51
|
Szeto K, Latulippe DR, Ozer A, Pagano JM, White BS, Shalloway D, Lis JT, Craighead HG. RAPID-SELEX for RNA aptamers. PLoS One 2013; 8:e82667. [PMID: 24376564 PMCID: PMC3869713 DOI: 10.1371/journal.pone.0082667] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 10/26/2013] [Indexed: 01/11/2023] Open
Abstract
Aptamers are high-affinity ligands selected from DNA or RNA libraries via SELEX, a repetitive in vitro process of sequential selection and amplification steps. RNA SELEX is more complicated than DNA SELEX because of the additional transcription and reverse transcription steps. Here, we report a new selection scheme, RAPID-SELEX (RNA Aptamer Isolation via Dual-cycles SELEX), that simplifies this process by systematically skipping unnecessary amplification steps. Using affinity microcolumns, we were able to complete a multiplex selection for protein targets, CHK2 and UBLCP1, in a third of the time required for analogous selections using a conventional SELEX approach. High-throughput sequencing of the enriched pools from both RAPID and SELEX revealed many identical candidate aptamers from the starting pool of 5×1015 sequences. For CHK2, the same sequence was preferentially enriched in both selections as the top candidate and was found to bind to its respective target. These results demonstrate the efficiency and, most importantly, the robustness of our selection scheme. RAPID provides a generalized approach that can be used with any selection technology to accelerate the rate of aptamer discovery, without compromising selection performance.
Collapse
Affiliation(s)
- Kylan Szeto
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York, United States of America
| | - David R Latulippe
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York, United States of America
| | - Abdullah Ozer
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - John M Pagano
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Brian S White
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - David Shalloway
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - John T Lis
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Harold G Craighead
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
52
|
Park JW, Jin Lee S, Choi EJ, Kim J, Song JY, Bock Gu M. An ultra-sensitive detection of a whole virus using dual aptamers developed by immobilization-free screening. Biosens Bioelectron 2013; 51:324-9. [PMID: 23994614 DOI: 10.1016/j.bios.2013.07.052] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2013] [Revised: 07/26/2013] [Accepted: 07/26/2013] [Indexed: 12/27/2022]
Abstract
In this study, we successfully developed a ssDNA aptamer pairs by using an advanced immobilization-free SELEX method with affinity-based selection and counter-screening process at every round. By implementing this method, two different aptamers specifically binding to bovine viral diarrhea virus type 1(BVDV type 1) with high affinity were successfully screened. This aptamer pair was applied to ultrasensitive detection platform for BVDV type 1 in a sandwich manner. The ultrasensitive detection of BVDV type 1 using one of aptamers conjugated with gold nanoparticles was obtained in aptamer-aptamer sandwich type sensing format, with the limit of detection of 800 copies/ml, which is comparable to a real-time PCR method.
Collapse
Affiliation(s)
- Jee-Woong Park
- College of Life Sciences and Biotechnology, Korea University, Anam-dong, Seongbuk-gu, Seoul 136-713, South Korea
| | | | | | | | | | | |
Collapse
|
53
|
Lee S, Kang J, Ren S, Laurell T, Kim S, Jeong OC. A cross-contamination-free SELEX platform for a multi-target selection strategy. BIOCHIP JOURNAL 2013. [DOI: 10.1007/s13206-013-7106-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
54
|
Latulippe DR, Szeto K, Ozer A, Duarte FM, Kelly CV, Pagano JM, White BS, Shalloway D, Lis JT, Craighead HG. Multiplexed microcolumn-based process for efficient selection of RNA aptamers. Anal Chem 2013; 85:3417-24. [PMID: 23398198 PMCID: PMC3753675 DOI: 10.1021/ac400105e] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
We describe a reusable microcolumn
and process for the efficient
discovery of nucleic acid aptamers for multiple target molecules.
