51
|
Orman S, Hofstetter C, Aksu A, Reinauer F, Liska R, Baudis S. Toughness enhancers for bone scaffold materials based on biocompatible photopolymers. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/pola.29273] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Sandra Orman
- Institute of Applied Synthetic ChemistryTU WienGetreidemarkt 9/163, A‐1060, ViennaAustria
- Austrian Cluster for Tissue RegenerationViennaAustria
| | - Christoph Hofstetter
- Institute of Materials Science and TechnologyTU WienGetreidemarkt 9/308, A‐1060, ViennaAustria
- Austrian Cluster for Tissue RegenerationViennaAustria
| | - Adem Aksu
- Karl Leibinger Medizintechnik GmbH & Co. KGKolbinger Str. 10, D‐78570, Mühlheim Germany
| | - Frank Reinauer
- Karl Leibinger Medizintechnik GmbH & Co. KGKolbinger Str. 10, D‐78570, Mühlheim Germany
| | - Robert Liska
- Institute of Applied Synthetic ChemistryTU WienGetreidemarkt 9/163, A‐1060, ViennaAustria
- Austrian Cluster for Tissue RegenerationViennaAustria
| | - Stefan Baudis
- Institute of Applied Synthetic ChemistryTU WienGetreidemarkt 9/163, A‐1060, ViennaAustria
- Austrian Cluster for Tissue RegenerationViennaAustria
| |
Collapse
|
52
|
Dhillon J, Young SA, Sherman SE, Bell GI, Amsden BG, Hess DA, Flynn LE. Peptide-modified methacrylated glycol chitosan hydrogels as a cell-viability supporting pro-angiogenic cell delivery platform for human adipose-derived stem/stromal cells. J Biomed Mater Res A 2018; 107:571-585. [PMID: 30390406 DOI: 10.1002/jbm.a.36573] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/26/2018] [Accepted: 10/27/2018] [Indexed: 12/18/2022]
Abstract
Cell-based therapies involving the injection of adipose-derived stem/stromal cells (ASCs) within rationally designed biomaterials are a promising approach for stimulating angiogenesis. With this focus, the current work explored the effects of incorporating integrin-binding RGD or IKVAV peptides within in situ-gelling N-methacrylate glycol chitosan (MGC) hydrogels on the response of encapsulated human ASCs. Initial studies focused on hydrogel characterization to validate that the MGC, MGC-RGD, and MGC-IKVAV hydrogels had similar biomechanical properties. ASC viability following encapsulation and culture under 2% O2 was significantly impaired in the MGC-IKVAV group relative to the MGC and MGC-RGD groups. In contrast, sustained viability, along with enhanced cell spreading and metabolic activity were observed in the MGC-RGD group. Investigation of angiogenic transcription suggested that the incorporation of the peptide groups did not substantially alter the pro-angiogenic gene expression profile of the encapsulated ASCs after 7 days of culture under 2% O2. Consistent with the in vitro findings, preliminary in vivo characterization following subcutaneous implantation into NOD/SCID mice showed that ASC retention was enhanced in the MGC-RGD hydrogels relative to the MGC-IKVAV group at 14 days. Further, the encapsulated ASCs in the MGC and MGC-RGD groups promoted murine CD31+ endothelial cell recruitment to the peri-implant region. Overall, the results indicate that the MGC-RGD and MGC hydrogels are promising platforms for ASC delivery, and suggest that strategies that support long-term ASC viability can augment in vivo angiogenesis through paracrine mechanisms. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 107A: 571-585, 2019.
Collapse
Affiliation(s)
- Jobanpreet Dhillon
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, N6A 3K7, Canada.,Krembil Centre for Stem Cell Biology, Molecular Medicine Research Laboratories, Robarts Research Institute, London, Ontario, N6A 5B7, Canada
| | - Stuart A Young
- Department of Chemical Engineering, Queen's University, Kingston, Ontario, K7L 3N6, Canada.,Human Mobility Research Centre, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Stephen E Sherman
- Krembil Centre for Stem Cell Biology, Molecular Medicine Research Laboratories, Robarts Research Institute, London, Ontario, N6A 5B7, Canada.,Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Gillian I Bell
- Krembil Centre for Stem Cell Biology, Molecular Medicine Research Laboratories, Robarts Research Institute, London, Ontario, N6A 5B7, Canada.,Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Brian G Amsden
- Department of Chemical Engineering, Queen's University, Kingston, Ontario, K7L 3N6, Canada.,Human Mobility Research Centre, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - David A Hess
- Krembil Centre for Stem Cell Biology, Molecular Medicine Research Laboratories, Robarts Research Institute, London, Ontario, N6A 5B7, Canada.,Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Lauren E Flynn
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, N6A 3K7, Canada.,Department of Chemical and Biochemical Engineering, Thompson Engineering Building, The University of Western Ontario, London, Ontario, N6A 5B9, Canada
| |
Collapse
|
53
|
Holloway JO, Mertens C, Du Prez FE, Badi N. Automated Synthesis Protocol of Sequence-Defined Oligo-Urethane-Amides Using Thiolactone Chemistry. Macromol Rapid Commun 2018; 40:e1800685. [DOI: 10.1002/marc.201800685] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 10/19/2018] [Indexed: 12/28/2022]
Affiliation(s)
- Joshua O. Holloway
- Polymer Chemistry Research Group; Centre of Macromolecular Chemistry; Department of Organic and Macromolecular Chemistry; Faculty of Sciences, Ghent University; Krijgslaan 281 S4-bis B-9000 Ghent Belgium
| | - Chiel Mertens
- Polymer Chemistry Research Group; Centre of Macromolecular Chemistry; Department of Organic and Macromolecular Chemistry; Faculty of Sciences, Ghent University; Krijgslaan 281 S4-bis B-9000 Ghent Belgium
| | - Filip E. Du Prez
