51
|
Reiners JJ, Agostinis P, Berg K, Oleinick NL, Kessel D. Assessing autophagy in the context of photodynamic therapy. Autophagy 2010; 6:7-18. [PMID: 19855190 DOI: 10.4161/auto.6.1.10220] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Photodynamic therapy (PDT) is a procedure that has applications in the selective eradication of neoplasia where sites of malignant lesions are clearly delineated. It is a two-step process whereby cells are first sensitized to light and then photoirradiated. This results in the formation of singlet molecular oxygen and other reactive oxygen species that can cause photodamage at sites where the photosensitizing agent has localized. Photosensitizers found to be clinically useful show affinity for the endoplasmic reticulum (ER), mitochondria, lysosomes, or combinations of these sites. The induction of apoptosis and/or autophagy in photosensitized cells is a common outcome of PDT. This report explores the following issues: (1) Does the induction of autophagy in PDT protocols occur independent of, or in association with, apoptosis? (2) Does the resulting autophagy play a prosurvival or prodeath role? (3) Do photosensitizers damage/inactivate specific proteins that are components of, or that modulate the autophagic process? (4) Can an autophagic response be mounted in cells in which lysosomes are specifically photodamaged? In brief, autophagy can occur independently of apoptosis in PDT protocols, and appears to play a prosurvival role in apoptosis competent cells, and a prodeath role in apoptosis incompetent cells. Mitochondrial and ER-localized sensitizers cause selective photodamage to some (i.e., Bcl-2, Bcl-x(L), mTOR) proteins involved in the apoptotic/autophagic process. Finally, an aborted autophagic response occurs in cells with photodamaged lysosomes. Whereas autophagosomes form, digestion of their cargo is compromised because of the absence of functional lysosomes.
Collapse
Affiliation(s)
- John J Reiners
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, USA
| | | | | | | | | |
Collapse
|
52
|
Theodossiou TA, Hothersall JS, De Witte PA, Pantos A, Agostinis P. The Multifaceted Photocytotoxic Profile of Hypericin. Mol Pharm 2009; 6:1775-89. [DOI: 10.1021/mp900166q] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Theodossis A. Theodossiou
- Institute of Physical Chemistry, NCSR Demokritos, Patriarchou Gregoriou & Neapoleos, 153 10, Aghia Paraskevi, Attiki, Greece, Centre for Cardiovascular Biology and Medicine, BHF Laboratories, 5 University Street, University College London, London WC1E 6JJ, U.K., Laboratory for Pharmaceutical Biology, K.U. Leuven, Herestraat 49, B-3000 Leuven, Belgium, and Department of Molecular Cell Biology, K.U. Leuven, Herestraat 49, B-3000 Leuven, Belgium
| | - John S. Hothersall
- Institute of Physical Chemistry, NCSR Demokritos, Patriarchou Gregoriou & Neapoleos, 153 10, Aghia Paraskevi, Attiki, Greece, Centre for Cardiovascular Biology and Medicine, BHF Laboratories, 5 University Street, University College London, London WC1E 6JJ, U.K., Laboratory for Pharmaceutical Biology, K.U. Leuven, Herestraat 49, B-3000 Leuven, Belgium, and Department of Molecular Cell Biology, K.U. Leuven, Herestraat 49, B-3000 Leuven, Belgium
| | - Peter A. De Witte
- Institute of Physical Chemistry, NCSR Demokritos, Patriarchou Gregoriou & Neapoleos, 153 10, Aghia Paraskevi, Attiki, Greece, Centre for Cardiovascular Biology and Medicine, BHF Laboratories, 5 University Street, University College London, London WC1E 6JJ, U.K., Laboratory for Pharmaceutical Biology, K.U. Leuven, Herestraat 49, B-3000 Leuven, Belgium, and Department of Molecular Cell Biology, K.U. Leuven, Herestraat 49, B-3000 Leuven, Belgium
| | - Alexandros Pantos
- Institute of Physical Chemistry, NCSR Demokritos, Patriarchou Gregoriou & Neapoleos, 153 10, Aghia Paraskevi, Attiki, Greece, Centre for Cardiovascular Biology and Medicine, BHF Laboratories, 5 University Street, University College London, London WC1E 6JJ, U.K., Laboratory for Pharmaceutical Biology, K.U. Leuven, Herestraat 49, B-3000 Leuven, Belgium, and Department of Molecular Cell Biology, K.U. Leuven, Herestraat 49, B-3000 Leuven, Belgium
| | - Patrizia Agostinis
- Institute of Physical Chemistry, NCSR Demokritos, Patriarchou Gregoriou & Neapoleos, 153 10, Aghia Paraskevi, Attiki, Greece, Centre for Cardiovascular Biology and Medicine, BHF Laboratories, 5 University Street, University College London, London WC1E 6JJ, U.K., Laboratory for Pharmaceutical Biology, K.U. Leuven, Herestraat 49, B-3000 Leuven, Belgium, and Department of Molecular Cell Biology, K.U. Leuven, Herestraat 49, B-3000 Leuven, Belgium
| |
Collapse
|
53
|
Abstract
Photodynamic therapy (PDT) involves the irradiation of photosensitized cells with light. Depending on localization of the photosensitizing agent, the process can induce photodamage to the endoplasmic reticulum (ER), mitochondria, plasma membrane, and/or lysosomes. When ER or mitochondria are targeted, antiapoptotic proteins of the Bcl-2 family are especially sensitive to photodamage. Both apoptosis and autophagy can occur after PDT, autophagy being associated with enhanced survival at low levels of photodamage to some cells. Autophagy can become a cell-death pathway if apoptosis is inhibited or when cells attempt to recycle damaged constituents beyond their capacity for recovery. While techniques associated with characterization of autophagy are generally applicable, PDT introduces additional factors related to unknown sites of photodamage that may alter autophagic pathways. This chapter discusses issues that may arise in assessing autophagy after cellular photodamage.