The design of our device requires only microliter volumes of affinity
chromatography resin—a condition that maximizes the enrichment
of target-binding sequences over non-target-binding (i.e., background)
sequences. Furthermore, the modular design of the device accommodates
a multiplex aptamer selection protocol. We optimized the selection
process performance using microcolumns filled with green fluorescent
protein (GFP)-immobilized resin and monitoring, over a wide range
of experimental conditions, the enrichment of a known GFP-binding
RNA aptamer (GFPapt) against a random RNA aptamer library. We validated
the multiplex approach by monitoring the enrichment of GFPapt in de
novo selection experiments with GFP and other protein preparations.
After only three rounds of selection, the cumulative GFPapt enrichment
on the GFP-loaded resin was greater than 108 with no enrichment
for the other nonspecific targets. We used this optimized protocol
to perform a multiplex selection to two human heat shock factor (hHSF)
proteins, hHSF1 and hHSF2. High-throughput sequencing was used to
identify aptamers for each protein that were preferentially enriched
in just three selection rounds, which were confirmed and isolated
after five rounds. Gel-shift and fluorescence polarization assays
showed that each aptamer binds with high-affinity (KD < 20 nM) to the respective targets. The combination
of our microcolumns with a multiplex approach and high-throughput
sequencing enables the selection of aptamers to multiple targets in
a high-throughput and efficient manner.
Collapse
Affiliation(s)
- David R Latulippe
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Kim YS, Song MY, Jurng J, Kim BC. Isolation and characterization of DNA aptamers against Escherichia coli using a bacterial cell-systematic evolution of ligands by exponential enrichment approach. Anal Biochem 2013; 436:22-8. [PMID: 23357235 DOI: 10.1016/j.ab.2013.01.014] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 01/11/2013] [Accepted: 01/14/2013] [Indexed: 12/18/2022]
Abstract
Aptamers are powerful capturing probes against various targets such as proteins, small organic compounds, metal ions, and even cells. In this study, we isolated and characterized single-stranded DNA (ssDNA) aptamers against Escherichia coli. A total of 28 ssDNAs were isolated after 10 rounds of selection using a bacterial cell-SELEX (systematic evolution of ligands by exponential enrichment) process. Other bacterial species (Klebsiella pneumoniae, Citrobacter freundii, Enterobacter aerogenes, and Staphylococcus epidermidis) were used for counter selection to enhance the selectivity of ssDNA aptamers against E. coli. Finally, four ssDNA aptamers showed high affinity and selectivity to E. coli, The dissociation constants (K(d)) of these four ssDNA aptamers to E. coli were estimated to range from 12.4 to 25.2 nM. These aptamers did not bind to other bacterial species, including four counter cells, but they showed affinity to different E. coli strains. The binding of these four aptamers to E. coli was observed directly by fluorescence microscopy.
Collapse
Affiliation(s)
- Yeon Seok Kim
- Center for Environment, Health and Welfare Research, Korea Institute of Science and Technology, Seoul 136-701, Republic of Korea
| | | | | | | |
Collapse
|
56
|
Advances in aptamer screening and small molecule aptasensors. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2013; 140:29-67. [PMID: 23851587 DOI: 10.1007/10_2013_225] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
It has been 20 years since aptamer and SELEX (systematic evolution of ligands by exponential enrichment) were described independently by Andrew Ellington and Larry Gold. Based on the great advantages of aptamers, there have been numerous isolated aptamers for various targets that have actively been applied as therapeutic and analytical tools. Over 2,000 papers related to aptamers or SELEX have been published, attesting to their wide usefulness and the applicability of aptamers. SELEX methods have been modified or re-created over the years to enable aptamer isolation with higher affinity and selectivity in more labor- and time-efficient manners, including automation. Initially, most of the studies about aptamers have focused on the protein targets, which have physiological functions in the body, and their applications as therapeutic agents or receptors for diagnostics. However, aptamers for small molecules such as organic or inorganic compounds, drugs, antibiotics, or metabolites have not been studied sufficiently, despite the ever-increasing need for rapid and simple analytical methods for various chemical targets in the fields of medical diagnostics, environmental monitoring, food safety, and national defense against targets including chemical warfare. This review focuses on not only recent advances in aptamer screening methods but also its analytical application for small molecules.
