pass through a transition intermediate ‘hotspot’ in which the substrate is held in place by a dense network of noncovalent bonds. Given that many of the protein residues involved in this interaction are also shared by DHDPS from many pathogenic bacteria, this binding intermediate ‘hotspot’ may help in development of better broad-range DHDPS inhibitors.
Collapse
Affiliation(s)
- Shane E. Gordon
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
- Computational Biophysics, IBM Research - Australia, Carlton, Victoria, Australia
| | - Daniel K. Weber
- Computational Biophysics, IBM Research - Australia, Carlton, Victoria, Australia
| | - Matthew T. Downton
- Computational Biophysics, IBM Research - Australia, Carlton, Victoria, Australia
| | - John Wagner
- Computational Biophysics, IBM Research - Australia, Carlton, Victoria, Australia
| | - Matthew A. Perugini
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
- * E-mail:
| |
Collapse
|
53
|
Skovpen YV, Conly CJT, Sanders DAR, Palmer DRJ. Biomimetic Design Results in a Potent Allosteric Inhibitor of Dihydrodipicolinate Synthase from Campylobacter jejuni. J Am Chem Soc 2016; 138:2014-20. [DOI: 10.1021/jacs.5b12695] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yulia V. Skovpen
- Department of Chemistry, University of Saskatchewan, 110 Science
Place, Saskatoon, Saskatchewan, Canada S7N 5C9
| | - Cuylar J. T. Conly
- Department of Chemistry, University of Saskatchewan, 110 Science
Place, Saskatoon, Saskatchewan, Canada S7N 5C9
| | - David A. R. Sanders
- Department of Chemistry, University of Saskatchewan, 110 Science
Place, Saskatoon, Saskatchewan, Canada S7N 5C9
| | - David R. J. Palmer
- Department of Chemistry, University of Saskatchewan, 110 Science
Place, Saskatoon, Saskatchewan, Canada S7N 5C9
| |
Collapse
|
54
|
Cloning, Expression, and Purification of Histidine-Tagged Escherichia coli Dihydrodipicolinate Reductase. PLoS One 2016; 11:e0146525. [PMID: 26815040 PMCID: PMC4729673 DOI: 10.1371/journal.pone.0146525] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 12/19/2015] [Indexed: 11/24/2022] Open
Abstract
The enzyme dihydrodipicolinate reductase (DHDPR) is a component of the lysine biosynthetic pathway in bacteria and higher plants. DHDPR catalyzes the NAD(P)H dependent reduction of 2,3-dihydrodipicolinate to the cyclic imine L-2,3,4,5,-tetrahydropicolinic acid. The dapB gene that encodes dihydrodipicolinate reductase has previously been cloned, but the expression of the enzyme is low and the purification is time consuming. Therefore the E. coli dapB gene was cloned into the pET16b vector to improve the protein expression and simplify the purification. The dapB gene sequence was utilized to design forward and reverse oligonucleotide primers that were used to PCR the gene from Escherichia coli genomic DNA. The primers were designed with NdeI or BamHI restriction sites on the 5’and 3’ terminus respectively. The PCR product was sequenced to confirm the identity of dapB. The gene was cloned into the expression vector pET16b through NdeI and BamHI restriction endonuclease sites. The resulting plasmid containing dapB was transformed into the bacterial strain BL21 (DE3). The transformed cells were utilized to grow and express the histidine-tagged reductase and the protein was purified using Ni-NTA affinity chromatography. SDS/PAGE gel analysis has shown that the protein was 95% pure and has approximate subunit molecular weight of 28 kDa. The protein purification is completed in one day and 3 liters of culture produced approximately 40–50 mgs of protein, an improvement on the previous protein expression and multistep purification.
Collapse
|
55
|
Naqvi KF, Staker BL, Dobson RCJ, Serbzhinskiy D, Sankaran B, Myler PJ, Hudson AO. Cloning, expression, purification, crystallization and X-ray diffraction analysis of dihydrodipicolinate synthase from the human pathogenic bacterium Bartonella henselae strain Houston-1 at 2.1 Å resolution. Acta Crystallogr F Struct Biol Commun 2016; 72:2-9. [PMID: 26750477 PMCID: PMC4708043 DOI: 10.1107/s2053230x15023213] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 12/02/2015] [Indexed: 11/10/2022] Open
Abstract
The enzyme dihydrodipicolinate synthase catalyzes the committed step in the synthesis of diaminopimelate and lysine to facilitate peptidoglycan and protein synthesis. Dihydrodipicolinate synthase catalyzes the condensation of L-aspartate 4-semialdehyde and pyruvate to synthesize L-2,3-dihydrodipicolinate. Here, the cloning, expression, purification, crystallization and X-ray diffraction analysis of dihydrodipicolinate synthase from the pathogenic bacterium Bartonella henselae, the causative bacterium of cat-scratch disease, are presented. Protein crystals were grown in conditions consisting of 20%(w/v) PEG 4000, 100 mM sodium citrate tribasic pH 5.5 and were shown to diffract to ∼2.10 Å resolution. They belonged to space group P212121, with unit-cell parameters a = 79.96, b = 106.33, c = 136.25 Å. The final R values were Rr.i.m. = 0.098, Rwork = 0.183, Rfree = 0.233.
Collapse
Affiliation(s)
- Kubra F. Naqvi
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, 85 Lomb Memorial Drive, Rochester, NY 14623-5603, USA
| | - Bart L. Staker
- Seattle Structural Genomics Center for Infectious Disease, USA
- Center for Infectious Disease Research, 307 Westlake Avenue North, Suite 500, Seattle, WA 98109, USA
| | - Renwick C. J. Dobson
- Biomolecular Interaction Centre, School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand
| | - Dmitry Serbzhinskiy
- Seattle Structural Genomics Center for Infectious Disease, USA
- Center for Infectious Disease Research, 307 Westlake Avenue North, Suite 500, Seattle, WA 98109, USA
| | - Banumathi Sankaran
- Berkeley Center for Structural Biology, Ernest Orlando Lawrence Berkeley National Laboratory, USA
| | - Peter J. Myler
- Seattle Structural Genomics Center for Infectious Disease, USA
- Center for Infectious Disease Research, 307 Westlake Avenue North, Suite 500, Seattle, WA 98109, USA
- Department of Global Health, University of Washington, Seattle, WA 98195, USA
- Department of Biomedical Informatics and Health Education, University of Washington, Seattle, WA 98195, USA
| | - André O. Hudson
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, 85 Lomb Memorial Drive, Rochester, NY 14623-5603, USA
| |
Collapse
|
56
|
Abstract
Here, we review recent studies aimed at defining the importance of quaternary structure to a model oligomeric enzyme, dihydrodipicolinate synthase. This will illustrate the complementary and synergistic outcomes of coupling the techniques of analytical ultracentrifugation with enzyme kinetics, in vitro mutagenesis, macromolecular crystallography, small angle X-ray scattering, and molecular dynamics simulations, to demonstrate the role of subunit self-association in facilitating protein dynamics and enzyme function. This multitechnique approach has yielded new insights into the molecular evolution of protein quaternary structure.
Collapse
|
57
|
Peverelli MG, Perugini MA. An optimized coupled assay for quantifying diaminopimelate decarboxylase activity. Biochimie 2015; 115:78-85. [PMID: 25986217 DOI: 10.1016/j.biochi.2015.05.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 05/05/2015] [Indexed: 10/23/2022]
Abstract
Diaminopimelate decarboxylase (DAPDC) catalyzes the conversion of meso-DAP to lysine and carbon dioxide in the final step of the diaminopimelate (DAP) pathway in plants and bacteria. Given its absence in humans, DAPDC is a promising antibacterial target, particularly considering the rise in drug-resistant strains from pathogens such as Escherichia coli and Mycobacterium tuberculosis. Here, we report the optimization of a simple quantitative assay for measuring DAPDC catalytic activity using saccharopine dehydrogenase (SDH) as the coupling enzyme. Our results show that SDH has optimal activity at 37 °C, pH 8.0, and in Tris buffer. These conditions were subsequently employed to quantitate the enzyme kinetic properties of DAPDC from three bacterial species. We show that DAPDC from E. coli and M. tuberculosis have [Formula: see text] of 0.97 mM and 1.62 mM and a kcat of 55 s(-1) and 28 s(-1), respectively, which agree well with previous studies using more labor-intensive assays. We subsequently employed the optimized coupled assay to show for the first time that DAPDC from Bacillus anthracis possesses a [Formula: see text] of 0.68 mM and a kcat of 58 s(-1). This optimized coupled assay offers excellent scope to be employed in high throughput drug discovery screens targeting DAPDC from bacterial pathogens.
Collapse
Affiliation(s)
- Martin G Peverelli
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia; Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia
| | - Matthew A Perugini
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia; Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
58
|
Mank N, Arnette A, Klapper V, Offermann L, Chruszcz M. Structure of dihydrodipicolinate synthase from the commensal bacterium Bacteroides thetaiotaomicron at 2.1 Å resolution. Acta Crystallogr F Struct Biol Commun 2015; 71:449-54. [PMID: 25849508 PMCID: PMC4388182 DOI: 10.1107/s2053230x15004628] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 03/05/2015] [Indexed: 11/10/2022] Open
Abstract
Dihydrodipicolinate synthase (DapA) catalyzes the first committed step of the diaminopimelate biosynthetic pathway of lysine. It has been shown to be an essential enzyme in many bacteria and has been the subject of research to generate novel antibiotics. However, this pathway is present in both pathogenic and commensal bacteria, and antibiotics targeting DapA may interfere with normal gut colonization. Bacteroides thetaiotaomicron is a Gram-negative commensal bacterium that makes up a large proportion of the normal microbiota of the human gut. The structure of DapA from B. thetaiotaomicron (BtDapA) has been determined. This structure will help to guide the generation of selectively active antibiotic compounds targeting DapA.