- Polymer Chemistry Research Group; Centre of Macromolecular Chemistry; Department of Organic and Macromolecular Chemistry; Faculty of Sciences, Ghent University; Krijgslaan 281 S4-bis B-9000 Ghent Belgium
| | - Nezha Badi
- Polymer Chemistry Research Group; Centre of Macromolecular Chemistry; Department of Organic and Macromolecular Chemistry; Faculty of Sciences, Ghent University; Krijgslaan 281 S4-bis B-9000 Ghent Belgium
- Institut Charles Sadron; CNRS, Université de Strasbourg; F-67000 Strasbourg France
| |
Collapse
|
54
|
Stewart SA, Coulson MB, Zhou C, Burke NAD, Stöver HDH. Synthetic hydrogels formed by thiol-ene crosslinking of vinyl sulfone-functional poly(methyl vinyl ether-alt-maleic acid) with α,ω-dithio-polyethyleneglycol. SOFT MATTER 2018; 14:8317-8324. [PMID: 30288534 DOI: 10.1039/c8sm01066h] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Polymer hydrogels formed by rapid thiol-ene coupling of macromolecular gel formers can offer access to versatile new matrices. This paper describes the efficient synthesis of cysteamine vinyl sulfone (CVS) trifluoroacetate, and its incorporation into poly(methyl vinyl ether-alt-maleic anhydride) (PMMAn) to form a series of CVS-functionalized poly(methyl vinyl ether-alt-maleic acid) polymers (PMM-CVSx) containing 10 to 30 mol% pendant vinyl sulfone groups. Aqueous mixtures of these PMM-CVS and a dithiol crosslinker, α,ω-dithio-polyethyleneglycol (HS-PEG-SH, Mn = 1 kDa), gelled through crosslinking by Michael addition within seconds to minutes, depending on pH, degree of functionalization, and polymer loading. Gelation efficiency, Young's modulus, equilibrium swelling and hydrolytic stability are described, and step-wise hydrogel post-functionalization with a small molecule thiol, cysteamine, was demonstrated. Cytocompatibility of these crosslinked hydrogels towards entrapped 3T3 fibroblasts was confirmed using a live/dead fluorescence assay.
Collapse
Affiliation(s)
- S A Stewart
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1, Canada.
| | - M B Coulson
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1, Canada.
| | - C Zhou
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1, Canada.
| | - N A D Burke
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1, Canada.
| | - H D H Stöver
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1, Canada.
| |
Collapse
|
55
|
Klahan B, Seidi F, Crespy D. Oligo(thioether-ester)s Blocks in Polyurethanes for Slowly Releasing Active Payloads. MACROMOL CHEM PHYS 2018. [DOI: 10.1002/macp.201800392] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Butsabarat Klahan
- Department of Materials Science and Engineering; School of Molecular Science and Engineering; Vidyasirimedhi Institute of Science and Technology; Rayong 21210 Thailand
| | - Farzad Seidi
- Department of Materials Science and Engineering; School of Molecular Science and Engineering; Vidyasirimedhi Institute of Science and Technology; Rayong 21210 Thailand
| | - Daniel Crespy
- Department of Materials Science and Engineering; School of Molecular Science and Engineering; Vidyasirimedhi Institute of Science and Technology; Rayong 21210 Thailand
| |
Collapse
|
56
|
Celentano W, Battistella J, Silvestri IP, Bruni R, Huang X, Li M, Messa P, Ordanini S, Cellesi F. Engineered polyester-PEG nanoparticles prepared through a “grafting through” strategy and post-functionalization via Michael type addition. REACT FUNCT POLYM 2018. [DOI: 10.1016/j.reactfunctpolym.2018.07.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
57
|
Gopinathan J, Noh I. Click Chemistry-Based Injectable Hydrogels and Bioprinting Inks for Tissue Engineering Applications. Tissue Eng Regen Med 2018; 15:531-546. [PMID: 30603577 PMCID: PMC6171698 DOI: 10.1007/s13770-018-0152-8] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 07/27/2018] [Accepted: 07/30/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The tissue engineering and regenerative medicine approach require biomaterials which are biocompatible, easily reproducible in less time, biodegradable and should be able to generate complex three-dimensional (3D) structures to mimic the native tissue structures. Click chemistry offers the much-needed multifunctional hydrogel materials which are interesting biomaterials for the tissue engineering and bioprinting inks applications owing to their excellent ability to form hydrogels with printability instantly and to retain the live cells in their 3D network without losing the mechanical integrity even under swollen state. METHODS In this review, we present the recent developments of in situ hydrogel in the field of click chemistry reported for the tissue engineering and 3D bioinks applications, by mainly covering the diverse types of click chemistry methods such as Diels-Alder reaction, strain-promoted azide-alkyne cycloaddition reactions, thiol-ene reactions, oxime reactions and other interrelated reactions, excluding enzyme-based reactions. RESULTS The click chemistry-based hydrogels are formed spontaneously on mixing of reactive compounds and can encapsulate live cells with high viability for a long time. The recent works reported by combining the advantages of click chemistry and 3D bioprinting technology have shown to produce 3D tissue constructs with high resolution using biocompatible hydrogels as bioinks and in situ injectable forms. CONCLUSION Interestingly, the emergence of click chemistry reactions in bioink synthesis for 3D bioprinting have shown the massive potential of these reaction methods in creating 3D tissue constructs. However, the limitations and challenges involved in the click chemistry reactions should be analyzed and bettered to be applied to tissue engineering and 3D bioinks. The future scope of these materials is promising, including their applications in in situ 3D bioprinting for tissue or organ regeneration.
