51
|
Tang L, Shi J, Wu H, Zhang S, Liu H, Zou H, Wu Y, Zhao J, Jiang Z. In situ biosynthesis of ultrafine metal nanoparticles within a metal-organic framework for efficient heterogeneous catalysis. NANOTECHNOLOGY 2017; 28:365604. [PMID: 28617249 DOI: 10.1088/1361-6528/aa79e1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The synthesis of ultrafine, uniform, well-dispersed functional nanoparticles (NPs) under mild conditions in a controlled manner remains a great challenge. In biological systems, a well-defined biomineralization process is exploited, in which the control over NPs' size, shape and distribution is temporally and spatially regulated by a variety of biomolecules in a confined space. Inspired by this, we embedded proteins into metal-organic frameworks (MOFs) and explored a novel approach to synthesize metallic NPs by taking the synergy of protein-induced biomineralization process and space-confined effect of MOFs. The generation and growth of ultrafine metal NPs (Ag or Au) was induced by the entrapped lysozyme molecules and confined by the ZIF-8 pores. Due to the narrow size distribution and homogeneous spatial distribution of metal NPs, the as-synthesized NPs exhibit remarkably elevated catalytic activity. These findings demonstrate that MOFs can be loaded with specific proteins to selectively deposit inorganic NPs via biomimetic mineralization and these novel kinds of nanohybrid materials may find applications in catalysis, sensing and optics.
Collapse
Affiliation(s)
- Lei Tang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Han W, Chilkoti A, López GP. Self-assembled hybrid elastin-like polypeptide/silica nanoparticles enable triggered drug release. NANOSCALE 2017; 9:6178-6186. [PMID: 28447683 DOI: 10.1039/c7nr00172j] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The discovery of biomimetic polypeptides that enable the biomineralization of synthetic and biosynthetic materials has resulted in the development of hybrid materials that incorporate inorganic components for potential application in drug delivery, enzyme immobilization, and surface modification. Here, we describe an approach that uses micellar assemblies of an elastin-like polypeptide (ELP) modified with silica-promoting sequences and drug conjugates that are subsequently encapsulated within a silica matrix. Incorporation of a lysine-rich tag derived from the silaffin R5 peptide into the N-terminus of a hydrophilic ELP that self-assembles upon conjugation of hydrophobic molecules at the C-terminus results in the formation of spherical micelles with a conjugated drug embedded in the core and a corona that is decorated with the silaffin peptide. These micelles serve as the building blocks for the polycondensation of silica into uniform, hybrid polypeptide-silica nanoparticles. We demonstrate proof-of-concept examples using a model hydrophobic small molecule and doxorobucin, a small molecule chemotherapeutic, and further show pH-dependent doxorubicin release from the hybrid nanoparticles.
Collapse
Affiliation(s)
- Wei Han
- Research Triangle Materials Science and Engineering Center, Durham, North Carolina 27708, USA.
| | | | | |
Collapse
|
53
|
Sykora S, Correro MR, Moridi N, Belliot G, Pothier P, Dudal Y, Corvini PFX, Shahgaldian P. A Biocatalytic Nanomaterial for the Label-Free Detection of Virus-Like Particles. Chembiochem 2017; 18:996-1000. [DOI: 10.1002/cbic.201700126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Sabine Sykora
- School of Life Science; University of Applied Sciences and Arts Northwestern Switzerland; Gründenstrasse 40 4132 Muttenz Switzerland
| | - M. Rita Correro
- School of Life Science; University of Applied Sciences and Arts Northwestern Switzerland; Gründenstrasse 40 4132 Muttenz Switzerland
| | - Negar Moridi
- School of Life Science; University of Applied Sciences and Arts Northwestern Switzerland; Gründenstrasse 40 4132 Muttenz Switzerland
| | - Gaël Belliot
- Laboratory of Virology; National Reference Center for Enteric Viruses; CHU F. Mitterrand; F and AgroSup Dijon; PAM UMR A 02.102; University of Burgundy-Franche-Comté; 26, Bd Docteur-Petitjean 21079 Dijon France
| | - Pierre Pothier
- Laboratory of Virology; National Reference Center for Enteric Viruses; CHU F. Mitterrand; F and AgroSup Dijon; PAM UMR A 02.102; University of Burgundy-Franche-Comté; 26, Bd Docteur-Petitjean 21079 Dijon France
| | - Yves Dudal
- INOFEA AG; Hochbergerstrasse 60C 4057 Basel Switzerland
| | - Philippe F.-X. Corvini
- School of Life Science; University of Applied Sciences and Arts Northwestern Switzerland; Gründenstrasse 40 4132 Muttenz Switzerland
- School of the Environment; Nanjing University; Xianlin Ave 63 210093 Nanjing China
| | - Patrick Shahgaldian
- School of Life Science; University of Applied Sciences and Arts Northwestern Switzerland; Gründenstrasse 40 4132 Muttenz Switzerland
| |
Collapse
|
54
|
Liu XL, Tsunega S, Jin RH. Unexpected "Hammerlike Liquid" to Pulverize Silica Powders to Stable Sols and Its Application in the Preparation of Sub-10 nm SiO 2 Hybrid Nanoparticles with Chirality. ACS OMEGA 2017; 2:1431-1440. [PMID: 31457515 PMCID: PMC6641099 DOI: 10.1021/acsomega.7b00120] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 03/22/2017] [Indexed: 06/09/2023]
Abstract
Silane coupling agents are well-known as surface modifiers for various kinds of silica (SiO2). However, in the present research, it has been found that they can also work as "hammerlike liquid" to pulverize different kinds of bulk amorphous SiO2 in aqueous systems. This new function was typically clarified by using 3-aminopropyltrimethoxysilane (APS) and bundles of chiral SiO2 nanofibers (with average diameter of ∼10 nm) as raw materials. By a simple reflux of the mixture of SiO2 nanofibers and excessive APS in pure H2O, the solid-containing mixture turned into a completely clear solution that contained sub-10 nm, amine-modified, and water-soluble hybrid SiO2 sols (HS-sols). Moreover, this solution showed blue luminescence under ultraviolet irradiation. Furthermore, the circular dichroism and vibrational circular dichroism spectra revealed that the HS-sols are optically active even though the pristine chiral SiO2 nanofibers were completely destroyed. It was considered that the chirality of SiO2 nanofibers was due to the asymmetric arrangement of Si and O atoms in chiral domains (<10 nm) on the Si-O-Si network of SiO2, and these domains are still preserved in chiral HS-sols. This green method has high potential for the recycling of rich SiO2 sources to obtain functional SiO2 nanomaterials with applications such as optical display, imaging, and chiral recognition. Also, it offers a tool for the analysis of the structural properties of SiO2 on the molecular scale.
Collapse
Affiliation(s)
- Xin-Ling Liu
- Department of Material &
Life Chemistry, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan
| | - Seiji Tsunega
- Department of Material &
Life Chemistry, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan
| | - Ren-Hua Jin
- Department of Material &
Life Chemistry, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan
| |
Collapse
|
55
|
Manning JRH, Yip TWS, Centi A, Jorge M, Patwardhan SV. An Eco-Friendly, Tunable and Scalable Method for Producing Porous Functional Nanomaterials Designed Using Molecular Interactions. CHEMSUSCHEM 2017; 10:1683-1691. [PMID: 28235156 PMCID: PMC5434938 DOI: 10.1002/cssc.201700027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 02/06/2017] [Indexed: 05/03/2023]
Abstract
Despite significant improvements in the synthesis of templated silica materials, post-synthesis purification remains highly expensive and renders the materials industrially unviable. In this study this issue is addressed for porous bioinspired silica by developing a rapid room-temperature solution method for complete extraction of organic additives. Using elemental analysis and N2 and CO2 adsorption, the ability to both purify and controllably tailor the composition, porosity and surface chemistry of bioinspired silica in a single step is demonstrated. For the first time the extraction is modelled using molecular dynamics, revealing that the removal mechanism is dominated by surface-charge interactions. This is extended to other additive chemistry, leading to a wider applicability of the method to other materials. Finally the environmental benefits of the new method are estimated and compared with previous purification techniques, demonstrating significant improvements in sustainability.