Collapse
Affiliation(s)
- Nicholas Mank
- Department of Chemistry and Biochemistry, University of South Carolina, JM Palms Center for Graduate Science Research, 631 Sumter Street, Columbia, SC 29208, USA
| | - Amy Arnette
- Department of Chemistry and Biochemistry, University of South Carolina, JM Palms Center for Graduate Science Research, 631 Sumter Street, Columbia, SC 29208, USA
| | - Vince Klapper
- Department of Chemistry and Biochemistry, University of South Carolina, JM Palms Center for Graduate Science Research, 631 Sumter Street, Columbia, SC 29208, USA
| | - Lesa Offermann
- Department of Chemistry and Biochemistry, University of South Carolina, JM Palms Center for Graduate Science Research, 631 Sumter Street, Columbia, SC 29208, USA
| | - Maksymilian Chruszcz
- Department of Chemistry and Biochemistry, University of South Carolina, JM Palms Center for Graduate Science Research, 631 Sumter Street, Columbia, SC 29208, USA
| |
Collapse
|
59
|
Silvério-Machado R, Couto BRGM, dos Santos MA. Retrieval of Enterobacteriaceae drug targets using singular value decomposition. Bioinformatics 2014; 31:1267-73. [DOI: 10.1093/bioinformatics/btu792] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 11/23/2014] [Indexed: 01/25/2023] Open
|
60
|
Hlaváček J, Vítovcová M, Sázelová P, Pícha J, Vaněk V, Buděšínský M, Jiráček J, Gillner DM, Holz RC, Mikšík I, Kašička V. Mono-N-acyl-2,6-diaminopimelic acid derivatives: Analysis by electromigration and spectroscopic methods and examination of enzyme inhibitory activity. Anal Biochem 2014; 467:4-13. [DOI: 10.1016/j.ab.2014.08.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 08/15/2014] [Accepted: 08/26/2014] [Indexed: 10/24/2022]
|
61
|
Conly CJT, Skovpen YV, Li S, Palmer DRJ, Sanders DAR. Tyrosine 110 Plays a Critical Role in Regulating the Allosteric Inhibition of Campylobacter jejuni Dihydrodipicolinate Synthase by Lysine. Biochemistry 2014; 53:7396-406. [DOI: 10.1021/bi5012157] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Cuylar J. T. Conly
- Department of Chemistry, University of Saskatchewan, 110 Science
Place, Saskatoon, SK S7N 5C9, Canada
| | - Yulia V. Skovpen
- Department of Chemistry, University of Saskatchewan, 110 Science
Place, Saskatoon, SK S7N 5C9, Canada
| | - Shuo Li
- Department of Chemistry, University of Saskatchewan, 110 Science
Place, Saskatoon, SK S7N 5C9, Canada
| | - David R. J. Palmer
- Department of Chemistry, University of Saskatchewan, 110 Science
Place, Saskatoon, SK S7N 5C9, Canada
| | - David A. R. Sanders
- Department of Chemistry, University of Saskatchewan, 110 Science
Place, Saskatoon, SK S7N 5C9, Canada
| |
Collapse
|
62
|
Triassi AJ, Wheatley MS, Savka MA, Gan HM, Dobson RCJ, Hudson AO. L,L-diaminopimelate aminotransferase (DapL): a putative target for the development of narrow-spectrum antibacterial compounds. Front Microbiol 2014; 5:509. [PMID: 25309529 PMCID: PMC4176475 DOI: 10.3389/fmicb.2014.00509] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 09/09/2014] [Indexed: 11/14/2022] Open
Abstract
Despite the urgent need for sustained development of novel antibacterial compounds to combat the drastic rise in antibiotic resistant and emerging bacterial infections, only a few clinically relevant antibacterial drugs have been recently developed. One of the bottlenecks impeding the development of novel antibacterial compounds is the identification of new enzymatic targets. The nutritionally essential amino acid anabolic pathways, for example lysine biosynthesis, provide an opportunity to explore the development of antibacterial compounds, since human genomes do not possess the genes necessary to synthesize these amino acids de novo. The diaminopimelate (DAP)/lysine (lys) anabolic pathways are attractive targets for antibacterial development since the penultimate lys precursor meso-DAP (m-DAP) is a cross-linking amino acid in the peptidoglycan (PG) cell wall of most Gram-negative bacteria and lys plays a similar role in the PG of most Gram-positive bacteria, in addition to its role as one of the 20 proteogenic amino acids. The L,L-diaminopimelate aminotransferase (DapL) pathway was recently identified as a novel variant of the DAP/lys anabolic pathways. The DapL pathway has been identified in the pathogenic bacteria belonging to the genus; Chlamydia, Leptospira, and Treponema. The dapL gene has been identified in the genomes of 381 or approximately 13% of the 2771 bacteria that have been sequenced, annotated and reposited in the NCBI database, as of May 23, 2014. The narrow distribution of the DapL pathway in the bacterial domain provides an opportunity for the development and or discovery of narrow spectrum antibacterial compounds.
Collapse
Affiliation(s)
- Alexander J Triassi
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology Rochester, NY, USA
| | - Matthew S Wheatley
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology Rochester, NY, USA
| | - Michael A Savka
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology Rochester, NY, USA
| | - Han Ming Gan
- School of Science, Monash University Malaysia Bandar Sunway, Malaysia
| | - Renwick C J Dobson
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne Parkville, VIC, Australia ; Biomolecular Interaction Centre, School of Biological Sciences, University of Canterbury Christchurch, New Zealand
| | - André O Hudson
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology Rochester, NY, USA
| |
Collapse
|
63
|
Johnson CM, Grossman AD. Identification of host genes that affect acquisition of an integrative and conjugative element in Bacillus subtilis. Mol Microbiol 2014; 93:1284-301. [PMID: 25069588 DOI: 10.1111/mmi.12736] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2014] [Indexed: 01/28/2023]
Abstract
Conjugation, a major type of horizontal gene transfer in bacteria, involves transfer of DNA from a donor to a recipient using donor-encoded conjugation machinery. Using a high-throughput screen (Tn-seq), we identified genes in recipients that contribute to acquisition of the integrative and conjugative element ICEBs1 by Bacillus subtilis. We found that null mutations in some genes caused an increase, and others a decrease in conjugation efficiency. Some mutations affected conjugation only when present in recipients. Other mutations affected conjugation when present in donors or recipients. Most of the genes identified are known or predicted to affect the cell envelope. Several encode enzymes involved in phospholipid biosynthesis and one encodes a homologue of penicillin-binding proteins. Two of the genes identified also affected conjugation of Tn916, indicating that their roles in conjugation may be general. We did not identify any genes in recipients that were essential for ICEBs1 conjugation, indicating that if there are such genes, then these are either essential for cell growth or redundant. Our results indicate that acquisition of ICEBs1, and perhaps other conjugative elements, is robust and not easily avoided by mutation and that several membrane-related functions affect the efficiency of conjugation.
Collapse
Affiliation(s)
- Christopher M Johnson
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | | |
Collapse
|
64
|
Crystal structure and in silico studies of dihydrodipicolinate synthase (DHDPS) from Aquifex aeolicus. Extremophiles 2014; 18:973-85. [PMID: 24996798 DOI: 10.1007/s00792-014-0667-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 06/07/2014] [Indexed: 10/25/2022]
Abstract
Dihydrodipicolinate synthase (DHDPS, E.C.4.2.1.52) catalyzes the first committed step in the lysine biosynthetic pathway: the condensation of (S)-aspartate semialdehyde and pyruvate to form (4S)-4-hydroxy-2,3,4,5-tetrahydro-(2S)-dipicolinic acid. Since (S)-lysine biosynthesis does not occur in animals, DHDPS is an attractive target for rational antibiotic and herbicide design. Here, we report the crystal structure of DHDPS from a hyperthermophilic bacterium Aquifex aeolicus (AqDHDPS). L-Lysine is used as an important animal feed additive where the production is at the level of 1.5 million tons per year. The biotechnological manufacture of lysine has been going for more than 50 years which includes over synthesis and reverse engineering of DHDPS. AqDHDPS revealed a unique disulfide linkage which is not conserved in the homologues of AqDHDPS. In silico mutation of C139A and intermolecular ion-pair residues and the subsequent molecular dynamics simulation of the mutants showed that these residues are critical for the stability of AqDHDPS tetramer. MD simulations of AqDHDPS at three different temperatures (303, 363 and 393 K) revealed that the molecule is stable at 363 K. Thus, this structural and in silico study of AqDHDPS likely provides additional details towards the rational and structure-based design of hyper-L-lysine producing bacterial strains.
Collapse
|
65
|
Atkinson SC, Hor L, Dogovski C, Dobson RCJ, Perugini MA. Identification of the bona fide DHDPS from a common plant pathogen. Proteins 2014; 82:1869-83. [PMID: 24677246 DOI: 10.1002/prot.24539] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Revised: 01/06/2014] [Accepted: 02/13/2014] [Indexed: 11/10/2022]
Abstract
Agrobacterium tumefaciens is a Gram-negative soil-borne bacterium that causes Crown Gall disease in many economically important crops. The absence of a suitable chemical treatment means there is a need to discover new anti-Crown Gall agents and also characterize bona fide drug targets. One such target is dihydrodipicolinate synthase (DHDPS), a homo-tetrameric enzyme that catalyzes the committed step in the metabolic pathway yielding meso-diaminopimelate and lysine. Interestingly, there are 10 putative DHDPS genes annotated in the A. tumefaciens genome, including three whose structures have recently been determined (PDB IDs: 3B4U, 2HMC, and 2R8W). However, we show using quantitative enzyme kinetic assays that nine of the 10 dapA gene products, including 3B4U, 2HMC, and 2R8W, lack DHDPS function in vitro. A sequence alignment showed that the product of the dapA7 gene contains all of the conserved residues known to be important for DHDPS catalysis and allostery. This gene was cloned and the recombinant product expressed and purified. Our studies show that the purified enzyme (i) possesses DHDPS enzyme activity, (ii) is allosterically inhibited by lysine, and (iii) adopts the canonical homo-tetrameric structure in both solution and the crystal state. This study describes for the first time the structure, function and allostery of the bona fide DHDPS from A. tumefaciens, which offers insight into the rational design of pesticide agents for combating Crown Gall disease.
Collapse
Affiliation(s)
- Sarah C Atkinson
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, 3086, Australia; Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, 3010, Australia
| | | | | | | | | |
Collapse
|
66
|
Nocek B, Starus A, Makowska-Grzyska M, Gutierrez B, Sanchez S, Jedrzejczak R, Mack JC, Olsen KW, Joachimiak A, Holz RC. The dimerization domain in DapE enzymes is required for catalysis. PLoS One 2014; 9:e93593. [PMID: 24806882 PMCID: PMC4012986 DOI: 10.1371/journal.pone.0093593] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 03/04/2014] [Indexed: 11/21/2022] Open
Abstract
The emergence of antibiotic-resistant bacterial strains underscores the importance of identifying new drug targets and developing new antimicrobial compounds. Lysine and meso-diaminopimelic acid are essential for protein production and bacterial peptidoglycan cell wall remodeling and are synthesized in bacteria by enzymes encoded within dap operon. Therefore dap enzymes may serve as excellent targets for developing a new class of antimicrobial agents. The dapE-encoded N-succinyl-L,L-diaminopimelic acid desuccinylase (DapE) converts N-succinyl-L,L-diaminopimelic acid to L,L-diaminopimelic acid and succinate. The enzyme is composed of catalytic and dimerization domains, and belongs to the M20 peptidase family. To understand the specific role of each domain of the enzyme we engineered dimerization domain deletion mutants of DapEs from Haemophilus influenzae and Vibrio cholerae, and characterized these proteins structurally and biochemically. No activity was observed for all deletion mutants. Structural comparisons of wild-type, inactive monomeric DapE enzymes with other M20 peptidases suggest that the dimerization domain is essential for DapE enzymatic activity. Structural analysis and molecular dynamics simulations indicate that removal of the dimerization domain increased the flexibility of a conserved active site loop that may provide critical interactions with the substrate.