Collapse
Affiliation(s)
- Janarthanan Gopinathan
- Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology (Seoul Tech), 232 Gongneung-ro, Nowon-Gu, Seoul, 01811 Republic of Korea
- Convergence Institute of Biomedical Engineering and Biomaterials, Seoul National University of Science and Technology (Seoul Tech), 232 Gongneung-ro, Nowon-Gu, Seoul, 01811 Republic of Korea
| | - Insup Noh
- Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology (Seoul Tech), 232 Gongneung-ro, Nowon-Gu, Seoul, 01811 Republic of Korea
- Convergence Institute of Biomedical Engineering and Biomaterials, Seoul National University of Science and Technology (Seoul Tech), 232 Gongneung-ro, Nowon-Gu, Seoul, 01811 Republic of Korea
| |
Collapse
|
58
|
Kröger AP, Hamelmann NM, Juan A, Lindhoud S, Paulusse JMJ. Biocompatible Single-Chain Polymer Nanoparticles for Drug Delivery-A Dual Approach. ACS APPLIED MATERIALS & INTERFACES 2018; 10:30946-30951. [PMID: 30152672 PMCID: PMC6148439 DOI: 10.1021/acsami.8b07450] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 08/28/2018] [Indexed: 06/08/2023]
Abstract
Single-chain polymer nanoparticles (SCNPs) are protein-inspired materials based on intramolecularly cross-linked polymer chains. We report here the development of SCNPs as uniquely sized nanocarriers that are capable of drug encapsulation independent of the polarity of the employed medium. Synthetic routes are presented for SCNP preparation in both organic and aqueous environments. Importantly, the SCNPs in organic media were successfully rendered water soluble, resulting in two complementary pathways toward water-soluble SCNPs with comparable resultant physicochemical characteristics. The solvatochromic dye Nile red was successfully encapsulated inside the SCNPs following both pathways, enabling probing of the SCNP interior. Moreover, the antibiotic rifampicin was encapsulated in organic medium, the loaded nanocarriers were rendered water soluble, and a controlled release of rifampicin was evidenced. The absence of discernible cytotoxic effects and promising cellular uptake behavior bode well for the application of SCNPs in controlled therapeutics delivery.
Collapse
Affiliation(s)
- A. Pia
P. Kröger
- Department
of Biomolecular Nanotechnology, MESA+ Institute for Nanotechnology
and TechMed Institute for Health and Biomedical Technologies, Faculty
of Science and Technology, Department of Molecular NanoFabrication, MESA+ Institute
for Nanotechnology, Faculty of Science and Technology, and Department of
Nanobiophysics, MESA+ Institute for Nanotechnology, Faculty of Science
and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Naomi M. Hamelmann
- Department
of Biomolecular Nanotechnology, MESA+ Institute for Nanotechnology
and TechMed Institute for Health and Biomedical Technologies, Faculty
of Science and Technology, Department of Molecular NanoFabrication, MESA+ Institute
for Nanotechnology, Faculty of Science and Technology, and Department of
Nanobiophysics, MESA+ Institute for Nanotechnology, Faculty of Science
and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Alberto Juan
- Department
of Biomolecular Nanotechnology, MESA+ Institute for Nanotechnology
and TechMed Institute for Health and Biomedical Technologies, Faculty
of Science and Technology, Department of Molecular NanoFabrication, MESA+ Institute
for Nanotechnology, Faculty of Science and Technology, and Department of
Nanobiophysics, MESA+ Institute for Nanotechnology, Faculty of Science
and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Saskia Lindhoud
- Department
of Biomolecular Nanotechnology, MESA+ Institute for Nanotechnology
and TechMed Institute for Health and Biomedical Technologies, Faculty
of Science and Technology, Department of Molecular NanoFabrication, MESA+ Institute
for Nanotechnology, Faculty of Science and Technology, and Department of
Nanobiophysics, MESA+ Institute for Nanotechnology, Faculty of Science
and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Jos M. J. Paulusse
- Department
of Biomolecular Nanotechnology, MESA+ Institute for Nanotechnology
and TechMed Institute for Health and Biomedical Technologies, Faculty
of Science and Technology, Department of Molecular NanoFabrication, MESA+ Institute
for Nanotechnology, Faculty of Science and Technology, and Department of
Nanobiophysics, MESA+ Institute for Nanotechnology, Faculty of Science
and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
- Department
of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen,
P.O. Box 30.001, 9700 RB Groningen, The Netherlands
| |
Collapse
|
59
|
Yu Z, Jin Z, Duan M, Bai R, Lu Y, Lan Y. Toward a Predictive Understanding of Phosphine-Catalyzed [3 + 2] Annulation of Allenoates with Acrylate or Imine. J Org Chem 2018; 83:9729-9740. [PMID: 30113828 DOI: 10.1021/acs.joc.8b01259] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Both theoretical and experimental studies were performed to explore the mechanism, regioselectivity, and enantioselectivity of phosphine-catalyzed [3 + 2] annulation between allenoates and acrylate or imine. Using density functional theory computations, we predicted that the enantioselective determining step is the nucleophilic addition of acrylate or imine to the catalyst-activated allenoate. In the key step, we proposed two hydrogen bonding interaction models (intermolecular H-bond model and intramolecular H-bond model). For acrylate substrates, the reaction proceeds via the intramolecular H-bond model and the strong noncovalent interactions between the 2-naphthyl ester moiety lead to the re-face attack pathway being more favorable. For imine substrates, the intermolecular H-bond model operates. In the annulation process, the bulky n-propyl oriented toward a crowded, sterically demanding environment plays a significant role in asymmetric induction. The theoretical calculation results agreed with experimental observations, and these results provide valuable insight into catalyst design and understanding of mechanisms of related reactions.