Collapse
Affiliation(s)
- Joseph R. H. Manning
- Department of Chemical and Biological EngineeringUniversity of SheffieldMappin StreetSheffieldS1 3JDEngland
| | - Thomas W. S. Yip
- Department of Chemical and Process EngineeringUniversity of Strathclyde75 Montrose StreetGlasgowG1 1XJScotland
| | - Alessia Centi
- Department of Chemical and Process EngineeringUniversity of Strathclyde75 Montrose StreetGlasgowG1 1XJScotland
| | - Miguel Jorge
- Department of Chemical and Process EngineeringUniversity of Strathclyde75 Montrose StreetGlasgowG1 1XJScotland
| | - Siddharth V. Patwardhan
- Department of Chemical and Biological EngineeringUniversity of SheffieldMappin StreetSheffieldS1 3JDEngland
| |
Collapse
|
56
|
Li J, Li S, He Z. Molecular imprinting functionalized silica xerogel for selective recognition of levorotatory ofloxacin. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 71:999-1003. [DOI: 10.1016/j.msec.2016.11.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Revised: 10/17/2016] [Accepted: 11/06/2016] [Indexed: 11/16/2022]
|
57
|
Xu L, Cui F, Zhang J, Hao Y, Wang Y, Cui T. Autocatalytic synthesis of multifunctional precursors for fabricating silica microspheres with well-dispersed Ag and Co 3O 4 nanoparticles. NANOSCALE 2017; 9:899-906. [PMID: 28000832 DOI: 10.1039/c6nr08309a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Herein, an autocatalytic route to fabricate dual metal ion-equipped organic/inorganic hybrid silica, an ideal precursor for multifunctional silica-based composites integrated with well-dispersed Ag and Co3O4 nanoparticles was demonstrated. Significantly, by rational selection of reactants, such dual metal ion-equipped organic/inorganic hybrid silica can be synthesized through successive spontaneous reactions under near neutral conditions without an additional catalyst. Both the Ag+ and Co2+ ions are introduced into silica by chemical bonds, which favor the formation of small-sized and well-dispersed Ag and Co3O4 nanoparticles without aggregation in the entire silica matrix. After calcination, multifunctional silica composites equipped with well-dispersed Ag and Co3O4 nanoparticles were obtained. The as-obtained silica composites, as indicated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM), have a spherical morphology and smooth surface. TEM tests also reveal the well dispersed fashion of Ag and Co3O4 nanoparticles. In addition, the obtained Ag-Co3O4@SiO2 composites exhibit good catalytic performance in the reduction of methylene blue (MB) with NaBH4 as a reducing agent, and can be readily recycled by an external magnetic field due to their superparamagnetic properties.
Collapse
Affiliation(s)
- Linxu Xu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, People's Republic of China.
| | - Fang Cui
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, People's Republic of China.
| | - Jiajia Zhang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, People's Republic of China.
| | - Yanjun Hao
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, People's Republic of China.
| | - Yan Wang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, People's Republic of China.
| | - Tieyu Cui
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, People's Republic of China.
| |
Collapse
|
58
|
Verma ML. Fungus-Mediated Bioleaching of Metallic Nanoparticles from Agro-industrial By-Products. Fungal Biol 2017. [DOI: 10.1007/978-3-319-68424-6_5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
59
|
Alotaibi KM, Shiels L, Lacaze L, Peshkur TA, Anderson P, Machala L, Critchley K, Patwardhan SV, Gibson LT. Iron supported on bioinspired green silica for water remediation. Chem Sci 2017; 8:567-576. [PMID: 28451203 PMCID: PMC5351802 DOI: 10.1039/c6sc02937j] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 09/03/2016] [Indexed: 11/21/2022] Open
Abstract
Iron has been used previously in water decontamination, either unsupported or supported on clays, polymers, carbons or ceramics such as silica. However, the reported synthesis procedures are tedious, lengthy (involving various steps), and either utilise or produce toxic chemicals. Herein, the use of a simple, rapid, bio-inspired green synthesis method is reported to prepare, for the first time, a family of iron supported on green nanosilica materials (Fe@GN) to create new technological solutions for water remediation. In particular, Fe@GN were employed for the removal of arsenate ions as a model for potentially toxic elements in aqueous solution. Several characterization techniques were used to study the physical, structural and chemical properties of the new Fe@GN. When evaluated as an adsorption platform for the removal of arsenate ions, Fe@GN exhibited high adsorption capacity (69 mg of As per g of Fe@GN) with superior kinetics (reaching ∼35 mg As per g sorbent per hr) - threefold higher than the highest removal rates reported to date. Moreover, a method was developed to regenerate the Fe@GN allowing for a full recovery and reuse of the adsorbent in subsequent extractions; strongly highlighting the potential technological benefits of these new green materials.
Collapse
Affiliation(s)
- Khalid M Alotaibi
- Department of Pure and Applied Chemistry , WestCHEM , University of Strathclyde , 295 Cathedral Street , Glasgow , G1 1XL , UK . ; Tel: +44 (0)141 548 2224
| | - Lewis Shiels
- Department of Chemical and Process Engineering , University of Strathclyde , 75 Montrose Street , Glasgow , G1 1XJ , UK
| | - Laure Lacaze
- Department of Chemical and Process Engineering , University of Strathclyde , 75 Montrose Street , Glasgow , G1 1XJ , UK
| | - Tanya A Peshkur
- Scottish Environmental Technology Network (SETN) , Faculty of Engineering , University of Strathclyde , 204 George Street , Glasgow , G1 1XW , UK
| | - Peter Anderson
- Scottish Environmental Technology Network (SETN) , Faculty of Engineering , University of Strathclyde , 204 George Street , Glasgow , G1 1XW , UK
| | - Libor Machala
- Regional Centre of Advanced Technologies and Materials , Palacký University , Šlechtitelů 27 , 78371 Olomouc , Czech Republic
| | - Kevin Critchley
- Molecular & Nanoscale Physics Group , School of Physics & Astronomy , University of Leeds , Woodhouse Lane , Leeds , LS2 9JT , UK
| | - Siddharth V Patwardhan
- Department of Chemical and Biological Engineering , University of Sheffield , Sheffield S1 3JD , UK . ; Tel: +44 (0)114 222 7593
| | - Lorraine T Gibson
- Department of Pure and Applied Chemistry , WestCHEM , University of Strathclyde , 295 Cathedral Street , Glasgow , G1 1XL , UK . ; Tel: +44 (0)141 548 2224
| |
Collapse
|
60
|
Zheng XT, Xu HV, Tan YN. Bioinspired Design and Engineering of Functional Nanostructured Materials for Biomedical Applications. ACS SYMPOSIUM SERIES 2017. [DOI: 10.1021/bk-2017-1253.ch007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Affiliation(s)
- Xin Ting Zheng
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634
- Division of Chemical and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
- Department of Chemistry, National University of Singapore, 3 Science Drive, Singapore 117543
| | - Hesheng Victor Xu
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634
- Division of Chemical and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
- Department of Chemistry, National University of Singapore, 3 Science Drive, Singapore 117543
| | - Yen Nee Tan
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634
- Division of Chemical and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
- Department of Chemistry, National University of Singapore, 3 Science Drive, Singapore 117543
| |
Collapse
|
61
|
Nojima T, Suzuki S, Iyoda T. Atelocollagen-templated fabrication of tangled fibrous silica. J Mater Chem B 2016; 4:6640-6643. [PMID: 32263518 DOI: 10.1039/c6tb01770c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Protein-templated structured silica and titania are fabricated via a biomimetic method based on the synergistic effect of amine/carboxyl complexes under ambient conditions. Atelocollagen-templated silica showed a tangled fibrous structure with a smooth surface. The number of carboxyl groups of a protein is an important factor for homogeneous silica growth.
Collapse
Affiliation(s)
- Tatsuya Nojima
- Iyoda Supra-integrated Material Project Exploratory Research for Advanced Technology (ERATO), Japan Science and Technology Agency (JST), 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan.
| | | | | |
Collapse
|
62
|
Ravera E, Martelli T, Geiger Y, Fragai M, Goobes G, Luchinat C. Biosilica and bioinspired silica studied by solid-state NMR. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2016.06.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
63
|
Karthikeyan S, Kurt Z, Pandey G, Spain JC. Immobilized Biocatalyst for Detection and Destruction of the Insensitive Explosive, 2,4-Dinitroanisole (DNAN). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:11193-11199. [PMID: 27617621 DOI: 10.1021/acs.est.6b03044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Accurate and convenient detection of explosive components is vital for a wide spectrum of applications ranging from national security and demilitarization to environmental monitoring and restoration. With the increasing use of DNAN as a replacement for 2,4,6-trinitrotoluene (TNT) in insensitive explosive formulations, there has been a growing interest in strategies to minimize its release and to understand and predict its behavior in the environment. Consequently, a convenient tool for its detection and destruction could enable development of more effective decontamination and demilitarization strategies. Biosensors and biocatalysts have limited applicability to the more traditional explosives because of the inherent limitations of the relevant enzymes. Here, we report a highly specific, convenient and robust biocatalyst based on a novel ether hydrolase enzyme, DNAN demethylase (that requires no cofactors), from a Nocardioides strain that can mineralize DNAN. Biogenic silica encapsulation was used to stabilize the enzyme and enable it to be packed into a model microcolumn for application as a biosensor or as a bioreactor for continuous destruction of DNAN. The immobilized enzyme was stable and not inhibited by other insensitive munitions constituents. An alternative method for DNAN detection involved coating the encapsulated enzyme on cellulose filter paper. The hydrolase based biocatalyst could provide the basis for a wide spectrum of applications including detection, identification, destruction or inertion of explosives containing DNAN (demilitarization operations), and for environmental restorations.