Collapse
|
57
|
Yuan Q, Lu D, Zhang X, Chen Z, Tan W. Aptamer-conjugated optical nanomaterials for bioanalysis. Trends Analyt Chem 2012. [DOI: 10.1016/j.trac.2012.05.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
58
|
Weng CH, Huang CJ, Lee GB. Screening of aptamers on microfluidic systems for clinical applications. SENSORS 2012; 12:9514-29. [PMID: 23012556 PMCID: PMC3444114 DOI: 10.3390/s120709514] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 07/02/2012] [Accepted: 07/06/2012] [Indexed: 12/20/2022]
Abstract
The use of microfluidic systems for screening of aptamers and their biomedical applications are reviewed in this paper. Aptamers with different nucleic acid sequences have been extensively studied and the results demonstrated a strong binding affinity to target molecules such that they can be used as promising candidate biomarkers for diagnosis and therapeutics. Recently, the aptamer screening protocol has been conducted with microfluidic-based devices. Furthermore, aptamer affinity screening by a microfluidic-based method has demonstrated remarkable advantages over competing traditional methods. In this paper, we first reviewed microfluidic systems which demonstrated efficient and rapid screening of a specific aptamer. Then, the clinical applications of screened aptamers, also performed by microfluidic systems, are further reviewed. These automated microfluidic systems can provide advantages over their conventional counterparts including more compactness, faster analysis, less sample/reagent consumption and automation. An aptamer-based compact microfluidic system for diagnosis may even lead to a point-of-care device. The use of microfluidic systems for aptamer screening and diagnosis is expected to continue growing in the near future and may make a substantial impact on biomedical applications.
Collapse
Affiliation(s)
- Chen-Hsun Weng
- Department of Microbiology and Immunology, National Cheng Kung University, Tainan 70101, Taiwan; E-Mail:
| | - Chao-Jyun Huang
- Department of Mechanical Engineering, National Taiwan University, Taipei 10617, Taiwan; E-Mail:
| | - Gwo-Bin Lee
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
- Author to whom correspondence should be addressed; ; Tel: +886-3-571-5131 (ext. 33765); Fax: +886-3-572-2840
| |
Collapse
|
59
|
Ahn JY, Lee S, Jo M, Kang J, Kim E, Jeong OC, Laurell T, Kim S. Sol-gel derived nanoporous compositions for entrapping small molecules and their outlook toward aptamer screening. Anal Chem 2012; 84:2647-53. [PMID: 22283623 DOI: 10.1021/ac202559w] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This paper reports for the first time the application of sol-gel microarrays for immobilizing nonsoluble small chemicals (Bisphenol-A; BPA). Also, known problems of sol-gel adhesion to conventional microtiter well plate substrates are circumvented by anchoring the sol-gel microspots to a porous silion surface so-called, PS-SG chips. We confirmed low molecular weight chemical immobilization inside a sol-gel network using fluorescein. BPA and the BPA specific aptamer were utilized as a model pair to verify the affinity specific interaction in the PS-SG selection system. The aptamer interacted specifically with BPA in the sol-gel spots, as shown in microarrays forming the letters "L", "U", "N", and "D". Moreover, the bound aptamer was released by heat, recovered, and verified by gel electrophoresis. The developed PS-SG chip platform will be used for screening aptamers against numerous small molecules such as toxins, metabolites, or pesticide residues.
Collapse
Affiliation(s)
- Ji-Young Ahn
- Department of Biomedical Engineering, Dongguk University, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
60
|
Park JW, Tatavarty R, Kim DW, Jung HT, Gu MB. Immobilization-free screening of aptamers assisted by graphene oxide. Chem Commun (Camb) 2011; 48:2071-3. [PMID: 22143382 DOI: 10.1039/c2cc16473f] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Graphene oxide (GO) has the ability to separate free short ssDNA in heterogeneous solution. This feature is applied as a label free platform for screening of aptamers that bind to their target with high affinity and specificity. Herein, we report an aptamer selection strategy for Nampt protein based on GO.