Collapse
Affiliation(s)
- Zhaoyuan Yu
- School of Chemistry and Chemical Engineering , Chongqing University , Chongqing 400030 , China.,Department of Chemistry , National University of Singapore , 3 Science Drive 3 , Singapore 117543 , Singapore
| | - Zhichao Jin
- Department of Chemistry , National University of Singapore , 3 Science Drive 3 , Singapore 117543 , Singapore
| | - Meng Duan
- School of Chemistry and Chemical Engineering , Chongqing University , Chongqing 400030 , China
| | - Ruopeng Bai
- School of Chemistry and Chemical Engineering , Chongqing University , Chongqing 400030 , China
| | - Yixin Lu
- Department of Chemistry , National University of Singapore , 3 Science Drive 3 , Singapore 117543 , Singapore
| | - Yu Lan
- College of Chemistry and Molecular Engineering , Zhengzhou University , Zhengzhou 450001 , China.,School of Chemistry and Chemical Engineering , Chongqing University , Chongqing 400030 , China
| |
Collapse
|
60
|
Frayne SH, Northrop BH. Evaluating Nucleophile Byproduct Formation during Phosphine- and Amine-Promoted Thiol-Methyl Acrylate Reactions. J Org Chem 2018; 83:10370-10382. [PMID: 30132329 DOI: 10.1021/acs.joc.8b01471] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The commonly accepted mechanism of nucleophile-initiated thiol-acrylate reactions requires the formation of undesired nucleophile byproducts. A systematic evaluation of the formation of such nucleophile byproducts has been carried out to understand the relationships between byproduct formation and nucleophile structure, stoichiometry, solvent, and reaction type. Three common nucleophiles for thiol-Michael reactions were investigated: dimethylphenylphosphine (DMPP), diethylamine (DEA), and hexylamine (HA). The formation of phosphonium ester and aza-Michael byproducts upon initiating a representative thiol-acrylate reaction between 1-hexanethiol and methyl acrylate at a range of initiator loading (0.01-10.0 equiv) and in different solvents (neat, DMSO, THF, and CHCl3) was determined by 1H NMR spectroscopy. The influence of reaction type was investigated by expanding from small molecule reactions to end group thiol-acrylate functionalization of PEG-diacrylate polymers and through investigations of polymer-polymer coupling reactions. Results indicate that the propensity of forming nucleophile byproducts varies with nucleophile type, solvent, and reaction type. Interestingly, for all but polymer-polymer ligation reactions, nucleophile byproduct formation is largely unobserved for nitrogen-centered nucleophiles DEA and HA and essentially nonexistent for the phorphorous-centered nucleophile DMPP. A rationale for the differences in nucleophile byproduct formation for DMPP, DEA, and HA is proposed and supported by experimental and computational analysis.