Collapse
Affiliation(s)
- Smruthi Karthikeyan
- Department of Civil and Environmental Engineering, Georgia Institute of Technology , 311 Ferst Drive, Atlanta, Georgia 30332, United States
| | - Zohre Kurt
- Department of Civil and Environmental Engineering, Georgia Institute of Technology , 311 Ferst Drive, Atlanta, Georgia 30332, United States
- Institute of Scientific Research and High Technology Services , Calle Pullpn, Panamá, Panama
| | - Gunjan Pandey
- CSIRO Land and Water , Clunies Ross Street, Acton, Australian Capital Territory 2615, Australia
| | - Jim C Spain
- Department of Civil and Environmental Engineering, Georgia Institute of Technology , 311 Ferst Drive, Atlanta, Georgia 30332, United States
- Center for Environmental Diagnostics & Bioremediation, University of West Florida , 11000 University Parkway, Pensacola, Florida 32514-5751, United States
| |
Collapse
|
64
|
Soulé S, Bulteau AL, Faucher S, Haye B, Aimé C, Allouche J, Dupin JC, Lespes G, Coradin T, Martinez H. Design and Cellular Fate of Bioinspired Au-Ag Nanoshells@Hybrid Silica Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:10073-10082. [PMID: 27609666 DOI: 10.1021/acs.langmuir.6b02810] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Silica-coated gold-silver alloy nanoshells were obtained via a bioinspired approach using gelatin and poly-l-lysine (PLL) as biotemplates for the interfacial condensation of sodium silicate solutions. X-ray photoelectron spectroscopy was used as an efficient tool for the in-depth and complete characterization of the chemical features of nanoparticles during the whole synthetic process. Cytotoxicity assays using HaCaT cells evidenced the detrimental effect of the gelatin nanocoating and significant induction of late apoptosis after silicification. In contrast, PLL-modified nanoparticles had less biological impact that was further improved by the silica layer, and uptake rates of up to 50% of those of the initial particles could be achieved. These results are discussed considering the effect of nanosurface confinement of the biopolymers on their chemical and biological reactivity.
Collapse
Affiliation(s)
- Samantha Soulé
- Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux (IPREM)-UMR CNRS/UPPA 5254, Equipe de Chimie Physique (ECP), Université de Pau et des Pays de l'Adour (UPPA), Technopôle Hélioparc Pau Pyrénées , 2, Avenue du Président Pierre Angot, 64053 Pau Cedex 09, France
| | - Anne-Laure Bulteau
- Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux (IPREM)-UMR CNRS/UPPA 5254, Laboratoire de Chimie Analytique Bio-inorganique et Environnement (LCABIE), Université de Pau et des Pays de l'Adour (UPPA), Technopôle Hélioparc Pau Pyrénées , 2, Avenue du Président Pierre Angot, 64053 Pau Cedex 09, France
| | - Stéphane Faucher
- Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux (IPREM)-UMR CNRS/UPPA 5254, Laboratoire de Chimie Analytique Bio-inorganique et Environnement (LCABIE), Université de Pau et des Pays de l'Adour (UPPA), Technopôle Hélioparc Pau Pyrénées , 2, Avenue du Président Pierre Angot, 64053 Pau Cedex 09, France
| | - Bernard Haye
- Sorbonne Universités, UPMC Univ Paris 06, CNRS , Collège de France, Laboratoire de Chimie de la Matière Condensée de Paris, 4 Place Jussieu, 75005 Paris, France
| | - Carole Aimé
- Sorbonne Universités, UPMC Univ Paris 06, CNRS , Collège de France, Laboratoire de Chimie de la Matière Condensée de Paris, 4 Place Jussieu, 75005 Paris, France
| | - Joachim Allouche
- Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux (IPREM)-UMR CNRS/UPPA 5254, Equipe de Chimie Physique (ECP), Université de Pau et des Pays de l'Adour (UPPA), Technopôle Hélioparc Pau Pyrénées , 2, Avenue du Président Pierre Angot, 64053 Pau Cedex 09, France
| | - Jean-Charles Dupin
- Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux (IPREM)-UMR CNRS/UPPA 5254, Equipe de Chimie Physique (ECP), Université de Pau et des Pays de l'Adour (UPPA), Technopôle Hélioparc Pau Pyrénées , 2, Avenue du Président Pierre Angot, 64053 Pau Cedex 09, France
| | - Gaëtane Lespes
- Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux (IPREM)-UMR CNRS/UPPA 5254, Laboratoire de Chimie Analytique Bio-inorganique et Environnement (LCABIE), Université de Pau et des Pays de l'Adour (UPPA), Technopôle Hélioparc Pau Pyrénées , 2, Avenue du Président Pierre Angot, 64053 Pau Cedex 09, France
| | - Thibaud Coradin
- Sorbonne Universités, UPMC Univ Paris 06, CNRS , Collège de France, Laboratoire de Chimie de la Matière Condensée de Paris, 4 Place Jussieu, 75005 Paris, France
| | - Hervé Martinez
- Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux (IPREM)-UMR CNRS/UPPA 5254, Equipe de Chimie Physique (ECP), Université de Pau et des Pays de l'Adour (UPPA), Technopôle Hélioparc Pau Pyrénées , 2, Avenue du Président Pierre Angot, 64053 Pau Cedex 09, France
| |
Collapse
|
65
|
Wibowo D, Hui Y, Middelberg APJ, Zhao CX. Interfacial engineering for silica nanocapsules. Adv Colloid Interface Sci 2016; 236:83-100. [PMID: 27522646 DOI: 10.1016/j.cis.2016.08.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 07/20/2016] [Accepted: 08/02/2016] [Indexed: 12/18/2022]
Abstract
Silica nanocapsules have attracted significant interest due to their core-shell hierarchical structure. The core domain allows the encapsulation of various functional components such as drugs, fluorescent and magnetic nanoparticles for applications in drug delivery, imaging and sensing, and the silica shell with its unique properties including biocompatibility, chemical and physical stability, and surface-chemistry tailorability provides a protection layer for the encapsulated cargo. Therefore, significant effort has been directed to synthesize silica nanocapsules with engineered properties, including size, composition and surface functionality, for various applications. This review provides a comprehensive overview of emerging methods for the manufacture of silica nanocapsules, with a special emphasis on different interfacial engineering strategies. The review starts with an introduction of various manufacturing approaches of silica nanocapsules highlighting surface engineering of the core template nanomaterials (solid nanoparticles, liquid droplets, and gas bubbles) using chemicals or biomolecules which are able to direct nucleation and growth of silica at the boundary of two-phase interfaces (solid-liquid, liquid-liquid, and gas-liquid). Next, surface functionalization of silica nanocapsules is presented. Furthermore, strategies and challenges of encapsulating active molecules (pre-loading and post-loading approaches) in these capsular systems are critically discussed. Finally, applications of silica nanocapsules in controlled release, imaging, and theranostics are reviewed.
Collapse
Affiliation(s)
- David Wibowo
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Yue Hui
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Anton P J Middelberg
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Chun-Xia Zhao
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, 4072, Australia.
| |
Collapse
|
66
|
Marron AO, Chappell H, Ratcliffe S, Goldstein RE. A model for the effects of germanium on silica biomineralization in choanoflagellates. J R Soc Interface 2016; 13:rsif.2016.0485. [PMID: 27655668 PMCID: PMC5046948 DOI: 10.1098/rsif.2016.0485] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 08/26/2016] [Indexed: 12/22/2022] Open
Abstract
Silica biomineralization is a widespread phenomenon of major biotechnological interest. Modifying biosilica with substances like germanium (Ge) can confer useful new properties, although exposure to high levels of Ge disrupts normal biosilicification. No clear mechanism explains why this disruption occurs. Here, we study the effect of Ge on loricate choanoflagellates, a group of protists that construct a species-specific extracellular lorica from multiple siliceous costal strips. High Ge exposures were toxic, whereas lower Ge exposures produced cells with incomplete or absent loricae. These effects can be ameliorated by restoring the germanium : silicon ratio, as observed in other biosilicifying organisms. We developed simulations of how Ge interacts with polymerizing silica. In our models, Ge is readily incorporated at the ends of silica forming from silicic acid condensation, but this prevents further silica polymerization. Our 'Ge-capping' model is supported by observations from loricate choanoflagellates. Ge exposure terminates costal strip synthesis and lorica formation, resulting in disruption to cytokinesis and fatal build-up of silicic acid. Applying the Ge-capping model to other siliceous organisms explains the general toxicity of Ge and identifies potential protective responses in metalloid uptake and sensing. This can improve the design of new silica biomaterials, and further our understanding of silicon metabolism.