Collapse
Affiliation(s)
- Boguslaw Nocek
- Center for Structural Genomics of Infectious Diseases, Computation Institute, University of Chicago, Chicago, Illinois, United States of America
| | - Anna Starus
- The Department of Chemistry and Biochemistry, Loyola University-Chicago, Chicago, Illinois, United States of America
| | - Magdalena Makowska-Grzyska
- Center for Structural Genomics of Infectious Diseases, Computation Institute, University of Chicago, Chicago, Illinois, United States of America
| | - Blanca Gutierrez
- The Department of Chemistry and Biochemistry, Loyola University-Chicago, Chicago, Illinois, United States of America
| | - Stephen Sanchez
- The Department of Chemistry and Biochemistry, Loyola University-Chicago, Chicago, Illinois, United States of America
| | - Robert Jedrzejczak
- The Midwest Center for Structural Genomics, Bioscience Division, Argonne National Laboratory, Lemont, Illinois, United States of America
| | - Jamey C. Mack
- The Midwest Center for Structural Genomics, Bioscience Division, Argonne National Laboratory, Lemont, Illinois, United States of America
| | - Kenneth W. Olsen
- The Department of Chemistry and Biochemistry, Loyola University-Chicago, Chicago, Illinois, United States of America
| | - Andrzej Joachimiak
- Center for Structural Genomics of Infectious Diseases, Computation Institute, University of Chicago, Chicago, Illinois, United States of America
- The Midwest Center for Structural Genomics, Bioscience Division, Argonne National Laboratory, Lemont, Illinois, United States of America
- * E-mail: (AJ); (RCH)
| | - Richard C. Holz
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin, United States of America
- * E-mail: (AJ); (RCH)
| |
Collapse
|
67
|
Dogovski C, Gorman MA, Ketaren NE, Praszkier J, Zammit LM, Mertens HD, Bryant G, Yang J, Griffin MDW, Pearce FG, Gerrard JA, Jameson GB, Parker MW, Robins-Browne RM, Perugini MA. From knock-out phenotype to three-dimensional structure of a promising antibiotic target from Streptococcus pneumoniae. PLoS One 2013; 8:e83419. [PMID: 24349508 PMCID: PMC3862839 DOI: 10.1371/journal.pone.0083419] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 11/13/2013] [Indexed: 11/18/2022] Open
Abstract
Given the rise in drug-resistant Streptococcus pneumoniae, there is an urgent need to discover new antimicrobials targeting this pathogen and an equally urgent need to characterize new drug targets. A promising antibiotic target is dihydrodipicolinate synthase (DHDPS), which catalyzes the rate-limiting step in lysine biosynthesis. In this study, we firstly show by gene knock out studies that S. pneumoniae (sp) lacking the DHDPS gene is unable to grow unless supplemented with lysine-rich media. We subsequently set out to characterize the structure, function and stability of the enzyme drug target. Our studies show that sp-DHDPS is folded and active with a k(cat) = 22 s(-1), K(M)(PYR) = 2.55 ± 0.05 mM and K(M)(ASA) = 0.044 ± 0.003 mM. Thermal denaturation experiments demonstrate sp-DHDPS exhibits an apparent melting temperature (T(M)(app)) of 72 °C, which is significantly greater than Escherichia coli DHDPS (Ec-DHDPS) (T(M)(app) = 59 °C). Sedimentation studies show that sp-DHDPS exists in a dimer-tetramer equilibrium with a K(D)(4→2) = 1.7 nM, which is considerably tighter than its E. coli ortholog (K(D)(4→2) = 76 nM). To further characterize the structure of the enzyme and probe its enhanced stability, we solved the high resolution (1.9 Å) crystal structure of sp-DHDPS (PDB ID 3VFL). The enzyme is tetrameric in the crystal state, consistent with biophysical measurements in solution. Although the sp-DHDPS and Ec-DHDPS active sites are almost identical, the tetramerization interface of the s. pneumoniae enzyme is significantly different in composition and has greater buried surface area (800 Å(2)) compared to its E. coli counterpart (500 Å(2)). This larger interface area is consistent with our solution studies demonstrating that sp-DHDPS is considerably more thermally and thermodynamically stable than Ec-DHDPS. Our study describe for the first time the knock-out phenotype, solution properties, stability and crystal structure of DHDPS from S. pneumoniae, a promising antimicrobial target.
Collapse
Affiliation(s)
- Con Dogovski
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Victoria, Australia
| | - Michael A. Gorman
- St Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| | - Natalia E. Ketaren
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Victoria, Australia
| | - Judy Praszkier
- Department of Microbiology & Immunology, University of Melbourne, Victoria, Australia
| | - Leanne M. Zammit
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | | | - Gary Bryant
- School of Applied Sciences, RMIT University, Melbourne, Victoria, Australia
| | - Ji Yang
- Department of Microbiology & Immunology, University of Melbourne, Victoria, Australia
| | - Michael D. W. Griffin
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Victoria, Australia
| | - F. Grant Pearce
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Juliet A. Gerrard
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
- Callaghan Innovation, Lower Hutt, New Zealand
| | - Geoffrey B. Jameson
- Centre for Structural Biology, Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Michael W. Parker
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Victoria, Australia
- St Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| | - Roy M. Robins-Browne
- Department of Microbiology & Immunology, University of Melbourne, Victoria, Australia
| | - Matthew A. Perugini
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Victoria, Australia
| |
Collapse
|
68
|
McKinnie SMK, Rodriguez-Lopez EM, Vederas JC, Crowther JM, Suzuki H, Dobson RCJ, Leustek T, Triassi AJ, Wheatley MS, Hudson AO. Differential response of orthologous L,L-diaminopimelate aminotransferases (DapL) to enzyme inhibitory antibiotic lead compounds. Bioorg Med Chem 2013; 22:523-30. [PMID: 24268540 DOI: 10.1016/j.bmc.2013.10.055] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Revised: 10/22/2013] [Accepted: 10/31/2013] [Indexed: 11/19/2022]
Abstract
L,L-Diaminopimelate aminotransferase (DapL) is an enzyme required for the biosynthesis of meso-diaminopimelate (m-DAP) and L-lysine (Lys) in some bacteria and photosynthetic organisms. m-DAP and Lys are both involved in the synthesis of peptidoglycan (PG) and protein synthesis. DapL is found in specific eubacterial and archaeal lineages, in particular in several groups of pathogenic bacteria such as Leptospira interrogans (LiDapL), the soil/water bacterium Verrucomicrobium spinosum (VsDapL) and the alga Chlamydomonas reinhardtii (CrDapL). Here we present the first comprehensive inhibition study comparing the kinetic activity of DapL orthologs using previously active small molecule inhibitors formerly identified in a screen with the DapL of Arabidopsis thaliana (AtDapL), a flowering plant. Each inhibitor is derived from one of four classes with different central structural moieties: a hydrazide, a rhodanine, a barbiturate, or a thiobarbituate functionality. The results show that all five compounds tested were effective at inhibiting the DapL orthologs. LiDapL and AtDapL showed similar patterns of inhibition across the inhibitor series, whereas the VsDapL and CrDapL inhibition patterns were different from that of LiDapL and AtDapL. CrDapL was found to be insensitive to the hydrazide (IC₅₀ >200 μM). VsDapL was found to be the most sensitive to the barbiturate and thiobarbiturate containing inhibitors (IC₅₀ ∼5 μM). Taken together, the data shows that the homologs have differing sensitivities to the inhibitors with IC₅₀ values ranging from 4.7 to 250 μM. In an attempt to understand the basis for these differences the four enzymes were modeled based on the known structure of AtDapL. Overall, it was found that the enzyme active sites were conserved, although the second shell of residues close to the active site were not. We conclude from this that the altered binding patterns seen in the inhibition studies may be a consequence of the inhibitors forming additional interactions with residues proximal to the active site, or that the inhibitors may not act by binding to the active site. Compounds that are specific for DapL could be potential biocides (antibiotic, herbicide or algaecide) that are nontoxic to animals since animals do not contain the enzymes necessary for PG or Lys synthesis. This study provides important information to expand our current understanding of the structure/activity relationship of DapL and putative inhibitors that are potentially useful for the design and or discovery of novel biocides.
Collapse
Affiliation(s)
- Shaun M K McKinnie
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | | | - John C Vederas
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Jennifer M Crowther
- Biomolecular Interaction Centre, School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Hironori Suzuki
- Biomolecular Interaction Centre, School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Renwick C J Dobson
- Biomolecular Interaction Centre, School of Biological Sciences, University of Canterbury, Christchurch, New Zealand; Department of Biochemistry and Molecular Biology, Bio21 Molecular and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Thomas Leustek
- Department of Plant Biology and Pathology, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Alexander J Triassi
- The Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, 85 Lomb Memorial Drive, Rochester, NY 14623-5603, USA
| | - Matthew S Wheatley
- The Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, 85 Lomb Memorial Drive, Rochester, NY 14623-5603, USA
| | - André O Hudson
- The Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, 85 Lomb Memorial Drive, Rochester, NY 14623-5603, USA.
| |
Collapse
|
69
|
Navratna V, Gopal B. Crystallization and preliminary X-ray diffraction studies of Staphylococcus aureus homoserine dehydrogenase. Acta Crystallogr Sect F Struct Biol Cryst Commun 2013; 69:1216-9. [PMID: 24192352 PMCID: PMC3818036 DOI: 10.1107/s1744309113025803] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2013] [Accepted: 09/18/2013] [Indexed: 11/10/2022]
Abstract
Staphylococcus aureus is a Gram-positive nosocomial pathogen. The prevalence of multidrug-resistant S. aureus strains in both hospital and community settings makes it imperative to characterize new drug targets to combat S. aureus infections. In this context, enzymes involved in cell-wall maintenance and essential amino-acid biosynthesis are significant drug targets. Homoserine dehydrogenase (HSD) is an oxidoreductase that is involved in the reversible conversion of L-aspartate semialdehyde to L-homoserine in a dinucleotide cofactor-dependent reduction reaction. HSD is thus a crucial intermediate enzyme linked to the biosynthesis of several essential amino acids such as lysine, methionine, isoleucine and threonine.