Collapse
Affiliation(s)
- Stephen H Frayne
- Department of Chemistry , Wesleyan University , Middletown , Connecticut 06459 , United States
| | - Brian H Northrop
- Department of Chemistry , Wesleyan University , Middletown , Connecticut 06459 , United States
| |
Collapse
|
61
|
Synthesis and characterization of poly(ethylene glycol) acrylate (PEGA) copolymers for application as polymeric phase change materials (PCMs). REACT FUNCT POLYM 2018. [DOI: 10.1016/j.reactfunctpolym.2018.05.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
62
|
Huang S, Sinha J, Podgórski M, Zhang X, Claudino M, Bowman CN. Mechanistic Modeling of the Thiol–Michael Addition Polymerization Kinetics: Structural Effects of the Thiol and Vinyl Monomers. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b01264] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Sijia Huang
- Department of Chemical and Biological Engineering, University of Colorado Boulder, 596 UCB, Boulder, Colorado 80309-0596, United States
| | - Jasmine Sinha
- Department of Chemical and Biological Engineering, University of Colorado Boulder, 596 UCB, Boulder, Colorado 80309-0596, United States
| | - Maciej Podgórski
- Department of Chemical and Biological Engineering, University of Colorado Boulder, 596 UCB, Boulder, Colorado 80309-0596, United States
- Department of Polymer Chemistry, Faculty of Chemistry, MCS University, Gliniana St. 33, 20-614 Lublin, Poland
| | - Xinpeng Zhang
- Department of Chemical and Biological Engineering, University of Colorado Boulder, 596 UCB, Boulder, Colorado 80309-0596, United States
| | - Mauro Claudino
- Department of Chemical and Biological Engineering, University of Colorado Boulder, 596 UCB, Boulder, Colorado 80309-0596, United States
| | - Christopher N. Bowman
- Department of Chemical and Biological Engineering, University of Colorado Boulder, 596 UCB, Boulder, Colorado 80309-0596, United States
| |
Collapse
|
63
|
Hayashi M, Shibata K, Kawarazaki I, Takasu A. Simple Strategy for Dual Control of Crystallization and Thermal Property on Polyesters by Dispersing Metal Salts Via Multiple Coordination Bonds. MACROMOL CHEM PHYS 2018. [DOI: 10.1002/macp.201800127] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Mikihiro Hayashi
- Department of Life Science and Applied Chemistry; Graduated School of Engineering; Nagoya Institute of Technology; Gokiso-cho Showa-ku Nagoya-city Aichi 466-8555 Japan
| | - Keisuke Shibata
- Department of Life Science and Applied Chemistry; Graduated School of Engineering; Nagoya Institute of Technology; Gokiso-cho Showa-ku Nagoya-city Aichi 466-8555 Japan
| | - Isamu Kawarazaki
- Department of Life Science and Applied Chemistry; Graduated School of Engineering; Nagoya Institute of Technology; Gokiso-cho Showa-ku Nagoya-city Aichi 466-8555 Japan
| | - Akinori Takasu
- Department of Life Science and Applied Chemistry; Graduated School of Engineering; Nagoya Institute of Technology; Gokiso-cho Showa-ku Nagoya-city Aichi 466-8555 Japan
| |
Collapse
|
64
|
Tan S, Li D, Zhang Y, Niu Z, Zhang Z. Base Catalyzed Thiol-Ene Click Chemistry toward Inner CHCF Bonds for Controlled Functionalization of Poly(vinylidene fluoride). MACROMOL CHEM PHYS 2018. [DOI: 10.1002/macp.201700632] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Shaobo Tan
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter; Department of Applied Chemistry; School of Science; Xi'an Jiaotong University; Xi'an 710049 China
| | - Dan Li
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter; Department of Applied Chemistry; School of Science; Xi'an Jiaotong University; Xi'an 710049 China
| | - Yanan Zhang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter; Department of Applied Chemistry; School of Science; Xi'an Jiaotong University; Xi'an 710049 China
| | - Zhijing Niu
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter; Department of Applied Chemistry; School of Science; Xi'an Jiaotong University; Xi'an 710049 China
| | - Zhicheng Zhang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter; Department of Applied Chemistry; School of Science; Xi'an Jiaotong University; Xi'an 710049 China
| |
Collapse
|
65
|
Salin AV, Il'in AV, Faskhutdinov RI, Galkin VI, Islamov DR, Kataeva ON. Tributylphosphine catalyzed addition of diphenylphosphine oxide to unsubstituted and substituted electron-deficient alkenes. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.03.040] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
66
|
Sinha J, Podgórski M, Huang S, Bowman CN. Multifunctional monomers based on vinyl sulfonates and vinyl sulfonamides for crosslinking thiol-Michael polymerizations: monomer reactivity and mechanical behavior. Chem Commun (Camb) 2018; 54:3034-3037. [PMID: 29512665 DOI: 10.1039/c8cc00782a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Multifunctional vinyl sulfonates and vinyl sulfonamides were conveniently synthesized and assessed in thiol-Michael crosslinking polymerizations. The monomer reactivities, mechanical behavior and hydrolytic properties were analyzed and compared with those of analogous thiol-acrylate polymerizations. Materials with a broad range of mechanical properties and diverse hydrolytic stabilities were obtained.
Collapse
Affiliation(s)
- Jasmine Sinha
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO, USA.
| | - Maciej Podgórski
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO, USA. and Department of Polymer Chemistry, Faculty of Chemistry, MCS University, Gliniana St. 33, Lublin 20-614, Poland
| | - Sijia Huang
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO, USA.
| | - Christopher N Bowman
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO, USA.
| |
Collapse
|
67
|
Konuray O, Fernández-Francos X, Ramis X, Serra À. State of the Art in Dual-Curing Acrylate Systems. Polymers (Basel) 2018; 10:E178. [PMID: 30966214 PMCID: PMC6415122 DOI: 10.3390/polym10020178] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 02/06/2018] [Accepted: 02/07/2018] [Indexed: 11/16/2022] Open
Abstract
Acrylate chemistry has found widespread use in dual-curing systems over the years. Acrylates are cheap, easily handled and versatile monomers that can undergo facile chain-wise or step-wise polymerization reactions that are mostly of the "click" nature. Their dual-curing processes yield two distinct and temporally stable sets of material properties at each curing stage, thereby allowing process flexibility. The review begins with an introduction to acrylate-based click chemistries behind dual-curing systems and relevant reaction mechanisms. It then provides an overview of reaction combinations that can be encountered in these systems. It finishes with a survey of recent and breakthrough research in acrylate dual-curing materials for shape memory polymers, optical materials, photolithography, protective coatings, structured surface topologies, and holographic materials.