Collapse
Affiliation(s)
- Jee-Woong Park
- College of Life Sciences and Biotechnology, Korea University, Anam-dong, Seongbuk-gu, Seoul 136-713, South Korea
| | | | | | | | | |
Collapse
|
61
|
Jing M, Bowser MT. Isolation of DNA aptamers using micro free flow electrophoresis. LAB ON A CHIP 2011; 11:3703-9. [PMID: 21947169 PMCID: PMC3454500 DOI: 10.1039/c1lc20461k] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
A micro free flow electrophoresis (μFFE) device was used to select DNA aptamers for human immunoglobulin E (IgE). The continuous nature of μFFE allowed 1.8 × 10(14) sequences to be introduced over a period of 30 min, a 300-fold improvement in library size over capillary electrophoresis based selections (CE-SELEX). Four rounds of selection were performed within four days. Aptamers with low nM dissociation constants for IgE were identified after a single round of μFFE selection.
Collapse
|
62
|
Ahn JY, Kim E, Kang J, Kim S. A sol-gel-integrated protein array system for affinity analysis of aptamer-target protein interaction. Nucleic Acid Ther 2011; 21:179-83. [PMID: 21749295 DOI: 10.1089/nat.2011.0292] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A sol-gel microarray system was developed for a protein interaction assay with high activity. Comparing to 2-dimensional microarray surfaces, sol-gel can offer a more dynamic and broad range for proteins. In the present study, this sol-gel-integrated protein array was used in binding affinity analysis for aptamers. Six RNA aptamers and their target protein, yeast TBP (TATA-binding protein), were used to evaluate this method. A TBP-containing sol-gel mixture was spotted using a dispensing workstation under high-humidity conditions and each Cy-3-labeled aptamer was incubated. The dissociation constants (K(d)) were calculated by plotting the fluorescent intensity of the bound aptamers as a function of the TBP concentrations. The K(d) value of the control aptamer was found to be 8 nM, which agrees well with the values obtained using the conventional method, electric mobility shift assay. The sol-gel-based binding affinity measurements fit well with conventional binding affinity measurements, suggesting their possible use as an alternative to the conventional method. In addition, aptamer affinity measurements by the sol-gel-integrated protein chip make it possible to develop a simple high-throughput affinity method for screening high-affinity aptamers.
Collapse
Affiliation(s)
- Ji-Young Ahn
- Department of Biomedical Engineering, Dongguk University, Joong-gu, Seoul, Korea
| | | | | | | |
Collapse
|
63
|
Ahn JY, Jo M, Dua P, Lee DK, Kim S. A sol-gel-based microfluidics system enhances the efficiency of RNA aptamer selection. Oligonucleotides 2011; 21:93-100. [PMID: 21413890 DOI: 10.1089/oli.2010.0263] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
RNA and DNA aptamers that bind to target molecules with high specificity and affinity have been a focus of diagnostics and therapeutic research. These aptamers are obtained by SELEX often requiring many rounds of selection and amplification. Recently, we have shown the efficient binding and elution of RNA aptamers against target proteins using a microfluidic chip that incorporates 5 sol-gel binding droplets within which specific target proteins are imbedded. Here, we demonstrate that our microfluidic chip in a SELEX experiment greatly improved selection efficiency of RNA aptamers to TATA-binding protein, reducing the number of selection cycles needed to produce high affinity aptamers by about 80%. Many aptamers were identical or homologous to those isolated previously by conventional filter-binding SELEX. The microfluidic chip SELEX is readily scalable using a sol-gel microarray-based target multiplexing. Additionally, we show that sol-gel embedded protein arrays can be used as a high-throughput assay for quantifying binding affinities of aptamers.