Collapse
Affiliation(s)
- Vikas Navratna
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka 560 012, India
| | - Balasubramanian Gopal
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka 560 012, India
| |
Collapse
|
70
|
Molecular docking and in silico studies on analogues of 2-methylheptyl isonicotinate with DHDPS enzyme of Mycobacterium tuberculosis. Med Chem Res 2013. [DOI: 10.1007/s00044-013-0488-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
71
|
Siddiqui T, Paxman JJ, Dogovski C, Panjikar S, Perugini MA. Cloning to crystallization of dihydrodipicolinate synthase from the intracellular pathogen Legionella pneumophila. Acta Crystallogr Sect F Struct Biol Cryst Commun 2013; 69:1177-81. [PMID: 24100576 PMCID: PMC3792684 DOI: 10.1107/s1744309113024639] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Accepted: 09/03/2013] [Indexed: 11/11/2022]
Abstract
Dihydrodipicolinate synthase (DHDPS) catalyses the rate-limiting step in the biosynthesis of meso-diaminopimelate and lysine. Here, the cloning, expression, purification and crystallization of DHDPS from the intracellular pathogen Legionella pneumophila are described. Crystals grown in the presence of high-molecular-weight PEG precipitant and magnesium chloride were found to diffract beyond 1.65 Å resolution. The crystal lattice belonged to the hexagonal space group P6₁22, with unit-cell parameters a=b=89.31, c=290.18 Å, and contained two molecules in the asymmetric unit. The crystal structure was determined by molecular replacement using a single chain of Pseudomonas aeruginosa DHDPS as the search model.
Collapse
Affiliation(s)
- Tanzeela Siddiqui
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, VIC 3010, Australia
| | | | - Con Dogovski
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, VIC 3010, Australia
| | - Santosh Panjikar
- Australian Synchrotron, Clayton, VIC 3168, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton Campus, Melbourne, VIC 3800, Australia
| | - Matthew A. Perugini
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, VIC 3010, Australia
| |
Collapse
|
72
|
Ruane KM, Lloyd AJ, Fülöp V, Dowson CG, Barreteau H, Boniface A, Dementin S, Blanot D, Mengin-Lecreulx D, Gobec S, Dessen A, Roper DI. Specificity determinants for lysine incorporation in Staphylococcus aureus peptidoglycan as revealed by the structure of a MurE enzyme ternary complex. J Biol Chem 2013; 288:33439-48. [PMID: 24064214 PMCID: PMC3829189 DOI: 10.1074/jbc.m113.508135] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Formation of the peptidoglycan stem pentapeptide requires the insertion of both l and d amino acids by the ATP-dependent ligase enzymes MurC, -D, -E, and -F. The stereochemical control of the third position amino acid in the pentapeptide is crucial to maintain the fidelity of later biosynthetic steps contributing to cell morphology, antibiotic resistance, and pathogenesis. Here we determined the x-ray crystal structure of Staphylococcus aureus MurE UDP-N-acetylmuramoyl-l-alanyl-d-glutamate:meso-2,6-diaminopimelate ligase (MurE) (E.C. 6.3.2.7) at 1.8 Å resolution in the presence of ADP and the reaction product, UDP-MurNAc-l-Ala-γ-d-Glu-l-Lys. This structure provides for the first time a molecular understanding of how this Gram-positive enzyme discriminates between l-lysine and d,l-diaminopimelic acid, the predominant amino acid that replaces l-lysine in Gram-negative peptidoglycan. Despite the presence of a consensus sequence previously implicated in the selection of the third position residue in the stem pentapeptide in S. aureus MurE, the structure shows that only part of this sequence is involved in the selection of l-lysine. Instead, other parts of the protein contribute substrate-selecting residues, resulting in a lysine-binding pocket based on charge characteristics. Despite the absolute specificity for l-lysine, S. aureus MurE binds this substrate relatively poorly. In vivo analysis and metabolomic data reveal that this is compensated for by high cytoplasmic l-lysine concentrations. Therefore, both metabolic and structural constraints maintain the structural integrity of the staphylococcal peptidoglycan. This study provides a novel focus for S. aureus-directed antimicrobials based on dual targeting of essential amino acid biogenesis and its linkage to cell wall assembly.
Collapse
Affiliation(s)
- Karen M Ruane
- From the School of Life Sciences, Gibbet Hill Road, University of Warwick, Coventry CV4 7AL, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Hor L, Peverelli MG, Perugini MA, Hutton CA. A new robust kinetic assay for DAP epimerase activity. Biochimie 2013; 95:1949-53. [PMID: 23838343 DOI: 10.1016/j.biochi.2013.06.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 06/28/2013] [Indexed: 11/30/2022]
Abstract
DAP epimerase is the penultimate enzyme in the lysine biosynthesis pathway. The most versatile assay for DAP epimerase catalytic activity employs a coupled DAP epimerase-DAP dehydrogenase enzyme system with a commercial mixture of DAP isomers as substrate. DAP dehydrogenase converts meso-DAP to THDP with concomitant reduction of NADP(+) to NADPH. We show that at high concentrations, accumulation of NADPH results in inhibition of DAPDH, resulting in spurious kinetic data. A new assay has been developed employing DAP decarboxylase that allows the reliable characterisation of DAP epimerase enzyme kinetics.
Collapse
Affiliation(s)
- Lilian Hor
- School of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | | | | | | |
Collapse
|
74
|
Biochemical characterization of UDP-N-acetylmuramoyl-L-alanyl-D-glutamate: meso-2,6-diaminopimelate ligase (MurE) from Verrucomicrobium spinosum DSM 4136(T.). PLoS One 2013; 8:e66458. [PMID: 23785498 PMCID: PMC3681970 DOI: 10.1371/journal.pone.0066458] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 05/06/2013] [Indexed: 12/25/2022] Open
Abstract
Verrucomicrobium spinosum is a Gram-negative bacterium that is related to bacteria from the genus Chlamydia. The bacterium is pathogenic towards Drosophila melanogaster and Caenorhabditis elegans, using a type III secretion system to facilitate pathogenicity. V. spinosum employs the recently discovered l,l-diaminopimelate aminotransferase biosynthetic pathway to generate the bacterial cell wall and protein precursors diaminopimelate and lysine. A survey of the V. spinosum genome provides evidence that the bacterium should be able to synthesize peptidoglycan de novo, since all of the necessary genes are present. The enzyme UDP-N-acetylmuramoyl-l-alanyl-d-glutamate: meso-2,6-diaminopimelate ligase (MurE) (E.C. 6.3.2.15) catalyzes a reaction in the cytoplasmic step of peptidoglycan biosynthesis by adding the third amino acid residue to the peptide stem. The murE ortholog from V. spinosum (murEVs) was cloned and was shown to possess UDP-MurNAc-l-Ala-d-Glu:meso-2,6-diaminopimelate ligase activity in vivo using functional complementation. In vitro analysis using the purified recombinant enzyme demonstrated that MurEVs has a pH optimum of 9.6 and a magnesium optimum of 30 mM. meso-Diaminopimelate was the preferred substrate with a Km of 17 µM, when compared to other substrates that are structurally related. Sequence alignment and structural analysis using homology modeling suggest that key residues that make up the active site of the enzyme are conserved in MurEVs. Our kinetic analysis and structural model of MurEVs is consistent with other MurE enzymes from Gram-negative bacteria that have been characterized. To verify that V. spinosum incorporates diaminopimelate into its cell wall, we purified peptidoglycan from a V. spinosum culture; analysis revealed the presence of diaminopimelate, consistent with that of a bona fide peptidoglycan from Gram-negative bacteria.
Collapse
|
75
|
Fazius F, Zaehle C, Brock M. Lysine biosynthesis in microbes: relevance as drug target and prospects for β-lactam antibiotics production. Appl Microbiol Biotechnol 2013; 97:3763-72. [PMID: 23504110 DOI: 10.1007/s00253-013-4805-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 02/20/2013] [Accepted: 02/21/2013] [Indexed: 12/11/2022]
Abstract
Plants as well as pro- and eukaryotic microorganisms are able to synthesise lysine via de novo synthesis. While plants and bacteria, with some exceptions, rely on variations of the meso-diaminopimelate pathway for lysine biosynthesis, fungi exclusively use the α-aminoadipate pathway. Although bacteria and fungi are, in principle, both suitable as lysine producers, current industrial fermentations rely on the use of bacteria. In contrast, fungi are important producers of β-lactam antibiotics such as penicillins or cephalosporins. The synthesis of these antibiotics strictly depends on α-aminoadipate deriving from lysine biosynthesis. Interestingly, despite the resulting industrial importance of the fungal α-aminoadipate pathway, biochemical reactions leading to α-aminoadipate formation have only been studied on a limited number of fungal species. In this respect, just recently an essential isomerisation reaction required for the formation of α-aminoadipate has been elucidated in detail. This review summarises biochemical pathways leading to lysine production, discusses the suitability of interrupting lysine biosynthesis as target for new antibacterial and antifungal compounds and emphasises on biochemical reactions involved in the formation of α-aminoadipate in fungi as an essential intermediate for both, lysine and β-lactam antibiotics production.
Collapse
Affiliation(s)
- Felicitas Fazius
- Microbial Biochemistry and Physiology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, Beutenbergstr. 11a, 07745 Jena, Germany
| | | | | |
Collapse
|
76
|
Atkinson SC, Dogovski C, Downton MT, Czabotar PE, Dobson RCJ, Gerrard JA, Wagner J, Perugini MA. Structural, kinetic and computational investigation of Vitis vinifera DHDPS reveals new insight into the mechanism of lysine-mediated allosteric inhibition. PLANT MOLECULAR BIOLOGY 2013; 81:431-446. [PMID: 23354837 DOI: 10.1007/s11103-013-0014-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 01/15/2013] [Indexed: 06/01/2023]
Abstract
Lysine is one of the most limiting amino acids in plants and its biosynthesis is carefully regulated through inhibition of the first committed step in the pathway catalyzed by dihydrodipicolinate synthase (DHDPS). This is mediated via a feedback mechanism involving the binding of lysine to the allosteric cleft of DHDPS. However, the precise allosteric mechanism is yet to be defined. We present a thorough enzyme kinetic and thermodynamic analysis of lysine inhibition of DHDPS from the common grapevine, Vitis vinifera (Vv). Our studies demonstrate that lysine binding is both tight (relative to bacterial DHDPS orthologs) and cooperative. The crystal structure of the enzyme bound to lysine (2.4 Å) identifies the allosteric binding site and clearly shows a conformational change of several residues within the allosteric and active sites. Molecular dynamics simulations comparing the lysine-bound (PDB ID 4HNN) and lysine free (PDB ID 3TUU) structures show that Tyr132, a key catalytic site residue, undergoes significant rotational motion upon lysine binding. This suggests proton relay through the catalytic triad is attenuated in the presence of lysine. Our study reveals for the first time the structural mechanism for allosteric inhibition of DHDPS from the common grapevine.