Collapse
Affiliation(s)
- Osman Konuray
- Thermodynamics Laboratory, ETSEIB, Universitat Politècnica de Catalunya, Av. Diagonal 647, 08028 Barcelona, Spain.
| | - Xavier Fernández-Francos
- Thermodynamics Laboratory, ETSEIB, Universitat Politècnica de Catalunya, Av. Diagonal 647, 08028 Barcelona, Spain.
| | - Xavier Ramis
- Thermodynamics Laboratory, ETSEIB, Universitat Politècnica de Catalunya, Av. Diagonal 647, 08028 Barcelona, Spain.
| | - Àngels Serra
- Department of Analytical and Organic Chemistry, Universitat Rovira i Virgili, C/Marcel·lí Domingo s/n, 43007 Tarragona, Spain.
| |
Collapse
|
68
|
Konuray O, Fernández-Francos X, Ramis X, Serra À. New allyl-functional catalytic comonomers for sequential thiol-Michael and radical thiol-ene reactions. POLYMER 2018. [DOI: 10.1016/j.polymer.2018.01.073] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
69
|
Curing kinetics and characterization of dual-curable thiol-acrylate-epoxy thermosets with latent reactivity. REACT FUNCT POLYM 2018. [DOI: 10.1016/j.reactfunctpolym.2017.11.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
70
|
Konuray AO, Ruiz A, Morancho JM, Salla JM, Fernández-Francos X, Serra À, Ramis X. Sequential dual curing by selective Michael addition and free radical polymerization of acetoacetate-acrylate-methacrylate mixtures. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2017.11.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
71
|
Zeng FR, Ma JM, Sun LH, Zeng Z, Jiang H, Li ZL. Hyperbranched Aliphatic Polyester via Cross-Metathesis Polymerization: Synthesis and Postpolymerization Modification. Macromol Rapid Commun 2017; 39. [PMID: 29250866 DOI: 10.1002/marc.201700658] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 10/24/2017] [Indexed: 12/20/2022]
Abstract
A novel postpolymerization modification methodology is demonstrated to achieve selective functionalization of hyperbranched polymer (HBP). Terminal and internal acrylates of HBP derived from cross-metathesis polymerization (CMP) are functionalized in a chemoselective fashion using the thiol-Michael chemistries. Model reactions between different thiols (benzyl mercaptan and methyl thioglycolate) and acrylates (n-hexyl acrylate and ethyl trans-2-decenoate) by using dimethylphenylphosphine or amylamine as the catalyst are investigated to optimize the modification protocol for HBP. High-molecular-weight HBP P0 is generated through CMP of AB2 monomer 2, a compound containing one α-olefin and two acrylate metathetically polymerizable groups. CMP kinetics is monitored by NMR and gel permeation chromatography (GPC). Accordingly, microstructural analysis is conducted in detail, and CMP procedure is optimized. Postpolymerization modification of HBP P0 is performed via two distinguished strategies, namely one-step complete modification and sequential modification, to generate terminally and/or internally functionalized HBPs P1-P3 in a chemoselective fashion by using phosphine-initiated and/or base-catalyzed thiol-Michael chemistries. Finally, thermal stability and glass transition behaviors of HBPs P0-P3 are studied by thermal gravimetric analysis (TGA) and differential scanning calorimetry (DSC), respectively.
Collapse
Affiliation(s)
- Fu-Rong Zeng
- Department of Chemistry, College of Science, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Ji-Mei Ma
- Department of Chemistry, College of Science, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Lin-Hao Sun
- Department of Chemistry, College of Science, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Zhen Zeng
- Department of Chemistry, College of Science, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Hong Jiang
- Department of Chemistry, College of Science, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Zi-Long Li
- Department of Chemistry, College of Science, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| |
Collapse
|
72
|
Wang Y, Wu C. Quantitative Study of the Oligomerization of Yeast Prion Sup35NM Proteins. Biochemistry 2017; 56:6575-6584. [DOI: 10.1021/acs.biochem.7b00966] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Yanjing Wang
- Department
of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Chi Wu
- Department
of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
- Hefei
National Laboratory for Physical Sciences at the Microscale, Department
of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
73
|
Sun Y, Liu H, Cheng L, Zhu S, Cai C, Yang T, Yang L, Ding P. Thiol Michael addition reaction: a facile tool for introducing peptides into polymer-based gene delivery systems. POLYM INT 2017. [DOI: 10.1002/pi.5490] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yanping Sun
- School of Pharmacy; Shenyang Pharmaceutical University; Shenyang China
| | - Hui Liu
- School of Pharmacy; Shenyang Pharmaceutical University; Shenyang China
| | - Lin Cheng
- School of Pharmacy; Shenyang Pharmaceutical University; Shenyang China
| | - Shimeng Zhu
- School of Pharmacy; Shenyang Pharmaceutical University; Shenyang China
| | - Cuifang Cai
- School of Pharmacy; Shenyang Pharmaceutical University; Shenyang China
| | - Tianzhi Yang
- Department of Basic Pharmaceutical Sciences; Husson University; Bangor ME USA
| | - Li Yang
- School of Pharmacy; Shenyang Pharmaceutical University; Shenyang China
| | - Pingtian Ding
- School of Pharmacy; Shenyang Pharmaceutical University; Shenyang China
| |
Collapse
|
74
|
Holloway JO, Aksakal S, Du Prez FE, Becer CR. Tailored Modification of Thioacrylates in a Versatile, Sequence-Defined Procedure. Macromol Rapid Commun 2017; 38. [PMID: 29068535 DOI: 10.1002/marc.201700500] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 08/28/2017] [Indexed: 12/19/2022]
Abstract
A strategy for the synthesis of sequence-defined oligomers using a selective side-group insertion approach making use of thiophenol-catalyzed amidation reactions is herein reported. In this context, a new thiolactone-based, multistep, iterative protocol is designed, utilizing thioacrylates in combination with solid-phase synthesis for step-by-step growth, resulting in sequence-defined oligomers. Sequence definition and structure variation are introduced by substituting the thioacrylate side groups with a wide variety of amines. The step-by-step growth of the oligomers is followed by liquid chromatography-mass spectrometry and high-resolution mass spectroscopy to determine both conversion and purity.