Collapse
Affiliation(s)
- Alan O Marron
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, UK
| | - Helen Chappell
- Medical Research Council Human Nutrition Research, Elsie Widdowson Laboratory, 120 Fulbourn Road, Cambridge CB1 9NL, UK
| | - Sarah Ratcliffe
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Raymond E Goldstein
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, UK
| |
Collapse
|
67
|
Davidson S, Lamprou DA, Urquhart AJ, Grant MH, Patwardhan SV. Bioinspired Silica Offers a Novel, Green, and Biocompatible Alternative to Traditional Drug Delivery Systems. ACS Biomater Sci Eng 2016; 2:1493-1503. [DOI: 10.1021/acsbiomaterials.6b00224] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Scott Davidson
- Department
of Chemical and Process Engineering, University of Strathclyde, 75 Montrose
Street, Glasgow G1 1XJ, United Kingdom
| | - Dimitrios A. Lamprou
- Strathclyde
Institute of Pharmacy and Biomedical Sciences (SIPBS), University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, United Kingdom
- EPSRC
Centre for Innovative Manufacturing in Continuous Manufacturing and
Crystallization (CMAC), University of Strathclyde, 99 George Street, Glasgow G1 1RD, United Kingdom
| | - Andrew J. Urquhart
- Department
of Micro- and Nanotechnology, Technical University of Denmark, Produktionstorvet, Building 423, 2800 Kongens Lyngby, Denmark
| | - M. Helen Grant
- Department
of Biomedical Engineering, University of Strathclyde, 106 Rottenrow
East, Glasgow G4 0NW, United Kingdom
| | - Siddharth V. Patwardhan
- Department
of Chemical and Biological Engineering, University of Sheffield, Mappin Street, Sheffield S1 3JD, United Kingdom
| |
Collapse
|
68
|
Hyde EDER, Seyfaee A, Neville F, Moreno-Atanasio R. Colloidal Silica Particle Synthesis and Future Industrial Manufacturing Pathways: A Review. Ind Eng Chem Res 2016. [DOI: 10.1021/acs.iecr.6b01839] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Emily D. E. R. Hyde
- School of Engineering, and ‡School of Environmental
and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Ahmad Seyfaee
- School of Engineering, and ‡School of Environmental
and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Frances Neville
- School of Engineering, and ‡School of Environmental
and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Roberto Moreno-Atanasio
- School of Engineering, and ‡School of Environmental
and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia
| |
Collapse
|
69
|
Centi A, Jorge M. Molecular Simulation Study of the Early Stages of Formation of Bioinspired Mesoporous Silica Materials. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:7228-7240. [PMID: 27340948 DOI: 10.1021/acs.langmuir.6b01731] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The use of bioinspired templates, such as polyamines and polypeptides, could lead to significant improvements in the synthesis conditions under which mesoporous materials are traditionally produced, removing the need for strong pH as well as high temperature or pressure. In this work, we perform atomistic molecular dynamics simulations of 1,12-diaminododecane surfactants, in water and in the presence of silica monomers, to investigate the early stages of synthesis of one of the first examples of bioinspired silica materials. Different surfactant concentrations and pH were considered, clarifying the influence of the charge state of the molecules on the self-assembly process. We show that the amphiphilic amines form stable lamellar structures at equilibrium in the range from intermediate to high pH values. In a later stage, when silica species are added to the system, our results reveal that, in the same range of pH, silicates strongly adsorb around these aggregates at the interface with water. This causes a considerable modification of the curvature of the layer, which suggests a tendency for the system to evolve from a lamellar phase to the formation of vesicle structures. Furthermore, we show that silica monomers are able to penetrate the layer spontaneously when defects are created as a result of surfactants' head-to-head repulsion. These findings are in agreement with experimental observations and support the pillaring mechanism postulated for this class of materials. However, our simulations indicate that the aggregation process is driven by charge matching between surfactant heads and silica monomers rather than by hydrogen bond interactions between neutral species, as had been previously hypothesized.
Collapse
Affiliation(s)
- Alessia Centi
- Department of Chemical and Process Engineering, University of Strathclyde , James Weir Building, 75 Montrose Street, Glasgow G1 1XJ, United Kingdom of Great Britain and Northern Ireland
| | - Miguel Jorge
- Department of Chemical and Process Engineering, University of Strathclyde , James Weir Building, 75 Montrose Street, Glasgow G1 1XJ, United Kingdom of Great Britain and Northern Ireland
| |
Collapse
|
70
|
Vecchione R, Luciani G, Calcagno V, Jakhmola A, Silvestri B, Guarnieri D, Belli V, Costantini A, Netti PA. Multilayered silica-biopolymer nanocapsules with a hydrophobic core and a hydrophilic tunable shell thickness. NANOSCALE 2016; 8:8798-8809. [PMID: 27065306 DOI: 10.1039/c6nr01192f] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Stable, biocompatible, multifunctional and multicompartment nanocarriers are much needed in the field of nanomedicine. Here, we report a simple, novel strategy to design an engineered nanocarrier system featuring an oil-core/hybrid polymer/silica-shell. Silica shells with a tunable thickness were grown in situ, directly around a highly mono-disperse and stable oil-in-water emulsion system, stabilized by a double bio-functional polyelectrolyte heparin/chitosan layer. Such silica showed a complete degradation in a physiological medium (SBF) in a time frame of three days. Moreover, the outer silica shell was coated with polyethyleneglycol (PEG) in order to confer antifouling properties to the final nanocapsule. The outer silica layer combined its properties (it is an optimal bio-interface for bio-conjugations and for the embedding of hydrophilic drugs in the porous structure) with the capability to stabilize the oil core for the confinement of high payloads of lipophilic tracers (e.g., CdSe quantum dots, Nile Red) and drugs. In addition, polymer layers--besides conferring stability to the emulsion while building the silica shell--can be independently exploited if suitably functionalized, as demonstrated by conjugating chitosan with fluorescein isothiocyanate. Such numerous features in a single nanocarrier system make it very intriguing as a multifunctional platform for smart diagnosis and therapy.
Collapse
Affiliation(s)
- Raffaele Vecchione
- Istituto Italiano di Tecnologia, IIT@CRIB, Largo Barsanti e Matteucci, 53 80125 Napoli, Italy. and Centro di Ricerca Interdipartimentale sui Biomateriali CRIB, Università di Napoli Federico II, Piazzale Tecchio, 80 80125 Napoli, Italy
| | - Giuseppina Luciani
- Centro di Ricerca Interdipartimentale sui Biomateriali CRIB, Università di Napoli Federico II, Piazzale Tecchio, 80 80125 Napoli, Italy and Dipartimento di Ingegneria Chimica dei Materiali e della Produzione Industriale, Università di Napoli Federico II, Piazzale Tecchio, 80 80125 Napoli, Italy
| | - Vincenzo Calcagno
- Istituto Italiano di Tecnologia, IIT@CRIB, Largo Barsanti e Matteucci, 53 80125 Napoli, Italy. and Centro di Ricerca Interdipartimentale sui Biomateriali CRIB, Università di Napoli Federico II, Piazzale Tecchio, 80 80125 Napoli, Italy
| | - Anshuman Jakhmola
- Istituto Italiano di Tecnologia, IIT@CRIB, Largo Barsanti e Matteucci, 53 80125 Napoli, Italy.
| | - Brigida Silvestri
- Dipartimento di Ingegneria Chimica dei Materiali e della Produzione Industriale, Università di Napoli Federico II, Piazzale Tecchio, 80 80125 Napoli, Italy
| | - Daniela Guarnieri
- Istituto Italiano di Tecnologia, IIT@CRIB, Largo Barsanti e Matteucci, 53 80125 Napoli, Italy. and Centro di Ricerca Interdipartimentale sui Biomateriali CRIB, Università di Napoli Federico II, Piazzale Tecchio, 80 80125 Napoli, Italy
| | - Valentina Belli
- Istituto Italiano di Tecnologia, IIT@CRIB, Largo Barsanti e Matteucci, 53 80125 Napoli, Italy. and Centro di Ricerca Interdipartimentale sui Biomateriali CRIB, Università di Napoli Federico II, Piazzale Tecchio, 80 80125 Napoli, Italy
| | - Aniello Costantini
- Centro di Ricerca Interdipartimentale sui Biomateriali CRIB, Università di Napoli Federico II, Piazzale Tecchio, 80 80125 Napoli, Italy and Dipartimento di Ingegneria Chimica dei Materiali e della Produzione Industriale, Università di Napoli Federico II, Piazzale Tecchio, 80 80125 Napoli, Italy
| | - Paolo A Netti
- Istituto Italiano di Tecnologia, IIT@CRIB, Largo Barsanti e Matteucci, 53 80125 Napoli, Italy. and Centro di Ricerca Interdipartimentale sui Biomateriali CRIB, Università di Napoli Federico II, Piazzale Tecchio, 80 80125 Napoli, Italy
| |
Collapse
|
71
|
Ford NR, Hecht KA, Hu D, Orr G, Xiong Y, Squier TC, Rorrer GL, Roesijadi G. Antigen Binding and Site-Directed Labeling of Biosilica-Immobilized Fusion Proteins Expressed in Diatoms. ACS Synth Biol 2016; 5:193-9. [PMID: 26746113 DOI: 10.1021/acssynbio.5b00191] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The diatom Thalassiosira pseudonana was genetically modified to express biosilica-targeted fusion proteins comprising either enhanced green fluorescent protein (EGFP) or single chain antibodies engineered with a tetracysteine tagging sequence. Of interest were the site-specific binding of (1) the fluorescent biarsenical probe AsCy3 and AsCy3e to the tetracysteine tagged fusion proteins and (2) high and low molecular mass antigens, the Bacillus anthracis surface layer protein EA1 or small molecule explosive trinitrotoluene (TNT), to biosilica-immobilized single chain antibodies. Analysis of biarsenical probe binding using fluorescence and structured illumination microscopy indicated differential colocalization with EGFP in nascent and mature biosilica, supporting the use of either EGFP or bound AsCy3 and AsCy3e in studying biosilica maturation. Large increases in the lifetime of a fluorescent analogue of TNT upon binding single chain antibodies provided a robust signal capable of discriminating binding to immobilized antibodies in the transformed frustule from nonspecific binding to the biosilica matrix. In conclusion, our results demonstrate an ability to engineer diatoms to create antibody-functionalized mesoporous silica able to selectively bind chemical and biological agents for the development of sensing platforms.