Collapse
Affiliation(s)
- Sarah C Atkinson
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | | | | | | | | | | | | | | |
Collapse
|
77
|
Hor L, Dobson RCJ, Downton MT, Wagner J, Hutton CA, Perugini MA. Dimerization of bacterial diaminopimelate epimerase is essential for catalysis. J Biol Chem 2013; 288:9238-48. [PMID: 23426375 DOI: 10.1074/jbc.m113.450148] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Diaminopimelate (DAP) epimerase is involved in the biosynthesis of meso-DAP and lysine, which are important precursors for the synthesis of peptidoglycan, housekeeping proteins, and virulence factors in bacteria. Accordingly, DAP epimerase is a promising antimicrobial target. Previous studies report that DAP epimerase exists as a monomeric enzyme. However, we show using analytical ultracentrifugation, X-ray crystallography, and enzyme kinetic analyses that DAP epimerase from Escherichia coli exists as a functional dimer in solution and the crystal state. Furthermore, the 2.0-Å X-ray crystal structure of the E. coli DAP epimerase dimer shows for the first time that the enzyme exists in an open, active conformation. The importance of dimerization was subsequently probed by using site-directed mutagenesis to generate a monomeric mutant (Y268A). Our studies show that Y268A is catalytically inactive, thus demonstrating that dimerization of DAP epimerase is essential for catalysis. Molecular dynamics simulations indicate that the DAP epimerase monomer is inherently more flexible than the dimer, suggesting that dimerization optimizes protein dynamics to support function. Our findings offer insight into the development of novel antimicrobial agents targeting the dimeric antibiotic target DAP epimerase.
Collapse
Affiliation(s)
- Lilian Hor
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | | | | | | | | | | |
Collapse
|
78
|
Gillner DM, Becker DP, Holz RC. Lysine biosynthesis in bacteria: a metallodesuccinylase as a potential antimicrobial target. J Biol Inorg Chem 2013; 18:155-163. [PMID: 23223968 PMCID: PMC3862034 DOI: 10.1007/s00775-012-0965-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 11/15/2012] [Indexed: 01/12/2023]
Abstract
In this review, we summarize the recent literature on dapE-encoded N-succinyl-L,L-diaminopimelic acid desuccinylase (DapE) enzymes, with an emphasis on structure-function studies that provide insight into the catalytic mechanism. Crystallographic data have also provided insight into residues that might be involved in substrate and hence inhibitor recognition and binding. These data have led to the design and synthesis of several new DapE inhibitors, which are described along with what is known about how inhibitors interact with the active site of DapE enzymes, including the efficacy of a moderately strong DapE inhibitor.
Collapse
Affiliation(s)
- Danuta M Gillner
- Department of Chemistry and Biochemistry, Loyola University-Chicago, 1068 W. Sheridan Rd., Chicago, IL, 60626, USA.
- Department of Chemistry, Silesian University of Technology, ul. Krzywoustego 4, 44-100, Gliwice, Poland.
| | - Daniel P Becker
- Department of Chemistry and Biochemistry, Loyola University-Chicago, 1068 W. Sheridan Rd., Chicago, IL, 60626, USA
| | - Richard C Holz
- Department of Chemistry and Biochemistry, Loyola University-Chicago, 1068 W. Sheridan Rd., Chicago, IL, 60626, USA.
| |
Collapse
|
79
|
Comparative structure and function analyses of native and his-tagged forms of dihydrodipicolinate reductase from methicillin-resistant Staphylococcus aureus. Protein Expr Purif 2012; 85:66-76. [DOI: 10.1016/j.pep.2012.06.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 06/25/2012] [Accepted: 06/27/2012] [Indexed: 11/22/2022]
|
80
|
Atkinson SC, Dogovski C, Dobson RCJ, Perugini MA. Cloning, expression, purification and crystallization of dihydrodipicolinate synthase from Agrobacterium tumefaciens. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012; 68:1040-7. [PMID: 22949190 PMCID: PMC3433193 DOI: 10.1107/s1744309112033052] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Accepted: 07/20/2012] [Indexed: 11/10/2022]
Abstract
Dihydrodipicolinate synthase (DHDPS) catalyzes the first committed step of the lysine-biosynthesis pathway in bacteria, plants and some fungi. This study describes the cloning, expression, purification and crystallization of DHDPS (NP_354047.1) from the plant pathogen Agrobacterium tumefaciens (AgT-DHDPS). Enzyme-kinetics studies demonstrate that AgT-DHDPS possesses DHDPS activity in vitro. Crystals of AgT-DHDPS were grown in the unliganded form and in forms with substrate bound and with substrate plus allosteric inhibitor (lysine) bound. X-ray diffraction data sets were subsequently collected to a maximum resolution of 1.40 Å. Determination of the structure with and without substrate and inhibitor will offer insight into the design of novel pesticide agents.
Collapse
Affiliation(s)
- Sarah C. Atkinson
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, 30 Flemington Road, Melbourne, Victoria 3010, Australia
| | - Con Dogovski
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Renwick C. J. Dobson
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, 30 Flemington Road, Melbourne, Victoria 3010, Australia
- Biomolecular Interaction Centre, School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand
| | - Matthew A. Perugini
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, 30 Flemington Road, Melbourne, Victoria 3010, Australia
| |
Collapse
|
81
|
Singh SP, Bora TC, Bezbaruah RL. Molecular Interaction of Novel Compound 2-Methylheptyl Isonicotinate Produced by Streptomyces sp. 201 with Dihydrodipicolinate Synthase (DHDPS) Enzyme of Mycobacterium tuberculosis for its Antibacterial Activity. Indian J Microbiol 2012; 52:427-32. [PMID: 23997335 PMCID: PMC3460125 DOI: 10.1007/s12088-012-0252-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2010] [Accepted: 01/12/2012] [Indexed: 11/25/2022] Open
Abstract
Antibiotic resistance is a growing problem in multi-drug-resistant tuberculosis which is caused by Mycobacterium tuberculosis (MTB). Hence there is an urgent need for designing or developing a novel or potent anti-tubercular agent. The Lysine/DAP biosynthetic pathway is a promising target because of its role in cell wall and amino acid biosynthesis. In our study we performed a molecular docking analysis of a novel antibacterial isolated from Streptomyces sp. 201 at three different binding site of dihydrodipicolinate synthase (DHDPS) enzyme of MTB. The molecular docking studies suggest that the novel molecule shows favourable interaction at the three different binding sites as compared to five experimentally known inhibitors of DHDPS.
Collapse
Affiliation(s)
- Salam Pradeep Singh
- Bioinformatics Infrastructure Facility, Biotechnology Division, North-East Institute of Science & Technology (CSIR), Jorhat, 785006 Assam India
| | - T. C. Bora
- Bioinformatics Infrastructure Facility, Biotechnology Division, North-East Institute of Science & Technology (CSIR), Jorhat, 785006 Assam India
| | - R. L. Bezbaruah
- Bioinformatics Infrastructure Facility, Biotechnology Division, North-East Institute of Science & Technology (CSIR), Jorhat, 785006 Assam India
| |
Collapse
|
82
|
Reinhard L, Mueller-Dieckmann J, Weiss MS. Cloning, expression, purification, crystallization and preliminary X-ray diffraction analysis of succinyl-diaminopimelate desuccinylase (Rv1202, DapE) from Mycobacterium tuberculosis. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012; 68:1089-93. [PMID: 22949202 PMCID: PMC3433205 DOI: 10.1107/s174430911203062x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2012] [Accepted: 07/04/2012] [Indexed: 11/10/2022]
Abstract
Succinyl-diaminopimelate desuccinylase from Mycobacterium tuberculosis (DapE, Rv1202) has been cloned, heterologously expressed in Escherichia coli and purified using standard chromatographic techniques. Diffraction-quality crystals were obtained at acidic pH from ammonium sulfate and PEG and diffraction data were collected from two crystals to resolutions of 2.40 and 2.58 Å, respectively. The crystals belonged to the monoclinic space group P2(1), with unit-cell parameters a = 79.7, b = 76.0, c = 82.9 Å, β = 119°. The most probable content of the asymmetric unit was two molecules of DapE, which would correspond to a solvent content of 56%. Both examined crystals turned out to be pseudo-merohedrally twinned, with twin operator -h, -k, h + l and twin fractions of approximately 0.46 and 0.16, respectively.
Collapse
Affiliation(s)
- Linda Reinhard
- EMBL Hamburg Outstation, c/o DESY, Notkestrasse 85, 22603 Hamburg, Germany.
| | | | | |
Collapse
|
83
|
Atkinson SC, Dogovski C, Downton MT, Pearce FG, Reboul CF, Buckle AM, Gerrard JA, Dobson RCJ, Wagner J, Perugini MA. Crystal, solution and in silico structural studies of dihydrodipicolinate synthase from the common grapevine. PLoS One 2012; 7:e38318. [PMID: 22761676 PMCID: PMC3382604 DOI: 10.1371/journal.pone.0038318] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2012] [Accepted: 05/08/2012] [Indexed: 11/22/2022] Open
Abstract
Dihydrodipicolinate synthase (DHDPS) catalyzes the rate limiting step in lysine biosynthesis in bacteria and plants. The structure of DHDPS has been determined from several bacterial species and shown in most cases to form a homotetramer or dimer of dimers. However, only one plant DHDPS structure has been determined to date from the wild tobacco species, Nicotiana sylvestris (Blickling et al. (1997) J. Mol. Biol. 274, 608-621). Whilst N. sylvestris DHDPS also forms a homotetramer, the plant enzyme adopts a 'back-to-back' dimer of dimers compared to the 'head-to-head' architecture observed for bacterial DHDPS tetramers. This raises the question of whether the alternative quaternary architecture observed for N. sylvestris DHDPS is common to all plant DHDPS enzymes. Here, we describe the structure of DHDPS from the grapevine plant, Vitis vinifera, and show using analytical ultracentrifugation, small-angle X-ray scattering and X-ray crystallography that V. vinifera DHDPS forms a 'back-to-back' homotetramer, consistent with N. sylvestris DHDPS. This study is the first to demonstrate using both crystal and solution state measurements that DHDPS from the grapevine plant adopts an alternative tetrameric architecture to the bacterial form, which is important for optimizing protein dynamics as suggested by molecular dynamics simulations reported in this study.