Collapse
Affiliation(s)
- Joshua O Holloway
- Polymer Chemistry Research Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Science, Ghent University, Krijgslaan 281 S4-bis, Ghent, B-9000, Belgium
| | - Suzan Aksakal
- Polymer Chemistry Laboratory, School of Engineering and Materials Science, Queen Mary, University of London, E1 4NS, London, UK
| | - Filip E Du Prez
- Polymer Chemistry Research Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Science, Ghent University, Krijgslaan 281 S4-bis, Ghent, B-9000, Belgium
| | - C Remzi Becer
- Polymer Chemistry Laboratory, School of Engineering and Materials Science, Queen Mary, University of London, E1 4NS, London, UK
| |
Collapse
|
75
|
Song S, Zhang Z, Liu X, Fu Z, Xu J, Fan Z. Synthesis and characterization of functional polyethylene with regularly distributed thioester pendants via ring-opening metathesis polymerization. ACTA ACUST UNITED AC 2017. [DOI: 10.1002/pola.28870] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Shaofei Song
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering; Zhejiang University; Hangzhou 310027 China
| | - Zhen Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering; Zhejiang University; Hangzhou 310027 China
| | - Xiaoyu Liu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering; Zhejiang University; Hangzhou 310027 China
| | - Zhisheng Fu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering; Zhejiang University; Hangzhou 310027 China
| | - Junting Xu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering; Zhejiang University; Hangzhou 310027 China
| | - Zhiqiang Fan
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering; Zhejiang University; Hangzhou 310027 China
| |
Collapse
|
76
|
Polymer-encased nanodiscs with improved buffer compatibility. Sci Rep 2017; 7:7432. [PMID: 28785023 PMCID: PMC5547149 DOI: 10.1038/s41598-017-07110-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 06/23/2017] [Indexed: 01/07/2023] Open
Abstract
Styrene-maleic acid copolymers allow for solubilization and reconstitution of membrane proteins into nanodiscs. These polymer-encased nanodiscs are promising platforms for studies of membrane proteins in a near-physiologic environment without the use of detergents. However, current styrene-maleic acid copolymers display severe limitations in terms of buffer compatibility and ensued flexibility for various applications. Here, we present a new family of styrene-maleic acid copolymers that do not aggregate at low pH or in the presence of polyvalent cations, and can be used to solubilize membrane proteins and produce nanodiscs of controlled sizes.
Collapse
|
77
|
Frayne SH, Murthy RR, Northrop BH. Investigation and Demonstration of Catalyst/Initiator-Driven Selectivity in Thiol-Michael Reactions. J Org Chem 2017; 82:7946-7956. [PMID: 28695735 DOI: 10.1021/acs.joc.7b01200] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Thiol-Michael "click" reactions are essential synthetic tools in the preparation of various materials including polymers, dendrimers, and other macromolecules. Despite increasing efforts to apply thiol-Michael chemistry in a controlled fashion, the selectivity of base- or nucleophile-promoted thiol-Michael reactions in complex mixtures of multiple thiols and/or acceptors remains largely unknown. Herein, we report a thorough fundamental study of the selectivity of thiol-Michael reactions through a series of 270 ternary reactions using 1H NMR spectroscopy to quantify product selectivity. The varying influences of different catalysts/initiators are explored using ternary reactions between two Michael acceptors and a single thiol or between a single Michael acceptor and two thiols using three different catalysts/initiators (triethylamine, DBU, and dimethylphenylphosphine) in chloroform. The results from the ternary reactions provide a platform from which sequential quaternary, one-pot quaternary, and sequential senary thiol-Michael reactions were designed and their selectivities quantified. These results provide insights into the design of selective thiol-Michael reactions that can be used for the synthesis and functionalization of multicomponent polymers and further informs how catalyst/initiator choice influences the reactivity between a given thiol and Michael acceptor.