Collapse
Affiliation(s)
- Nicole R. Ford
- Marine Biotechnology, Pacific Northwest National Laboratory, Sequim, Washington 98382, United States
| | - Karen A. Hecht
- Marine Biotechnology, Pacific Northwest National Laboratory, Sequim, Washington 98382, United States
| | - DeHong Hu
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Galya Orr
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Yijia Xiong
- Department
of Basic Medical Sciences, Western University of Health Sciences, Lebanon, Oregon 97355, United States
| | - Thomas C. Squier
- Department
of Basic Medical Sciences, Western University of Health Sciences, Lebanon, Oregon 97355, United States
| | | | - Guritno Roesijadi
- Marine Biotechnology, Pacific Northwest National Laboratory, Sequim, Washington 98382, United States
| |
Collapse
|
72
|
A Solid State NMR Investigation of Recent Marine Siliceous Sponge Spicules. MINERALS 2016. [DOI: 10.3390/min6010021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
73
|
Martin L, Bilek MM, Weiss AS, Kuyucak S. Force fields for simulating the interaction of surfaces with biological molecules. Interface Focus 2016; 6:20150045. [PMID: 26855748 PMCID: PMC4686237 DOI: 10.1098/rsfs.2015.0045] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The interaction of biomolecules with solid interfaces is of fundamental importance to several emerging biotechnologies such as medical implants, anti-fouling coatings and novel diagnostic devices. Many of these technologies rely on the binding of peptides to a solid surface, but a full understanding of the mechanism of binding, as well as the effect on the conformation of adsorbed peptides, is beyond the resolution of current experimental techniques. Nanoscale simulations using molecular mechanics offer potential insights into these processes. However, most models at this scale have been developed for aqueous peptide and protein simulation, and there are no proven models for describing biointerfaces. In this review, we detail the current research towards developing a non-polarizable molecular model for peptide-surface interactions, with a particular focus on fitting the model parameters as well as validation by choice of appropriate experimental data.
Collapse
Affiliation(s)
- Lewis Martin
- Department of Applied Physics, University of Sydney, Sydney, New South Wales, Australia
| | - Marcela M. Bilek
- Department of Applied Physics, University of Sydney, Sydney, New South Wales, Australia
| | - Anthony S. Weiss
- Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia
- Department of Molecular Bioscience, University of Sydney, Sydney, New South Wales, Australia
- Bosch Institute, University of Sydney, Sydney, New South Wales, Australia
| | - Serdar Kuyucak
- Department of Applied Physics, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
74
|
Li J, Xu L, Wang H, Yang B, Liu H, Pan W, Li S. Comparison of bare and amino modified mesoporous silica@poly(ethyleneimine)s xerogel as indomethacin carrier: Superiority of amino modification. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 59:710-716. [DOI: 10.1016/j.msec.2015.10.072] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 09/27/2015] [Accepted: 10/23/2015] [Indexed: 12/01/2022]
|
75
|
|
76
|
Lee YL, Lin TX, Hsu FM, Jan JS. Synthesis of antireflective silica coatings through the synergy of polypeptide layer-by-layer assemblies and biomineralization. NANOSCALE 2016; 8:2367-2377. [PMID: 26752150 DOI: 10.1039/c5nr06948c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We report a versatile approach to synthesize silica coatings with antireflective (AR) characteristics through the combination of a layer-by-layer (LbL) assembly technique and biomineralization. LbL assembled decanoyl-modified poly(l-lysine)/poly(l-glutamic acid) (PLL-g-Dec/PLGA) multilayer films were used as templates for silica mineralization, followed by calcination. The specific deposition of silica onto the LbL polypeptide assemblies through amine-catalyzed polycondensation resulted in silica coatings that exhibited the transcription of the nano-/microstructured polypeptide films and their film thickness and porosity can be tuned by varying the number of bilayers, degree of substitution, and PLL molecular weight. AR silica coatings exhibiting more than 6% increase in transmittance in the near UV/visible spectral range can be obtained at an optimized refractive index, thickness, and surface roughness. The abrasion test showed that the silica coatings exhibited sufficient structural durability due to continuous silica nanostructures and low surface roughness. This study demonstrated that nanostructured thin films can be synthesized for AR coatings using the synergy between the LbL assembly technique and biomineralization.
Collapse
Affiliation(s)
- Yung-Lun Lee
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan.
| | - Ting-Xuan Lin
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan.
| | - Feng-Ming Hsu
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan.
| | - Jeng-Shiung Jan
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
77
|
Liu XL, Moriyama K, Gao YF, Jin RH. Polycondensation and carbonization of phenolic resin on structured nano/chiral silicas: reactions, morphologies and properties. J Mater Chem B 2016; 4:626-634. [DOI: 10.1039/c5tb01966d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Diversely shaped and chiral nano-carbonaceous materials were obtained using bioinspired polyethyleneimine (PEI)–silica hybrids as catalytic templates and chiral sources.
Collapse
Affiliation(s)
- Xin-Ling Liu
- Department of Material and Life Chemistry
- Kanagawa University
- Kanagawa-ku
- Japan
- School of Materials and Engineering
| | - Kazuki Moriyama
- Department of Material and Life Chemistry
- Kanagawa University
- Kanagawa-ku
- Japan
| | - Yan-Feng Gao
- School of Materials and Engineering
- Shanghai University
- Baoshan District
- China
| | - Ren-Hua Jin
- Department of Material and Life Chemistry
- Kanagawa University
- Kanagawa-ku
- Japan
| |
Collapse
|
78
|
Abstract
Recent advances in biomimetic catalysis of MOFs have been summarized and reviewed.
Collapse
Affiliation(s)
- Yao Chen
- State Key Laboratory of Medicinal Chemical Biology
- Nankai University
- Tianjin 300071
- China
- Department of Chemistry
| | - Shengqian Ma
- Department of Chemistry
- University of South Florida
- Tampa
- USA
| |
Collapse
|
79
|
Zheng X, Chen F, Zhang J, Cai K. Silica-assisted incorporation of polydopamine into the framework of porous nanocarriers by a facile one-pot synthesis. J Mater Chem B 2016; 4:2435-2443. [DOI: 10.1039/c5tb02784e] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Mussel-inspired polydopamine (PDA), with its advanced bio-adhesive properties, has shown great potential in drug delivery based on host–guest interaction.
Collapse
Affiliation(s)
- Xianying Zheng
- Key Laboratory of Biorheological Science and Technology
- Ministry of Education
- College of Bioengineering
- Chongqing University
- Chongqing 400044
| | - Feng Chen
- Key Laboratory of Biorheological Science and Technology
- Ministry of Education
- College of Bioengineering
- Chongqing University
- Chongqing 400044
| | - Jixi Zhang
- Key Laboratory of Biorheological Science and Technology
- Ministry of Education
- College of Bioengineering
- Chongqing University
- Chongqing 400044
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology
- Ministry of Education
- College of Bioengineering
- Chongqing University
- Chongqing 400044
| |
Collapse
|
80
|
Correro MR, Takacs M, Sykora S, Corvini PFX, Shahgaldian P. Supramolecular enzyme engineering in complex nanometer-thin biomimetic organosilica layers. RSC Adv 2016. [DOI: 10.1039/c6ra17775a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Enzyme shielding at the surface of silica nanoparticles was performed using different mixtures of biomimetic building blocks. The performances of the nanobiocatalysts are strongly impacted by the chemical composition of the shielding layer.
Collapse
Affiliation(s)
- M. Rita Correro
- University of Applied Sciences and Arts Switzerland
- School of Life Sciences
- CH-4132 Muttenz
- Switzerland
| | - Michael Takacs
- University of Applied Sciences and Arts Switzerland
- School of Life Sciences
- CH-4132 Muttenz
- Switzerland
| | - Sabine Sykora
- University of Applied Sciences and Arts Switzerland
- School of Life Sciences
- CH-4132 Muttenz
- Switzerland
| | - Philippe F.-X. Corvini
- University of Applied Sciences and Arts Switzerland
- School of Life Sciences
- CH-4132 Muttenz
- Switzerland
- Nanjing University
| | - Patrick Shahgaldian
- University of Applied Sciences and Arts Switzerland
- School of Life Sciences
- CH-4132 Muttenz
- Switzerland
| |
Collapse
|
81
|
Gomes CM, Deravi LF. Self-assembling extracellular matrix proteins as materials for the condensation of silica nanostructures. RSC Adv 2016. [DOI: 10.1039/c6ra20911d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A synthetic strategy is described to repurpose human extracellular matrix protein binding domains to catalyse the condensation of silica nanostructures in water for a seamlessly integrated biocomposite material.