Collapse
Affiliation(s)
- Sarah C. Atkinson
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, Australia
| | - Con Dogovski
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, Australia
| | - Matthew T. Downton
- IBM Research Collaboratory for Life Sciences-Melbourne, Victorian Life Sciences Computation Initiative, Carlton, Australia
| | - F. Grant Pearce
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Cyril F. Reboul
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
- ARC Centre of Excellence in Structural and Functional Microbial Genomics, Monash University, Clayton, Victoria, Australia
| | - Ashley M. Buckle
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Juliet A. Gerrard
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Renwick C. J. Dobson
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, Australia
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - John Wagner
- IBM Research Collaboratory for Life Sciences-Melbourne, Victorian Life Sciences Computation Initiative, Carlton, Australia
| | - Matthew A. Perugini
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, Australia
| |
Collapse
|
84
|
Reboul CF, Porebski BT, Griffin MDW, Dobson RCJ, Perugini MA, Gerrard JA, Buckle AM. Structural and dynamic requirements for optimal activity of the essential bacterial enzyme dihydrodipicolinate synthase. PLoS Comput Biol 2012; 8:e1002537. [PMID: 22685390 PMCID: PMC3369909 DOI: 10.1371/journal.pcbi.1002537] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Accepted: 04/16/2012] [Indexed: 11/18/2022] Open
Abstract
Dihydrodipicolinate synthase (DHDPS) is an essential enzyme involved in the lysine biosynthesis pathway. DHDPS from E. coli is a homotetramer consisting of a 'dimer of dimers', with the catalytic residues found at the tight-dimer interface. Crystallographic and biophysical evidence suggest that the dimers associate to stabilise the active site configuration, and mutation of a central dimer-dimer interface residue destabilises the tetramer, thus increasing the flexibility and reducing catalytic efficiency and substrate specificity. This has led to the hypothesis that the tetramer evolved to optimise the dynamics within the tight-dimer. In order to gain insights into DHDPS flexibility and its relationship to quaternary structure and function, we performed comparative Molecular Dynamics simulation studies of native tetrameric and dimeric forms of DHDPS from E. coli and also the native dimeric form from methicillin-resistant Staphylococcus aureus (MRSA). These reveal a striking contrast between the dynamics of tetrameric and dimeric forms. Whereas the E. coli DHDPS tetramer is relatively rigid, both the E. coli and MRSA DHDPS dimers display high flexibility, resulting in monomer reorientation within the dimer and increased flexibility at the tight-dimer interface. The mutant E. coli DHDPS dimer exhibits disorder within its active site with deformation of critical catalytic residues and removal of key hydrogen bonds that render it inactive, whereas the similarly flexible MRSA DHDPS dimer maintains its catalytic geometry and is thus fully functional. Our data support the hypothesis that in both bacterial species optimal activity is achieved by fine tuning protein dynamics in different ways: E. coli DHDPS buttresses together two dimers, whereas MRSA dampens the motion using an extended tight-dimer interface.
Collapse
Affiliation(s)
- C. F. Reboul
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
- ARC Centre of Excellence in Structural and Functional Microbial Genomics, Monash University, Clayton, Victoria, Australia
| | - B. T. Porebski
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - M. D. W. Griffin
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - R. C. J. Dobson
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
- Biomolecular Interaction Centre, and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - M. A. Perugini
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - J. A. Gerrard
- Biomolecular Interaction Centre, and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - A. M. Buckle
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
- * E-mail:
| |
Collapse
|
85
|
Nachar VR, Savka FC, McGroty SE, Donovan KA, North RA, Dobson RCJ, Buckley LJ, Hudson AO. Genomic and Biochemical Analysis of the Diaminopimelate and Lysine Biosynthesis Pathway in Verrucomicrobium spinosum: Identification and Partial Characterization of L,L-Diaminopimelate Aminotransferase and UDP-N-Acetylmuramoylalanyl-D-glutamyl-2,6-meso-Diaminopimelate Ligase. Front Microbiol 2012; 3:183. [PMID: 22783236 PMCID: PMC3390587 DOI: 10.3389/fmicb.2012.00183] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2012] [Accepted: 05/02/2012] [Indexed: 11/20/2022] Open
Abstract
The Gram-negative bacterium Verrucomicrobium spinosum has attracted interest in recent years following the sequencing and annotation of its genome. Comparative genomic analysis of V. spinosum using diaminopimelate/lysine metabolic genes from Chlamydia trachomatis suggests that V. spinosum employs the L,L-diaminopimelate aminotransferase (DapL) pathway for diaminopimelate/lysine biosynthesis. The open reading frame corresponding to the putative dapL ortholog was cloned and the recombinant enzyme was shown to possess L,L-diaminopimelate aminotransferase activity in vitro. In vivo analysis using functional complementation confirmed that the dapL ortholog was able to functionally complement an E. coli mutant that confers auxotrophy for diaminopimelate and lysine. In addition to its role in lysine biosynthesis, the intermediate diaminopimelate has an integral role in peptidoglycan biosynthesis. To this end, the UDP-N-acetylmuramoylalanyl-d-glutamyl-2,6-meso-diaminopimelate ligase ortholog was also identified, cloned, and was shown to possess meso-diaminopimelate ligase activity in vivo. The L,L-diaminopimelate aminotransferase pathway has been experimentally confirmed in several bacteria, some of which are deemed pathogenic to animals. Since animals, and particularly humans, lack the genetic machinery for the synthesis of diaminopimelate/lysine de novo, the enzymes involved in this pathway are attractive targets for development of antibiotics. Whether dapL is an essential gene in any bacteria is currently not known. V. spinosum is an excellent candidate to investigate the essentiality of dapL, since the bacterium employs the DapL pathway for lysine and cell wall biosynthesis, is non-pathogenic to humans, facile to grow, and can be genetically manipulated.
Collapse
Affiliation(s)
- Victoria R Nachar
- The Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology Rochester, NY, USA
| | | | | | | | | | | | | | | |
Collapse
|
86
|
Boughton BA, Hor L, Gerrard JA, Hutton CA. 1,3-Phenylene bis(ketoacid) derivatives as inhibitors of Escherichia coli dihydrodipicolinate synthase. Bioorg Med Chem 2012; 20:2419-26. [DOI: 10.1016/j.bmc.2012.01.045] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 01/17/2012] [Accepted: 01/26/2012] [Indexed: 10/14/2022]
|
87
|
Schnell R, Oehlmann W, Sandalova T, Braun Y, Huck C, Maringer M, Singh M, Schneider G. Tetrahydrodipicolinate N-succinyltransferase and dihydrodipicolinate synthase from Pseudomonas aeruginosa: structure analysis and gene deletion. PLoS One 2012; 7:e31133. [PMID: 22359568 PMCID: PMC3281039 DOI: 10.1371/journal.pone.0031133] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Accepted: 01/03/2012] [Indexed: 11/19/2022] Open
Abstract
The diaminopimelic acid pathway of lysine biosynthesis has been suggested to provide attractive targets for the development of novel antibacterial drugs. Here we report the characterization of two enzymes from this pathway in the human pathogen Pseudomonas aeruginosa, utilizing structural biology, biochemistry and genetics. We show that tetrahydrodipicolinate N-succinyltransferase (DapD) from P. aeruginosa is specific for the L-stereoisomer of the amino substrate L-2-aminopimelate, and its D-enantiomer acts as a weak inhibitor. The crystal structures of this enzyme with L-2-aminopimelate and D-2-aminopimelate, respectively, reveal that both compounds bind at the same site of the enzyme. Comparison of the binding interactions of these ligands in the enzyme active site suggests misalignment of the amino group of D-2-aminopimelate for nucleophilic attack on the succinate moiety of the co-substrate succinyl-CoA as the structural basis of specificity and inhibition. P. aeruginosa mutants where the dapA gene had been deleted were viable and able to grow in a mouse lung infection model, suggesting that DapA is not an optimal target for drug development against this organism. Structure-based sequence alignments, based on the DapA crystal structure determined to 1.6 Å resolution revealed the presence of two homologues, PA0223 and PA4188, in P. aeruginosa that could substitute for DapA in the P. aeruginosa PAO1ΔdapA mutant. In vitro experiments using recombinant PA0223 protein could however not detect any DapA activity.
Collapse
Affiliation(s)
- Robert Schnell
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Wulf Oehlmann
- LIONEX Diagnostics and Therapeutics, Braunschweig, Germany
| | - Tatyana Sandalova
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Yvonne Braun
- LIONEX Diagnostics and Therapeutics, Braunschweig, Germany
| | | | | | - Mahavir Singh
- LIONEX Diagnostics and Therapeutics, Braunschweig, Germany
- * E-mail: (MS); (GS)
| | - Gunter Schneider
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- * E-mail: (MS); (GS)
| |
Collapse
|
88
|
Fan C, Vederas JC. Synthesis and structure–activity relationships of o-sulfonamido-arylhydrazides as inhibitors of ll-diaminopimelate aminotransferase (ll-DAP-AT). Org Biomol Chem 2012; 10:5815-9. [DOI: 10.1039/c2ob00040g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
89
|
Atkinson SC, Dogovski C, Newman J, Dobson RCJ, Perugini MA. Cloning, expression, purification and crystallization of dihydrodipicolinate synthase from the grapevine Vitis vinifera. Acta Crystallogr Sect F Struct Biol Cryst Commun 2011; 67:1537-41. [PMID: 22139160 PMCID: PMC3232133 DOI: 10.1107/s1744309111038395] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Accepted: 09/19/2011] [Indexed: 11/11/2022]
Abstract
Dihydrodipicolinate synthase (DHDPS) catalyses the first committed step of the lysine-biosynthesis pathway in bacteria, plants and some fungi. This study describes the cloning, expression, purification and crystallization of DHDPS from the grapevine Vitis vinifera (Vv-DHDPS). Following in-drop cleavage of the hexahistidine tag, cocrystals of Vv-DHDPS with the substrate pyruvate were grown in 0.1 M Bis-Tris propane pH 8.2, 0.2 M sodium bromide, 20%(w/v) PEG 3350. X-ray diffraction data in space group P1 at a resolution of 2.2 Å are presented. Preliminary diffraction data analysis indicated the presence of eight molecules per asymmetric unit (V(M) = 2.55 Å(3) Da(-1), 52% solvent content). The pending crystal structure of Vv-DHDPS will provide insight into the molecular evolution in quaternary structure of DHDPS enzymes.
Collapse
Affiliation(s)
- Sarah C. Atkinson
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, 30 Flemington Road, Parkville, Victoria 3010, Australia
| | - Con Dogovski
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, 30 Flemington Road, Parkville, Victoria 3010, Australia
| | - Janet Newman
- CSIRO Division of Molecular and Health Technologies, 343 Royal Parade, Parkville, Victoria 3052, Australia
| | - Renwick C. J. Dobson
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, 30 Flemington Road, Parkville, Victoria 3010, Australia
- Biomolecular Interaction Centre, School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand
| | - Matthew A. Perugini
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, 30 Flemington Road, Parkville, Victoria 3010, Australia
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| |
Collapse
|
90
|
Charusanti P, Chauhan S, McAteer K, Lerman JA, Hyduke DR, Motin VL, Ansong C, Adkins JN, Palsson BO. An experimentally-supported genome-scale metabolic network reconstruction for Yersinia pestis CO92. BMC SYSTEMS BIOLOGY 2011; 5:163. [PMID: 21995956 PMCID: PMC3220653 DOI: 10.1186/1752-0509-5-163] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 10/13/2011] [Indexed: 11/20/2022]
Abstract
Background Yersinia pestis is a gram-negative bacterium that causes plague, a disease linked historically to the Black Death in Europe during the Middle Ages and to several outbreaks during the modern era. Metabolism in Y. pestis displays remarkable flexibility and robustness, allowing the bacterium to proliferate in both warm-blooded mammalian hosts and cold-blooded insect vectors such as fleas. Results Here we report a genome-scale reconstruction and mathematical model of metabolism for Y. pestis CO92 and supporting experimental growth and metabolite measurements. The model contains 815 genes, 678 proteins, 963 unique metabolites and 1678 reactions, accurately simulates growth on a range of carbon sources both qualitatively and quantitatively, and identifies gaps in several key biosynthetic pathways and suggests how those gaps might be filled. Furthermore, our model presents hypotheses to explain certain known nutritional requirements characteristic of this strain. Conclusions Y. pestis continues to be a dangerous threat to human health during modern times. The Y. pestis genome-scale metabolic reconstruction presented here, which has been benchmarked against experimental data and correctly reproduces known phenotypes, provides an in silico platform with which to investigate the metabolism of this important human pathogen.