Collapse
Affiliation(s)
- Ji-Young Ahn
- Department of Molecular Biology and Genetics, Cornell University , Ithaca, New York
| | | | | | | | | |
Collapse
|
64
|
Jo M, Ahn JY, Lee J, Lee S, Hong SW, Yoo JW, Kang J, Dua P, Lee DK, Hong S, Kim S. Development of single-stranded DNA aptamers for specific Bisphenol a detection. Oligonucleotides 2011; 21:85-91. [PMID: 21413891 DOI: 10.1089/oli.2010.0267] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The development of reagents with high affinity and specificity to small molecules is crucial for the high-throughput detection of chemical compounds, such as toxicants or pollutants. Aptamers are short and single-stranded (ss) oligonucleotides able to recognize target molecules with high affinity. Here, we report the selection of ssDNA aptamers that bind to Bisphenol A (BPA), an environmental hormone. Using SELEX process, we isolated high affinity aptamers to BPA from a 10(15) random library of 60 mer ssDNAs. The selected aptamers bound specifically to BPA, but not to structurally similar molecules, such as Bisphenol B with one methyl group difference, or 4,4'-Bisphenol with 2 methyl groups difference. Using these aptamers, we developed an aptamer-based sol-gel biochip and detected BPA dissolved in water. This novel BPA aptamer-based detection can be further applied to the universal and high-specificity detection of small molecules.
Collapse
Affiliation(s)
- Minjoung Jo
- Department of Biomedical Engineering, Dongguk University , Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Nucleic acid aptamers targeting cell-surface proteins. Methods 2011; 54:215-25. [PMID: 21300154 DOI: 10.1016/j.ymeth.2011.02.002] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Revised: 01/21/2011] [Accepted: 02/01/2011] [Indexed: 12/21/2022] Open
Abstract
Aptamers are chemical antibodies that bind to their targets with high affinity and specificity. These short stretches of nucleic acids are identified using a repetitive in vitro selection and partitioning technology called SELEX (Systematic Evolution of Ligands by EXponential enrichment). Since the emergence of this technology, many modifications and variations have been introduced to enable the selection of specific ligands, even for implausible targets. For membrane protein, the selection scheme can be chosen depending upon the availability of the system, the protein characteristics and the application required. Aptamers have been generated for a significant number of disease-associated membrane proteins and have been shown to have considerable diagnostic and therapeutic importance. In this article, we review the SELEX process used for identification of aptamers that target cell-surface proteins and recapitulate their use as therapeutic and diagnostic reagents.
Collapse
|
66
|
Xu Y, Yang X, Wang E. Review: Aptamers in microfluidic chips. Anal Chim Acta 2010; 683:12-20. [PMID: 21094377 DOI: 10.1016/j.aca.2010.10.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2010] [Revised: 09/13/2010] [Accepted: 10/03/2010] [Indexed: 01/07/2023]
Abstract
This review, covering reports published from 2002 to August 2010, shows how aptamers have made significant contributions in the improvements of microfluidic chips for affinity extraction, separations and detections. Furthermore, microfluidic chip methods for studying aptamer-target interactions and performing aptamer selections have also been summarized. Accordingly, research vacancies and future development trends in these areas are discussed.
Collapse
Affiliation(s)
- Yuanhong Xu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | | | | |
Collapse
|
67
|
Ahn JY, Lee SW, Kang HS, Jo M, Lee DK, Laurell T, Kim S. Aptamer microarray mediated capture and mass spectrometry identification of biomarker in serum samples. J Proteome Res 2010; 9:5568-73. [PMID: 20806970 DOI: 10.1021/pr100300t] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Sensitive detection of molecular biomarkers in clinical samples is crucially important in disease diagnostics. This paper reports the development of an aptamer microarray platform combined with sol-gel technology to identify low-abundance targets in complex serum samples. Because of the nanoporous structure of the sol-gel, a high capacity to immobilize the affinity specific aptamers is accomplished which allows binding and detection of target molecules with high sensitivity. The captured protein is digested in situ and the obtained digest was analyzed by ESI-MS without any interference from the affinity probe. TBP (TATA Box Protein) and its specific aptamers were chosen as a model system. A proof of concept with protein concentrations ranging between nanomolar to micromolar is reported, showing a good linearity up to 400 nM when characterized in an aptamer sandwich assay. Moreover, as low as 0.001% of target protein present in total serum proteins could be identified without any pretreatment step using ESI MS/MS mass spectrometry. We believe this novel strategy could become an efficient method for aptamer-based biomarker detection linked directly to mass spectrometry readout.