Collapse
Affiliation(s)
- Conor M. Gomes
- Department of Chemistry
- University of New Hampshire
- Durham
- USA
| | | |
Collapse
|
82
|
Jakhmola A, Vecchione R, Guarnieri D, Belli V, Calabria D, Netti PA. Bioinspired Oil Core/Silica Shell Nanocarriers with Tunable and Multimodal Functionalities. Adv Healthc Mater 2015; 4:2688-98. [PMID: 26513631 DOI: 10.1002/adhm.201500588] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 08/27/2015] [Indexed: 12/22/2022]
Abstract
The application of multimodal systems in the field of nanomedicine is advantageous as they can perform two or more tasks simultaneously. Here a robust approach is presented mimicking biogenic silica to design a multilayered nanocarrier system with a central oil core encapsulated within a polymer-silica shell. The outermost silica shell has been deposited through a biosilicification process induced by poly-L-lysine molecules immobilized on the surface of emulsion droplets. This system can be simultaneously loaded with high amount of hydrophobic molecules or contrasting agents in the inner oil core, while the polymeric-silica layers can be easily tagged with at least two different contrasting agents. Additionally, the zwitterionic nature of the silica precipitating peptide (poly-L-lysine) has been efficiently exploited to modulate and entirely reverse the surface charge of the nanocarrier without using any additional coating material. It has been demonstrated experimentally that the designed nanocapsular system is monodisperse, nontoxic, cargo protective, tunable in thickness, fluorescent, and magnetic resonance imaging (MRI) active so highly versatile for multiple applications in the field of drug delivery and in vivo imaging.
Collapse
Affiliation(s)
- Anshuman Jakhmola
- Istituto Italiano di Tecnologia; IIT@CRIB; Largo Barsanti e Matteucci 53 80125 Napoli Italy
| | - Raffaele Vecchione
- Istituto Italiano di Tecnologia; IIT@CRIB; Largo Barsanti e Matteucci 53 80125 Napoli Italy
- Centro di Ricerca Interdipartimentale sui Biomateriali CRIB; Università di Napoli Federico II; Piazzale Tecchio 80 80125 Napoli Italy
| | - Daniela Guarnieri
- Istituto Italiano di Tecnologia; IIT@CRIB; Largo Barsanti e Matteucci 53 80125 Napoli Italy
- Centro di Ricerca Interdipartimentale sui Biomateriali CRIB; Università di Napoli Federico II; Piazzale Tecchio 80 80125 Napoli Italy
| | - Valentina Belli
- Istituto Italiano di Tecnologia; IIT@CRIB; Largo Barsanti e Matteucci 53 80125 Napoli Italy
- Centro di Ricerca Interdipartimentale sui Biomateriali CRIB; Università di Napoli Federico II; Piazzale Tecchio 80 80125 Napoli Italy
| | - Dominic Calabria
- Centro di Ricerca Interdipartimentale sui Biomateriali CRIB; Università di Napoli Federico II; Piazzale Tecchio 80 80125 Napoli Italy
| | - Paolo A. Netti
- Istituto Italiano di Tecnologia; IIT@CRIB; Largo Barsanti e Matteucci 53 80125 Napoli Italy
- Centro di Ricerca Interdipartimentale sui Biomateriali CRIB; Università di Napoli Federico II; Piazzale Tecchio 80 80125 Napoli Italy
| |
Collapse
|
83
|
Li J, Xu L, Yang B, Bao Z, Pan W, Li S. Biomimetic synthesized chiral mesoporous silica: Structures and controlled release functions as drug carrier. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 55:367-72. [DOI: 10.1016/j.msec.2015.05.039] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 04/12/2015] [Accepted: 05/08/2015] [Indexed: 10/23/2022]
|
84
|
Li J, Xu L, Zheng N, Wang H, Lu F, Li S. Biomimetic synthesized bimodal nanoporous silica: Bimodal mesostructure formation and application for ibuprofen delivery. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 58:1105-11. [PMID: 26478410 DOI: 10.1016/j.msec.2015.09.091] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 09/15/2015] [Accepted: 09/25/2015] [Indexed: 10/23/2022]
Abstract
The present paper innovatively reports bimodal nanoporous silica synthesized using biomimetic method (B-BNS) with synthesized polymer (C16-L-serine) as template. Formation mechanism of B-BNS was deeply studied and exploration of its application as carrier of poorly water-soluble drug ibuprofen (IBU) was conducted. The bimodal nanopores and curved mesoscopic channels of B-BNS were achieved due to the dynamic self-assembly of C16-L-serine induced by silane coupling agent (3-aminopropyltriethoxysilane, APTES) and silica source (tetraethoxysilane, TEOS). Characterization results confirmed the successful synthesis of B-BNS, and particularly, nitrogen adsorption/desorption measurement demonstrated that B-BNS was meso-meso porous silica material. In application, B-BNS loaded IBU with high drug loading content due to its enlarged nanopores. After being loaded, IBU presented amorphous phase because nanoporous space and curved mesoscopic channels of B-BNS prevented the crystallization of IBU. In vitro release result revealed that B-BNS controlled IBU release with two release phases based on bimodal nanopores and improved dissolution in simulated gastric fluid due to crystalline conversion of IBU. It is convincible that biomimetic method provides novel theory and insight for synthesizing bimodal nanoporous silica, and unique functionalities of B-BNS as drug carrier can undoubtedly promote the application of bimodal nanoporous silica and development of pharmaceutical science.
Collapse
Affiliation(s)
- Jing Li
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua RD 103, 110016, China
| | - Lu Xu
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua RD 103, 110016, China.
| | - Nan Zheng
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua RD 103, 110016, China
| | - Hongyu Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua RD 103, 110016, China
| | - Fangzheng Lu
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua RD 103, 110016, China
| | - Sanming Li
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua RD 103, 110016, China.
| |
Collapse
|
85
|
Mesoporous CLEAs-silica composite microparticles with high activity and enhanced stability. Sci Rep 2015; 5:14203. [PMID: 26374188 PMCID: PMC4570996 DOI: 10.1038/srep14203] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Accepted: 08/20/2015] [Indexed: 12/29/2022] Open
Abstract
A novel enzyme immobilization approach was used to generate mesoporous enzymes-silica composite microparticles by co-entrapping gelatinized starch and cross-linked phenylalanine ammonia lyase (PAL) aggregates (CLEAs) containing gelatinized starch into biomemitic silica and subsequently removing the starch by α-amylase treatment. During the preparation process, the gelatinzed starch served as a pore-forming agent to create pores in CLEAs and biomimetic silica. The resulting mesoporous CLEAs-silica composite microparticles exhibited higher activity and stability than native PAL, conventional CLEAs, and PAL encapsulated in biomimetic silica. Furthermore, the mesoporous CLEAs-silica composite microparticles displayed good reusability due to its suitable size and mechanical properties, and had excellent stability for storage. The superior catalytic performances were attributed to the combinational unique structure from the intra-cross-linking among enzyme aggregates and hard mesoporous silica shell, which not only decreased the enzyme-support negative interaction and mass-transfer limitations, but also improved the mechanical properties and monodispersity. This approach will be highly beneficial for preparing various bioactive mesoporous composites with excellent catalytic performance.
Collapse
|
86
|
Ravera E, Michaelis VK, Ong TC, Keeler EG, Martelli T, Fragai M, Griffin RG, Luchinat C. Biosilica-Entrapped Enzymes Studied by Using Dynamic Nuclear-Polarization-Enhanced High-Field NMR Spectroscopy. Chemphyschem 2015; 16:2751-2754. [PMID: 26266832 PMCID: PMC4752418 DOI: 10.1002/cphc.201500549] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Indexed: 11/08/2022]
Abstract
Enzymes are used as environmentally friendly catalysts in many industrial applications, and are frequently immobilized in a matrix to improve their chemical stability for long-term storage and reusability. Recently, it was shown that an atomic-level description of proteins immobilized in a biosilica matrix can be attained by examining their magic-angle spinning (MAS) NMR spectra. However, even though MAS NMR is an excellent tool for determining structure, it is severely hampered by sensitivity. In this work we provide the proof of principle that NMR characterization of biosilica-entrapped enzymes could be assisted by high-field dynamic nuclear polarization (DNP).