Collapse
Affiliation(s)
- Pep Charusanti
- Department of Bioengineering, University of California, San Diego, La Jolla, California, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Conti P, Tamborini L, Pinto A, Blondel A, Minoprio P, Mozzarelli A, De Micheli C. Drug Discovery Targeting Amino Acid Racemases. Chem Rev 2011; 111:6919-46. [DOI: 10.1021/cr2000702] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Paola Conti
- Dipartimento di Scienze Farmaceutiche “P. Pratesi”, via Mangiagalli 25, 20133 Milano, Italy
| | - Lucia Tamborini
- Dipartimento di Scienze Farmaceutiche “P. Pratesi”, via Mangiagalli 25, 20133 Milano, Italy
| | - Andrea Pinto
- Dipartimento di Scienze Farmaceutiche “P. Pratesi”, via Mangiagalli 25, 20133 Milano, Italy
| | - Arnaud Blondel
- Institut Pasteur, Unité de Bioinformatique Structurale, CNRS-URA 2185, Département de Biologie Structurale et Chimie, 25 rue du Dr. Roux, 75724 Paris, France
| | - Paola Minoprio
- Institut Pasteur, Laboratoire des Processus Infectieux à Trypanosoma; Département d’Infection et Epidémiologie; 25 rue du Dr. Roux, 75724 Paris, France
| | - Andrea Mozzarelli
- Dipartimento di Biochimica e Biologia Molecolare, via G. P. Usberti 23/A, 43100 Parma, Italy
- Istituto di Biostrutture e Biosistemi, viale Medaglie d’oro, Roma, Italy
| | - Carlo De Micheli
- Dipartimento di Scienze Farmaceutiche “P. Pratesi”, via Mangiagalli 25, 20133 Milano, Italy
| |
Collapse
|
92
|
Watanabe N, Clay MD, van Belkum MJ, Fan C, Vederas JC, James MN. The Structure of ll-Diaminopimelate Aminotransferase from Chlamydia trachomatis: Implications for Its Broad Substrate Specificity. J Mol Biol 2011; 411:649-60. [DOI: 10.1016/j.jmb.2011.06.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Revised: 06/09/2011] [Accepted: 06/14/2011] [Indexed: 10/18/2022]
|
93
|
Forlani G, Petrollino D, Fusetti M, Romanini L, Nocek B, Joachimiak A, Berlicki L, Kafarski P. Δ1-pyrroline-5-carboxylate reductase as a new target for therapeutics: inhibition of the enzyme from Streptococcus pyogenes and effects in vivo. Amino Acids 2011; 42:2283-91. [PMID: 21744012 DOI: 10.1007/s00726-011-0970-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Accepted: 06/24/2011] [Indexed: 10/18/2022]
Abstract
Compounds able to interfere with amino acid biosynthesis have the potential to inhibit cell growth. In both prokaryotic and eukaryotic microorganisms, unless an ornithine cyclodeaminase is present, the activity of δ1-pyrroline-5-carboxylate (P5C) reductase is mandatory to proline production, and the enzyme inhibition should result in amino acid starvation, blocking in turn protein synthesis. The ability of some substituted derivatives of aminomethylenebisphosphonic acid and its analogues to interfere with the activity of the enzyme from the human pathogen Streptococcus pyogenes was investigated. Several compounds were able to suppress activity in the micromolar range of concentrations, with a mechanism of uncompetitive type with respect to the substrate P5C and non-competitive with respect to the electron donor NAD(P)H. The actual occurrence of enzyme inhibition in vivo was supported by the effects of the most active derivatives upon bacterial growth and free amino acid content.
Collapse
Affiliation(s)
- Giuseppe Forlani
- Department of Biology and Evolution, University of Ferrara, via L. Borsari 46, 44100, Ferrara, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
94
|
Dommaraju SR, Dogovski C, Czabotar PE, Hor L, Smith BJ, Perugini MA. Catalytic mechanism and cofactor preference of dihydrodipicolinate reductase from methicillin-resistant Staphylococcus aureus. Arch Biochem Biophys 2011; 512:167-74. [PMID: 21704017 DOI: 10.1016/j.abb.2011.06.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 06/08/2011] [Accepted: 06/09/2011] [Indexed: 10/18/2022]
Abstract
Given the rapid rise in antibiotic resistance, including methicillin resistance in Staphylococcus aureus (MRSA), there is an urgent need to characterize novel drug targets. Enzymes of the lysine biosynthesis pathway in bacteria are examples of such targets, including dihydrodipicolinate reductase (DHDPR, E.C. 1.3.1.26), which is the product of an essential bacterial gene. DHDPR catalyzes the NAD(P)H-dependent reduction of dihydrodipicolinate (DHDP) to tetrahydrodipicolinate (THDP) in the lysine biosynthesis pathway. We show that MRSA-DHDPR exhibits a unique nucleotide specificity utilizing NADPH (K(m)=12μM) as a cofactor more effectively than NADH (K(m)=26μM). However, the enzyme is inhibited by high concentrations of DHDP when using NADPH as a cofactor, but not with NADH. Isothermal titration calorimetry (ITC) studies reveal that MRSA-DHDPR has ∼20-fold greater binding affinity for NADPH (K(d)=1.5μM) relative to NADH (K(d)=29μM). Kinetic investigations in tandem with ITC studies show that the enzyme follows a compulsory-order ternary complex mechanism; with inhibition by DHDP through the formation of a nonproductive ternary complex with NADP(+). This work describes, for the first time, the catalytic mechanism and cofactor preference of MRSA-DHDPR, and provides insight into rational approaches to inhibiting this valid antimicrobial target.
Collapse
Affiliation(s)
- Sudhir R Dommaraju
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| | | | | | | | | | | |
Collapse
|
95
|
Evans G, Schuldt L, Griffin MDW, Devenish SRA, Grant Pearce F, Perugini MA, Dobson RCJ, Jameson GB, Weiss MS, Gerrard JA. A tetrameric structure is not essential for activity in dihydrodipicolinate synthase (DHDPS) from Mycobacterium tuberculosis. Arch Biochem Biophys 2011; 512:154-9. [PMID: 21672512 DOI: 10.1016/j.abb.2011.05.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 05/19/2011] [Accepted: 05/20/2011] [Indexed: 11/19/2022]
Abstract
Dihydrodipicolinate synthase (DHDPS) is a validated antibiotic target for which a new approach to inhibitor design has been proposed: disrupting native tetramer formation by targeting the dimer-dimer interface. In this study, rational design afforded a variant of Mycobacterium tuberculosis, Mtb-DHDPS-A204R, with disrupted quaternary structure. X-ray crystallography (at a resolution of 2.1Å) revealed a dimeric protein with an identical fold and active-site structure to the tetrameric wild-type enzyme. Analytical ultracentrifugation confirmed the dimeric structure in solution, yet the dimeric mutant has similar activity to the wild-type enzyme. Although the affinity for both substrates was somewhat decreased, the high catalytic competency of the enzyme was surprising in the light of previous results showing that dimeric variants of the Escherichia coli and Bacillus anthracis DHDPS enzymes have dramatically reduced activity compared to their wild-type tetrameric counterparts. These results suggest that Mtb-DHDPS-A204R is similar to the natively dimeric enzyme from Staphylococcus aureus, and highlight our incomplete understanding of the role played by oligomerisation in relating protein structure and function.
Collapse
Affiliation(s)
- Genevieve Evans
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | | | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Dobson RCJ, Girón I, Hudson AO. L,L-diaminopimelate aminotransferase from Chlamydomonas reinhardtii: a target for algaecide development. PLoS One 2011; 6:e20439. [PMID: 21633707 PMCID: PMC3102117 DOI: 10.1371/journal.pone.0020439] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Accepted: 04/29/2011] [Indexed: 11/21/2022] Open
Abstract
In some bacterial species and photosynthetic cohorts, including algae, the enzyme
l,l-diaminopimelate aminotransferase
(DapL) (E.C. 2.6.1.83) is involved in the anabolism of the essential amino acid
L-lysine. DapL catalyzes the conversion of
tetrahydrodipicolinate (THDPA) to
l,l-diaminopimelate
(l,l-DAP), in one step bypassing the
DapD, DapC and DapE enzymatic reactions present in the acyl DAP pathways. Here
we present an in vivo and in vitro
characterization of the DapL ortholog from the alga Chlamydomonas
reinhardtii (Cr-DapL). The in
vivo analysis illustrated that the enzyme is able to functionally
complement the E. coli dap auxotrophs and was essential for
plant development in Arabidopsis. In vitro, the enzyme was able
to inter-convert THDPA and l,l-DAP, showing
strong substrate specificity. Cr-DapL was dimeric in both
solution and when crystallized. The structure of Cr-DapL was
solved in its apo form, showing an overall architecture of a
α/β protein with each monomer in the dimer adopting a pyridoxal
phosphate-dependent transferase-like fold in a V-shaped conformation. The active
site comprises residues from both monomers in the dimer and shows some
rearrangement when compared to the apo-DapL structure from
Arabidopsis. Since animals do not possess the enzymatic machinery necessary for
the de novo synthesis of the amino acid
l-lysine, enzymes involved in this pathway are
attractive targets for the development of antibiotics, herbicides and
algaecides.
Collapse
Affiliation(s)
- Renwick C. J. Dobson
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science
and Biotechnology Institute, The University of Melbourne, Parkville, Victoria,
Australia
- Biomolecular Interaction Centre, School of Biological Sciences,
University of Canterbury, Christchurch, New Zealand
- * E-mail: (RCJD); (AOH)
| | - Irma Girón
- School of Biological Sciences, Rochester Institute of Technology,
Rochester, New York, United States of America
| | - André O. Hudson
- School of Biological Sciences, Rochester Institute of Technology,
Rochester, New York, United States of America
- * E-mail: (RCJD); (AOH)
| |
Collapse
|
97
|
Kim HU, Kim SY, Jeong H, Kim TY, Kim JJ, Choy HE, Yi KY, Rhee JH, Lee SY. Integrative genome-scale metabolic analysis of Vibrio vulnificus for drug targeting and discovery. Mol Syst Biol 2011; 7:460. [PMID: 21245845 PMCID: PMC3049409 DOI: 10.1038/msb.2010.115] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Accepted: 12/06/2010] [Indexed: 01/01/2023] Open
Abstract
Chromosome 1 of Vibrio vulnificus tends to contain larger portion of essential or housekeeping genes on the basis of the genomic analysis and gene knockout experiments performed in this study, while its chromosome 2 seems to have originated and evolved from a plasmid. The genome-scale metabolic network model of V. vulnificus was reconstructed based on databases and literature, and was used to identify 193 essential metabolites. Five essential metabolites finally selected after the filtering process are 2-amino-4-hydroxy-6-hydroxymethyl-7,8-dihydropteridine (AHHMP), D-glutamate (DGLU), 2,3-dihydrodipicolinate (DHDP), 1-deoxy-D-xylulose 5-phosphate (DX5P), and 4-aminobenzoate (PABA), which were predicted to be essential in V. vulnificus, absent in human, and are consumed by multiple reactions. Chemical analogs of the five essential metabolites were screened and a hit compound showing the minimal inhibitory concentration (MIC) of 2 μg/ml and the minimal bactericidal concentration (MBC) of 4 μg/ml against V. vulnificus was identified.