Collapse
Affiliation(s)
- Ji-Young Ahn
- Department of Biomedical Engineering, Dongguk University, Joong-Gu, Seoul, 100-715, Korea
| | | | | | | | | | | | | |
Collapse
|
68
|
Arora A, Simone G, Salieb-Beugelaar GB, Kim JT, Manz A. Latest Developments in Micro Total Analysis Systems. Anal Chem 2010; 82:4830-47. [PMID: 20462185 DOI: 10.1021/ac100969k] [Citation(s) in RCA: 372] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Arun Arora
- KIST Europe, Korea Institute of Science and Technology, Campus E71, 66123 Saarbrücken, Germany, FRIAS, Freiburg Institute for Advanced Studies, Albert-Ludwigs-Universität Freiburg, Albertstrasse 19, 79104 Freiburg, Germany, IMTEK, Institute for Microsystem Technology, University of Freiburg, Georges-Köhler-Allee 103, 79110 Freiburg, Germany, and MESA+ Institute for Nanotechnology/Lab-on-a-Chip Group, Twente University, Building Carré, 7500 AE, Enschede, The Netherlands
| | - Giuseppina Simone
- KIST Europe, Korea Institute of Science and Technology, Campus E71, 66123 Saarbrücken, Germany, FRIAS, Freiburg Institute for Advanced Studies, Albert-Ludwigs-Universität Freiburg, Albertstrasse 19, 79104 Freiburg, Germany, IMTEK, Institute for Microsystem Technology, University of Freiburg, Georges-Köhler-Allee 103, 79110 Freiburg, Germany, and MESA+ Institute for Nanotechnology/Lab-on-a-Chip Group, Twente University, Building Carré, 7500 AE, Enschede, The Netherlands
| | - Georgette B. Salieb-Beugelaar
- KIST Europe, Korea Institute of Science and Technology, Campus E71, 66123 Saarbrücken, Germany, FRIAS, Freiburg Institute for Advanced Studies, Albert-Ludwigs-Universität Freiburg, Albertstrasse 19, 79104 Freiburg, Germany, IMTEK, Institute for Microsystem Technology, University of Freiburg, Georges-Köhler-Allee 103, 79110 Freiburg, Germany, and MESA+ Institute for Nanotechnology/Lab-on-a-Chip Group, Twente University, Building Carré, 7500 AE, Enschede, The Netherlands
| | - Jung Tae Kim
- KIST Europe, Korea Institute of Science and Technology, Campus E71, 66123 Saarbrücken, Germany, FRIAS, Freiburg Institute for Advanced Studies, Albert-Ludwigs-Universität Freiburg, Albertstrasse 19, 79104 Freiburg, Germany, IMTEK, Institute for Microsystem Technology, University of Freiburg, Georges-Köhler-Allee 103, 79110 Freiburg, Germany, and MESA+ Institute for Nanotechnology/Lab-on-a-Chip Group, Twente University, Building Carré, 7500 AE, Enschede, The Netherlands
| | - Andreas Manz
- KIST Europe, Korea Institute of Science and Technology, Campus E71, 66123 Saarbrücken, Germany, FRIAS, Freiburg Institute for Advanced Studies, Albert-Ludwigs-Universität Freiburg, Albertstrasse 19, 79104 Freiburg, Germany, IMTEK, Institute for Microsystem Technology, University of Freiburg, Georges-Köhler-Allee 103, 79110 Freiburg, Germany, and MESA+ Institute for Nanotechnology/Lab-on-a-Chip Group, Twente University, Building Carré, 7500 AE, Enschede, The Netherlands
| |
Collapse
|