Collapse
Affiliation(s)
- Enrico Ravera
- Magnetic Resonance Center (CERM) and Department of Chemistry “Ugo Schiff”, University of Florence, 50019 Sesto Fiorentino (FI), Italy
| | - Vladimir K. Michaelis
- Francis Bitter Magnet Laboratory and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Ta-Chung Ong
- Francis Bitter Magnet Laboratory and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Eric G. Keeler
- Francis Bitter Magnet Laboratory and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Tommaso Martelli
- Magnetic Resonance Center (CERM) and Department of Chemistry “Ugo Schiff”, University of Florence, 50019 Sesto Fiorentino (FI), Italy
| | - Marco Fragai
- Magnetic Resonance Center (CERM) and Department of Chemistry “Ugo Schiff”, University of Florence, 50019 Sesto Fiorentino (FI), Italy
| | - Robert G. Griffin
- Francis Bitter Magnet Laboratory and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Claudio Luchinat
- Magnetic Resonance Center (CERM) and Department of Chemistry “Ugo Schiff”, University of Florence, 50019 Sesto Fiorentino (FI), Italy
| |
Collapse
|
87
|
Constructing Biopolymer-Inorganic Nanocomposite through a Biomimetic Mineralization Process for Enzyme Immobilization. MATERIALS 2015; 8:6004-6017. [PMID: 28793547 PMCID: PMC5512666 DOI: 10.3390/ma8095286] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 07/15/2015] [Indexed: 02/03/2023]
Abstract
Inspired by biosilicification, biomimetic polymer-silica nanocomposite has aroused a lot of interest from the viewpoints of both scientific research and technological applications. In this study, a novel dual functional polymer, NH₂-Alginate, is synthesized through an oxidation-amination-reduction process. The "catalysis function" ensures the as-prepared NH₂-Alginate inducing biomimetic mineralization of silica from low concentration precursor (Na₂SiO₃), and the "template function" cause microscopic phase separation in aqueous solution. The diameter of resultant NH₂-Alginate micelles in aqueous solution distributed from 100 nm to 1.5 μm, and is influenced by the synthetic process of NH₂-Alginate. The size and morphology of obtained NH₂-Alginate/silica nanocomposite are correlated with the micelles. NH₂-Alginate/silica nanocomposite was subsequently utilized to immobilize β-Glucuronidase (GUS). The harsh condition tolerance and long-term storage stability of the immobilized GUS are notably improved due to the buffering effect of NH₂-Alginate and cage effect of silica matrix.
Collapse
|
88
|
Lechner CC, Becker CFW. Silaffins in Silica Biomineralization and Biomimetic Silica Precipitation. Mar Drugs 2015; 13:5297-333. [PMID: 26295401 PMCID: PMC4557024 DOI: 10.3390/md13085297] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 07/17/2015] [Accepted: 07/20/2015] [Indexed: 12/05/2022] Open
Abstract
Biomineralization processes leading to complex solid structures of inorganic material in biological systems are constantly gaining attention in biotechnology and biomedical research. An outstanding example for biomineral morphogenesis is the formation of highly elaborate, nano-patterned silica shells by diatoms. Among the organic macromolecules that have been closely linked to the tightly controlled precipitation of silica in diatoms, silaffins play an extraordinary role. These peptides typically occur as complex posttranslationally modified variants and are directly involved in the silica deposition process in diatoms. However, even in vitro silaffin-based peptides alone, with and without posttranslational modifications, can efficiently mediate biomimetic silica precipitation leading to silica material with different properties as well as with encapsulated cargo molecules of a large size range. In this review, the biomineralization process of silica in diatoms is summarized with a specific focus on silaffins and their in vitro silica precipitation properties. Applications in the area of bio- and nanotechnology as well as in diagnostics and therapy are discussed.
Collapse
Affiliation(s)
- Carolin C Lechner
- Swiss Federal Institute of Technology in Lausanne (EPFL), Fondation Sandoz Chair in Biophysical Chemistry of Macromolecules, 1015 Lausanne, Switzerland.
| | - Christian F W Becker
- Institute of Biological Chemistry, Department of Chemistry, University of Vienna, Währinger Straße 38, 1090 Vienna, Austria.
| |
Collapse
|
89
|
Han W, MacEwan SR, Chilkoti A, López GP. Bio-inspired synthesis of hybrid silica nanoparticles templated from elastin-like polypeptide micelles. NANOSCALE 2015; 7:12038-44. [PMID: 26114664 PMCID: PMC4499310 DOI: 10.1039/c5nr01407g] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The programmed self-assembly of block copolymers into higher order nanoscale structures offers many attractive attributes for the development of new nanomaterials for numerous applications including drug delivery and biosensing. The incorporation of biomimetic silaffin peptides in these block copolymers enables the formation of hybrid organic-inorganic materials, which can potentially enhance the utility and stability of self-assembled nanostructures. We demonstrate the design, synthesis and characterization of amphiphilic elastin-like polypeptide (ELP) diblock copolymers that undergo temperature-triggered self-assembly into well-defined spherical micelles. Genetically encoded incorporation of the silaffin R5 peptide at the hydrophilic terminus of the diblock ELP leads to presentation of the silaffin R5 peptide on the coronae of the micelles, which results in localized condensation of silica and the formation of near-monodisperse, discrete, sub-100 nm diameter hybrid ELP-silica particles. This synthesis method, can be carried out under mild reaction conditions suitable for bioactive materials, and will serve as the basis for the development and application of functional nanomaterials. Beyond silicification, the general strategies described herein may also be adapted for the synthesis of other biohybrid nanomaterials as well.
Collapse
Affiliation(s)
- Wei Han
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, USA.
| | | | | | | |
Collapse
|
90
|
Licsandru E, Petit E, Moldovan S, Ersen O, Barboiu M. Biomimetic Autocatalytic Synthesis of Organized Silica Hybrids. Eur J Inorg Chem 2015. [DOI: 10.1002/ejic.201500701] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Erol Licsandru
- Adaptive Supramolecular Nanosystems, Institut Europeen des Membranes, UMR‐CNRS 5635, ENSCM‐U, Place Eugene Bataillon CC047, 34095 Montpellier, France, http://www.nsa‐systems‐chemistry.fr
| | - Eddy Petit
- Adaptive Supramolecular Nanosystems, Institut Europeen des Membranes, UMR‐CNRS 5635, ENSCM‐U, Place Eugene Bataillon CC047, 34095 Montpellier, France, http://www.nsa‐systems‐chemistry.fr
| | - Simona Moldovan
- IPCMS‐Groupe Surfaces et Interfaces, CNRS‐ULP UMR 7504, 23 Rue du Loess BP 43, 67034 Strasbourg, France
| | - Ovidiu Ersen
- IPCMS‐Groupe Surfaces et Interfaces, CNRS‐ULP UMR 7504, 23 Rue du Loess BP 43, 67034 Strasbourg, France
| | - Mihail Barboiu
- Adaptive Supramolecular Nanosystems, Institut Europeen des Membranes, UMR‐CNRS 5635, ENSCM‐U, Place Eugene Bataillon CC047, 34095 Montpellier, France, http://www.nsa‐systems‐chemistry.fr
| |
Collapse
|
91
|
Cui J, Liang L, Han C, Lin Liu R. Stabilization of Phenylalanine Ammonia Lyase from Rhodotorula glutinis by Encapsulation in Polyethyleneimine-Mediated Biomimetic Silica. Appl Biochem Biotechnol 2015; 176:999-1011. [PMID: 25906687 DOI: 10.1007/s12010-015-1624-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Accepted: 04/06/2015] [Indexed: 02/03/2023]
Abstract
Phenylalanine ammonia lyase (PAL) from Rhodotorula glutinis was encapsulated within polyethyleneimine-mediated biomimetic silica. The main factors in the preparation of biomimetic silica were optimized by response surface methodology (RSM). Compared to free PAL (about 2 U), the encapsulated PAL retained more than 43 % of their initial activity after 1 h of incubation time at 60 °C, whereas free PAL lost most of activity in the same conditions. It was clearly indicated that the thermal stability of PAL was improved by encapsulation. Moreover, the encapsulated PAL exhibited the excellent stability of the enzyme against denaturants and storage stability, and pH stability was improved by encapsulation. Operational stability of 7 reaction cycles showed that the encapsulated PAL was stable. Nevertheless, the K m value of encapsulated PAL in biomimetic silica was higher than that of the free PAL due to lower total surface area and increased mass transfer resistance.