Collapse
Affiliation(s)
- David Kessel
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | | |
Collapse
|
54
|
Weyergang A, Berg K, Kaalhus O, Peng Q, Selbo PK. Photodynamic therapy targets the mTOR signaling network in vitro and in vivo. Mol Pharm 2009; 6:255-64. [PMID: 19125612 DOI: 10.1021/mp800156e] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Mammalian target of rapamycin (mTOR) is a regulator of cell growth and proliferation and its activity is altered in many human cancers. The main objective of this study was to evaluate in vitro and in vivo targeting of mTOR by photodynamic therapy (PDT), a treatment modality for cancer. The amphiphilic endolysosomal localizing photosensitizer AlPcS(2a) and the p53 mutated rapamycin-resistant colon adenocarcinoma cell line WiDr were used as models. AlPcS(2a)-PDT downregulated the levels of Ser(2448) phosphorylated mTOR (p-mTOR), total mTOR and phosphorylation of ribosomal S6 (p-S6) immediately after light exposure in a dose-dependent manner, indicating a direct targeting of the mTOR signaling network. Low-dose PDT attenuated the level of p-mTOR in a transient manner; approximately 35% reduction of p-mTOR was obtained 5 min after a LD(35) PDT dose, but returned to the basal level 24 h later. Treatment with the mTOR inhibitor rapamycin reduced the p-mTOR level by 25% after 4-24 h of incubation. Combination treatment of rapamycin and PDT in vitro resulted in synergistic cytotoxic effects when rapamycin was administered after PDT. However, antagonistic effects were obtained when rapamycin was incubated both before and after PDT. In vivo, activated mTOR in the WiDr-xenografts was downregulated by 35 and 75% 5 min and 24 h post PDT respectively as measured by immunoblotting. In contrast to untreated tumors where p-mTOR expression was found throughout the tumors, immunohistochemical staining revealed only expression of p-mTOR in the rim of the tumor at 24 and 48 h post PDT. In conclusion, AlPcS(2a)-PDT is a novel mTOR-targeted cancer therapy. Rapamycin synergistically enhances the cytotoxicity of PDT only when administered post light exposure.
Collapse
Affiliation(s)
- Anette Weyergang
- Department of Radiation Biology, Norwegian Radium Hospital, Oslo, Norway
| | | | | | | | | |
Collapse
|
57
|
Abstract
Photodynamic therapy (PDT) directed against the endoplasmic reticulum (ER) is also known to target antiapoptotic Bcl-2 family proteins. This effect is associated with the initiation of both apoptosis, a cell death pathway, and autophagy, an organelle recycling system that can lead to survival or cell death. In this study, we examined the ability of the Bcl-2 antagonist HA14-1 to promote the photodynamic efficacy of PDT directed at the ER. At concentrations that independently caused only a small loss of viability, HA14-1 markedly enhanced the proapoptotic and phototoxic effects of ER photodamage. These results provide additional evidence that the antiapoptotic properties of Bcl-2 constitute an important determinant of photokilling, and demonstrate that synergistic effects can result when PDT is coupled with pharmacologic suppression of Bcl-2 function.
Collapse
Affiliation(s)
- David Kessel
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, USA.
| |
Collapse
|
58
|
Moreira LM, Vieira dos Santos F, Lyon JP, Maftoum-Costa M, Pacheco-Soares C, Soares da Silva N. Photodynamic Therapy: Porphyrins and Phthalocyanines as Photosensitizers. Aust J Chem 2008. [DOI: 10.1071/ch08145] [Citation(s) in RCA: 155] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The present work is focussed on the principles of photodynamic therapy (PDT), emphasizing the photochemical mechanisms of reactive oxygen species formation and the consequent biochemical processes generated by the action of reactive oxygen species on various biological macromolecules and organelles. This paper also presents some of the most used photosensitizers, including Photofrin, and the new prototypes of photosensitizers, analysing their physicochemical and spectroscopic properties. At this point, the review discusses the therapeutic window of absorption of specific wavelengths involving first- and second-generation photosensitizers, as well as the principal light sources used in PDT. Additionally, the aggregation process, which consists in a phenomenon common to several photosensitizers, is studied. J-aggregates and H-aggregates are discussed, along with their spectroscopic effects. Most photosensitizers have a significant hydrophobic character; thus, the study of the types of aggregation in aqueous solvent is very relevant. Important aspects of the coordination chemistry of metalloporphyrins and metallophthalocyanines used as photosensitizers are also discussed. The state-of-the-art in PDT is evaluated, discussing recent articles in this area. Furthermore, macrocyclic photosensitizers, such as porphyrins and phthalocyanines, are specifically described. The present review is an important contribution, because PDT is one of the most auspicious advances in the therapy against cancer and other non-malignant diseases.
Collapse
|