Discovering new antimicrobial targets and consequently new antimicrobials is important as drug resistance of pathogenic microorganisms is becoming an increasingly serious problem in human healthcare management (Fischbach and Walsh, 2009). There clearly exists a gap between genomic studies and drug discovery as the accumulation of knowledge on pathogens at genome level has not successfully transformed into the development of effective drugs (Mills, 2006; Payne et al, 2007). In this study, we dissected the genome of a microbial pathogen in detail, and subsequently developed a systems biological strategy of employing genome-scale metabolic modeling and simulation together with metabolite essentiality analysis for effective drug targeting and discovery. This strategy was used for identifying new drug targets in an opportunistic pathogen Vibrio vulnificus CMCP6 as a model. V. vulnificus is a Gram-negative halophilic bacterium that is found in estuarine waters, brackish ponds, or coastal areas, and its Biotype 1 is an opportunistic human pathogen that can attack immune-compromised patients, and causes primary septicemia, necrotized wound infections, and gastroenteritis. We previously found that many metabolic genes were specifically induced in vivo, suggesting that specific metabolic pathways are essential for in vivo survival and virulence of this pathogen (Kim et al, 2003; Lee et al, 2007). These results motivated us to carry out systems biological analysis of the genome and the metabolic network for new drug target discovery. V. vulnificus CMCP6 has two chromosomes. We first re-sequenced genomic regions assembled in low quality and low depth, and subsequently re-annotated the whole genome of V. vulnificus. Horizontal gene transfer was suspected to be responsible for the diversification of each chromosome of V. vulnificus, and the presence of metabolic genes was more biased to chromosome 1 than chromosome 2. Further studies on V. vulnificus genome revealed that chromosome 2 is more prone to diversification for better adaptation to the environment than its chromosome 1, while chromosome 1 tends to expand their genetic repertoire while maintaining the core genes at a constant level. Next, a genome-scale metabolic network VvuMBEL943 was reconstructed based on literature, databases and experiments for systematic studies on the metabolism of this pathogen and prediction of drug targets. The VvuMBEL943 model is composed of 943 reactions and 765 metabolites, and covers 673 genes. The model was validated by comparing its simulated cell growth phenotype obtained by constraints-based flux analysis with the V. vulnificus-specific experimental data previously reported in the literature. In this study, constraints-based flux analysis is an optimization-based simulation method that calculates intracellular fluxes under the specific genetic and environmental condition (Kim et al, 2008). As a result, 17 growth phenotypes were correctly predicted out of 18 cases, which demonstrate the validity of VvuMBEL943. The main objective of constructing VvuMBEL943 in this study is to predict potential drug targets by system-wide analysis of the metabolic network for the effective treatment of V. vulnificus. To achieve this goal, a set of drug target candidates was predicted by taking a metabolite-centric approach. Metabolite essentiality analysis is a concept recently introduced for the study of cellular robustness to complement conventional reaction or gene-centric approach (Kim et al, 2007b). Metabolite essentiality analysis observes changes in flux distribution by removing each metabolite from the in silico metabolic network. Hence, metabolite essentiality predicts essential metabolites whose absence causes cell death. By selecting essential metabolites, it is possible to directly screen only their structural analogs, which substantially reduces the number of chemical compounds to screen from the chemical compound library. As a result of implementing this approach, 193 metabolites were initially identified to be essential to the cell. These essential metabolites were then further filtered based on the predetermined criteria, mainly organism specificity and multiple connectivity associated with each metabolite, in order to reduce the number of initial target candidates towards identifying the most effective ones. Five essential metabolites finally selected are 2-amino-4-hydroxy-6-hydroxymethyl-7,8-dihydropteridine (AHHMP), D-glutamate (DGLU), 2,3-dihydrodipicolinate (DHDP), 1-deoxy-D-xylulose 5-phosphate (DX5P), and 4-aminobenzoate (PABA). Enzymes that consume these essential metabolites were experimentally verified to be essential, which indeed demonstrates the essentiality of these five metabolites. On the basis of the structural information of these five essential metabolites, whole-cell screening assay was performed using their analogs for possible antibacterial discovery. We screened 352 chemical analogs of the essential metabolites selected from the chemical compound library, and found a hit compound 24837, which shows the minimal inhibitory concentration (MIC) of 2 μg/ml and minimal bactericidal concentration (MBC) of 4 μg/ml, showing good antibacterial activity without further structural modification. Although this study demonstrates a proof-of-concept, the approaches and their rationale taken here should serve as a general strategy for discovering novel antibiotics and drugs based on systems-level analysis of metabolic networks. Although the genomes of many microbial pathogens have been studied to help identify effective drug targets and novel drugs, such efforts have not yet reached full fruition. In this study, we report a systems biological approach that efficiently utilizes genomic information for drug targeting and discovery, and apply this approach to the opportunistic pathogen Vibrio vulnificus CMCP6. First, we partially re-sequenced and fully re-annotated the V. vulnificus CMCP6 genome, and accordingly reconstructed its genome-scale metabolic network, VvuMBEL943. The validated network model was employed to systematically predict drug targets using the concept of metabolite essentiality, along with additional filtering criteria. Target genes encoding enzymes that interact with the five essential metabolites finally selected were experimentally validated. These five essential metabolites are critical to the survival of the cell, and hence were used to guide the cost-effective selection of chemical analogs, which were then screened for antimicrobial activity in a whole-cell assay. This approach is expected to help fill the existing gap between genomics and drug discovery.
Collapse
Affiliation(s)
- Hyun Uk Kim
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 program), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Watanabe N, James MNG. Structural insights for the substrate recognition mechanism of LL-diaminopimelate aminotransferase. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1814:1528-33. [PMID: 21435399 DOI: 10.1016/j.bbapap.2011.03.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Revised: 03/02/2011] [Accepted: 03/09/2011] [Indexed: 11/25/2022]
Abstract
The enzymes involved in the lysine biosynthetic pathway have long been considered to be attractive targets for novel antibiotics due to the absence of this pathway in humans. Recently, a novel pyridoxal 5'-phosphate (PLP) dependent enzyme called LL-diaminopimelate aminotransferase (LL-DAP-AT) was identified in the lysine biosynthetic pathway of plants and Chlamydiae. Understanding its function and substrate recognition mechanism would be an important initial step toward designing novel antibiotics targeting LL-DAP-AT. The crystal structures of LL-DAP-AT from Arabidopsis thaliana in complex with various substrates and analogues have been solved recently. These structures revealed how L-glutamate and LL-DAP are recognized by LL-DAP-AT without significant conformational changes in the enzyme's backbone structure. This review article summarizes the recent developments in the structural characterization and the inhibitor design of LL-DAP-AT from A. thaliana. This article is part of a Special Issue entitled: Pyridoxal Phospate Enzymology.
Collapse
Affiliation(s)
- Nobuhiko Watanabe
- Department of Biochemistry, School of Medicine and Systems Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | | |
Collapse
|
99
|
Biochemical studies and crystal structure determination of dihydrodipicolinate synthase from Pseudomonas aeruginosa. Int J Biol Macromol 2011; 48:779-87. [PMID: 21396954 DOI: 10.1016/j.ijbiomac.2011.03.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Revised: 02/28/2011] [Accepted: 03/02/2011] [Indexed: 11/20/2022]
Abstract
The intracellular enzyme dihydrodipicolinate synthase (DHDPS, E.C. 4.2.1.52) from Pseudomonas aeruginosa is a potential drug target because it is essential for the growth of bacteria while it is absent in humans. Therefore, in order to design new compounds using structure based approach for inhibiting the function of DHDPS from P. aeruginosa (Ps), we have cloned, characterized biochemically and biophysically and have determined its three-dimensional structure. The gene encoding DHDPS (dapA) was cloned in a vector pET-28c(+) and the recombinant protein was overexpressed in the Escherichia coli host. The K(m) values of the recombinant enzyme estimated for the substrates, pyruvate and (S)-aspartate-β-semialdehyde [(S)-ASA] were found to be 0.90±0.13 mM and 0.17±0.02 mM, respectively. The circular dichroism studies showed that the enzyme adopts a characteristic β/α conformation which is retained up to 65°C. The fluorescence data indicated the presence of exposed tryptophan residues in the enzyme. The three-dimensional structure determination showed that DHDPS forms a homodimer which is stabilized by several hydrogen bonds and van der Waals forces at the interface. The active site formed with residues Thr44, Tyr107 and Tyr133 is found to be stereochemically suitable for catalytic function. It may be noted that Tyr107 of the catalytic triad belongs to the partner molecule in the dimer. The structure of the complex of PsDHDPS with (S)-lysine determined at 2.65 Å resolution revealed the positions of three lysine molecules bound to the protein.
Collapse
|
100
|
Schuldt L, Suchowersky R, Veith K, Mueller-Dieckmann J, Weiss MS. Cloning, expression, purification, crystallization and preliminary X-ray diffraction analysis of the regulatory domain of aspartokinase (Rv3709c) from Mycobacterium tuberculosis. Acta Crystallogr Sect F Struct Biol Cryst Commun 2011; 67:380-5. [PMID: 21393848 PMCID: PMC3053168 DOI: 10.1107/s1744309111000030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Accepted: 01/03/2011] [Indexed: 03/04/2023]
Abstract
The regulatory domain of Mycobacterium tuberculosis aspartokinase (Mtb-AK, Mtb-Ask, Rv3709c) has been cloned, heterologously expressed in Escherichia coli and purified using standard chromatographic techniques. Screening for initial crystallization conditions using the regulatory domain (AK-β) in the presence of the potential feedback inhibitor threonine identified four conditions which yielded crystals suitable for X-ray diffraction analysis. From these four conditions five different crystal forms of Mtb-AK-β resulted, three of which belonged to the orthorhombic system, one to the tetragonal system and one to the monoclinic system. The highest resolution (1.6 Å) was observed for a crystal form belonging to space group P2(1)2(1)2(1), with unit-cell parameters a=53.70, b=63.43, c=108.85 Å and two molecules per asymmetric unit.
Collapse
Affiliation(s)
- Linda Schuldt
- EMBL Hamburg Outstation, c/o DESY, Notkestrasse 85, D-22603 Hamburg, Germany.
| | | | | | | | | |
Collapse
|