Collapse
Affiliation(s)
- Jiandong Cui
- Research Center for Fermentation Engineering of Hebei, College of Bioscience and Bioengineering, Hebei University of Science and Technology, 70 Yuhua East Road, Shijiazhang, 050018, People's Republic of China,
| | | | | | | |
Collapse
|
92
|
Seyfaee A, Neville F, Moreno-Atanasio R. Experimental Results and Theoretical Modeling of the Growth Kinetics of Polyamine-Derived Silica Particles. Ind Eng Chem Res 2015. [DOI: 10.1021/acs.iecr.5b00093] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ahmad Seyfaee
- School
of Engineering, The University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Frances Neville
- School
of Environmental and Life Sciences, The University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Roberto Moreno-Atanasio
- School
of Engineering, The University of Newcastle, Callaghan, New South Wales 2308, Australia
| |
Collapse
|
93
|
Wibowo D, Zhao CX, Middelberg APJ. Interfacial biomimetic synthesis of silica nanocapsules using a recombinant catalytic modular protein. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:1999-2007. [PMID: 25604437 DOI: 10.1021/la504684g] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
This paper reports interfacially driven synthesis of oil-core silica-shell nanocapsules using a rationally designed recombinant catalytic modular protein (ReCaMoP), in lieu of a conventional chemical surfactant. A 116-residue protein, D4S2, was designed by modularizing a surface-active protein module having four-helix bundle structure in bulk and a biosilicification-active peptide module rich in cationic residues. This modular combination design allowed the protein to be produced via the industrially relevant cell factory Escherichia coli with simplified purification conferred by thermostability engineered in design. Dynamic interfacial tension and thin film pressure balance were used to gain an overview of the protein behavior at macroscopic interfaces. Functionalities of D4S2 to make silica nanocapsules were demonstrated by facilitating formation and stabilization of pharmaceutically grade oil droplets through its surface-active module and then by directing nucleation and growth of a silica shell at the oil-water interface through its biosilicification-active module. Through these synergistic activities in D4S2, silica nanocapsules could be formed at near-neutral pH and ambient temperature without using any organic solvents that might have negative environmental and sustainability impacts. This work introduces parallelization of biomolecular, scale-up and interfacial catalytic design strategies for the ultimate development of sustainable and scalable production of a recombinant modular protein that is able to catalyze synthesis of oil-filled silica nanocapsules under environmentally friendly conditions, suitable for use as controlled-release nanocarriers of various actives in biomedical and agricultural applications.
Collapse
Affiliation(s)
- David Wibowo
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland , St. Lucia QLD 4072, Australia
| | | | | |
Collapse
|
94
|
Faure J, Drevet R, Lemelle A, Ben Jaber N, Tara A, El Btaouri H, Benhayoune H. A new sol–gel synthesis of 45S5 bioactive glass using an organic acid as catalyst. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 47:407-12. [DOI: 10.1016/j.msec.2014.11.045] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Revised: 10/10/2014] [Accepted: 11/11/2014] [Indexed: 12/20/2022]
|
95
|
Liu B, Cao Y, Huang Z, Duan Y, Che S. Silica biomineralization via the self-assembly of helical biomolecules. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2015; 27:479-97. [PMID: 25339438 DOI: 10.1002/adma.201401485] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 07/06/2014] [Indexed: 05/27/2023]
Abstract
The biomimetic synthesis of relevant silica materials using biological macromolecules as templates via silica biomineralization processes attract rapidly rising attention toward natural and artificial materials. Biomimetic synthesis studies are useful for improving the understanding of the formation mechanism of the hierarchical structures found in living organisms (such as diatoms and sponges) and for promoting significant developments in the biotechnology, nanotechnology and materials chemistry fields. Chirality is a ubiquitous phenomenon in nature and is an inherent feature of biomolecular components in organisms. Helical biomolecules, one of the most important types of chiral macromolecules, can self-assemble into multiple liquid-crystal structures and be used as biotemplates for silica biomineralization, which renders them particularly useful for fabricating complex silica materials under ambient conditions. Over the past two decades, many new silica materials with hierarchical structures and complex morphologies have been created using helical biomolecules. In this review, the developments in this field are described and the recent progress in silica biomineralization templating using several classes of helical biomolecules, including DNA, polypeptides, cellulose and rod-like viruses is summarized. Particular focus is placed on the formation mechanism of biomolecule-silica materials (BSMs) with hierarchical structures. Finally, current research challenges and future developments are discussed in the conclusion.
Collapse
Affiliation(s)
- Ben Liu
- School of Chemistry and Chemical Technology, State Key Laboratory of Composite Materials, Shanghai Jiao Tong University, Shanghai, 200240, China
| | | | | | | | | |
Collapse
|
96
|
Abacilar M, Daus F, Geyer A. Chemoselective silicification of synthetic peptides and polyamines. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2015; 6:103-110. [PMID: 25671155 PMCID: PMC4311759 DOI: 10.3762/bjnano.6.10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 12/03/2014] [Indexed: 05/31/2023]
Abstract
Biosilicification sets the standard for the localized in vitro precipitation of silica at low orthosilicate concentrations in aqueous environment under ambient conditions. Numerous parameters must be controlled for the development of new technologies in designing inventive nanosilica structures, which are able to challenge the biological templates. A long neglected requirement that came into focus in the recent years are the cellular techniques of preventing unintentional lithification of cellular structures since numerous cellular components such as membranes, DNA, and proteins are known to precipitate nanosilica. The diatom metabolism makes use of techniques that restrict silicification to an armor of silica around the cell wall while avoiding the petrifying gaze of Medusa, which turns the whole cell into stone. Step by step, biochemistry unveils the hierarchical interplay of an arsenal of low-molecular weight molecules, proteins, and the cytoskeletal architecture and it becomes clearer why the organisms invest much metabolic effort for an obviously simple chemical reaction like the precipitation of amorphous silica. The discrimination between different soluble components in the silicification process (chemoselective silicification) is not only vitally important for the diatom but poses an interesting challenge for in vitro experiments. Until now, silica precipitation studies were mainly focused on the amount, the morphology, and composition of the precipitate while disregarding a quantitative analysis of the remaining soluble components. Here, we turn the tables and quantify the soluble components by (1)H NMR in the progress of precipitation and present experiments which quantify the additivity, and potential cooperativity of long chain polyamines (LCPAs) and cationic peptides in the silicification process.
Collapse
Affiliation(s)
- Maryna Abacilar
- Faculty of Chemistry, Philipps-Universität Marburg, 35032 Marburg, Germany
| | - Fabian Daus
- Faculty of Chemistry, Philipps-Universität Marburg, 35032 Marburg, Germany
| | - Armin Geyer
- Faculty of Chemistry, Philipps-Universität Marburg, 35032 Marburg, Germany
| |
Collapse
|
97
|
Ehrlich H, Witkowski A. Biomineralization in Diatoms: The Organic Templates. BIOLOGICALLY-INSPIRED SYSTEMS 2015. [DOI: 10.1007/978-94-017-9398-8_3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
98
|
Abstract
The recent research progress in biological and biomedical applications of hyperbranched polymers has been summarized in this review.
Collapse
Affiliation(s)
- Dali Wang
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- 200240 Shanghai
- P. R. China
| | - Tianyu Zhao
- Charles Institute of Dermatology
- School of Medicine and Medical Science
- University College Dublin
- Dublin 4
- Ireland
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- 200240 Shanghai
- P. R. China
| | - Deyue Yan
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- 200240 Shanghai
- P. R. China
| | - Wenxin Wang
- Charles Institute of Dermatology
- School of Medicine and Medical Science
- University College Dublin
- Dublin 4
- Ireland
| |
Collapse
|
99
|
Senior L, Crump MP, Williams C, Booth PJ, Mann S, Perriman AW, Curnow P. Structure and function of the silicifying peptide R5. J Mater Chem B 2015; 3:2607-2614. [DOI: 10.1039/c4tb01679c] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The first detailed description of the structure and function of the silicifying peptide R5.
Collapse
Affiliation(s)
- Laura Senior
- School of Biochemistry
- University of Bristol
- UK
- Bristol Centre for Functional Nanomaterials
- University of Bristol
| | | | | | | | | | - Adam W. Perriman
- School of Cellular and Molecular Medicine
- University of Bristol
- UK
| | - Paul Curnow
- School of Biochemistry
- University of Bristol
- UK
| |
Collapse
|
100
|
Wibowo D, Zhao CX, Peters BC, Middelberg APJ. Sustained release of fipronil insecticide in vitro and in vivo from biocompatible silica nanocapsules. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:12504-11. [PMID: 25479362 DOI: 10.1021/jf504455x] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
A pesticide delivery system made of biocompatible components and having sustained release properties is highly desirable for agricultural applications. In this study, we report a new biocompatible oil-core silica-shell nanocapsule for sustained release of fipronil insecticide. Silica nanocapsules were prepared by a recently reported emulsion and biomimetic dual-templating approach under benign conditions and without using any toxic chemicals. The loading of fipronil was achieved by direct dissolution in the oil core prior to biomimetic growth of a layer of silica shell surrounding the core, with encapsulation efficiency as high as 73%. Sustained release of fipronil in vitro was tunable through control of the silica-shell thickness (i.e., 8-44 nm). In vivo laboratory tests showed that the insecticidal effect of the fipronil-encapsulated silica nanocapsules against economically important subterranean termites could be controlled by tuning the shell thickness. These studies demonstrated the effectiveness and tunability of an environmentally friendly sustained release system for insecticide, which has great potential for broader agricultural applications with minimal environmental risks.
Collapse
Affiliation(s)
- David Wibowo
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland , St Lucia, QLD 4072, Australia
| | | | | | | |
Collapse
|