Collapse
Affiliation(s)
- Stephen H Frayne
- Department of Chemistry, Wesleyan University , Middletown, Connecticut 06459, United States
| | - Raghavendra R Murthy
- Department of Chemistry, Wesleyan University , Middletown, Connecticut 06459, United States
| | - Brian H Northrop
- Department of Chemistry, Wesleyan University , Middletown, Connecticut 06459, United States
| |
Collapse
|
78
|
Liu Z, Ou J, Wang H, Chen L, Xu J, Ye M. One-Pot Preparation of Macroporous Organic-Silica Monolith for the Organics-/Oil-Water Separation. ChemistrySelect 2017. [DOI: 10.1002/slct.201700345] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Zhongshan Liu
- Key Laboratory of Separation Science for Analytical Chemistry; Dalian Institute of Chemical Physics; Chinese Academy of Sciences; Dalian 116023 China
- University of Chinese Academy of Sciences; Beijing 100049 China
| | - Junjie Ou
- Key Laboratory of Separation Science for Analytical Chemistry; Dalian Institute of Chemical Physics; Chinese Academy of Sciences; Dalian 116023 China
| | - Hongwei Wang
- Key Laboratory of Separation Science for Analytical Chemistry; Dalian Institute of Chemical Physics; Chinese Academy of Sciences; Dalian 116023 China
| | - Lianfang Chen
- Key Laboratory of Separation Science for Analytical Chemistry; Dalian Institute of Chemical Physics; Chinese Academy of Sciences; Dalian 116023 China
- University of Chinese Academy of Sciences; Beijing 100049 China
| | - Junwen Xu
- Key Laboratory of Separation Science for Analytical Chemistry; Dalian Institute of Chemical Physics; Chinese Academy of Sciences; Dalian 116023 China
- University of Chinese Academy of Sciences; Beijing 100049 China
| | - Mingliang Ye
- Key Laboratory of Separation Science for Analytical Chemistry; Dalian Institute of Chemical Physics; Chinese Academy of Sciences; Dalian 116023 China
| |
Collapse
|
79
|
Kröger APP, Boonen RJ, Paulusse JM. Well-defined single-chain polymer nanoparticles via thiol-Michael addition. POLYMER 2017. [DOI: 10.1016/j.polymer.2017.05.040] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
80
|
Dong Y, Matson JB, Edgar KJ. Olefin Cross-Metathesis in Polymer and Polysaccharide Chemistry: A Review. Biomacromolecules 2017; 18:1661-1676. [PMID: 28467697 DOI: 10.1021/acs.biomac.7b00364] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Olefin cross-metathesis, a ruthenium-catalyzed carbon-carbon double bond transformation that features high selectivity, reactivity, and tolerance of various functional groups, has been extensively applied in organic synthesis and polymer chemistry. Herein, we review strategies for performing selective cross-metathesis and its applications in polymer and polysaccharide chemistry, including constructing complex polymer architectures, attaching pendant groups to polymer backbones and surfaces, and modifying polysaccharide derivatives.
Collapse
Affiliation(s)
- Yifan Dong
- Department of Sustainable Biomaterials, ‡Department of Chemistry, and §Macromolecules Innovation Institute, Virginia Tech , Blacksburg, Virginia 24061, United States
| | - John B Matson
- Department of Sustainable Biomaterials, ‡Department of Chemistry, and §Macromolecules Innovation Institute, Virginia Tech , Blacksburg, Virginia 24061, United States
| | - Kevin J Edgar
- Department of Sustainable Biomaterials, ‡Department of Chemistry, and §Macromolecules Innovation Institute, Virginia Tech , Blacksburg, Virginia 24061, United States
| |
Collapse
|
81
|
Abstract
This work reports the straightforward synthesis of molecular brushes by telomerization from polythiol multifunctional macrotransfer agents.
Collapse
Affiliation(s)
- Coralie Teulère
- Matière Molle et Chimie
- École Supérieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris)–CNRS
- UMR-7167
- Paris Sciences et Lettres (PSL) Research University
- 75005 Paris
| | - Renaud Nicolaÿ
- Matière Molle et Chimie
- École Supérieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris)–CNRS
- UMR-7167
- Paris Sciences et Lettres (PSL) Research University
- 75005 Paris
| |
Collapse
|
82
|
Moon NG, Mondschein RJ, Long TE. Poly(β-thioesters) containing monodisperse oxamide hard segments using a chemoselective thiol-Michael addition reaction. Polym Chem 2017. [DOI: 10.1039/c7py00021a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A chemoselective thiol-Michael addition reaction allows access to oxamide-containing segmented copolymers using a one-pot, one-step procedure.
Collapse
Affiliation(s)
- Nicholas G. Moon
- Department of Chemistry
- Macromolecules Innovation Institute
- Virginia Tech
- Blacksburg
- USA
| | - Ryan J. Mondschein
- Department of Chemistry
- Macromolecules Innovation Institute
- Virginia Tech
- Blacksburg
- USA
| | - Timothy E. Long
- Department of Chemistry
- Macromolecules Innovation Institute
- Virginia Tech
- Blacksburg
- USA
| |
Collapse
|
83
|
Liu G, Li Y, Yang L, Wei Y, Wang X, Wang Z, Tao L. Cytotoxicity study of polyethylene glycol derivatives. RSC Adv 2017. [DOI: 10.1039/c7ra00861a] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cytotoxicity of PEG oligomers (with different molecular weights) and PEG based monomers (with different chain end groups) was studied in detail.
Collapse
Affiliation(s)
- Guoqiang Liu
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education)
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- P. R. China
| | - Yongsan Li
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education)
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- P. R. China
| | - Lei Yang
- Cancer Institute & Hospital
- Peking Union Medical College & Chinese Academy of Medical Science
- Beijing 100021
- P. R. China
| | - Yen Wei
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education)
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- P. R. China
| | - Xing Wang
- The State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- P. R. China
| | - Zhiming Wang
- College of Pharmaceutical Science
- Zhejiang Chinese Medical University
- Hangzhou
- P. R. China
| | - Lei Tao
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education)
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- P. R. China
| |
Collapse
|
84
|
Dong Y, Mosquera-Giraldo LI, Taylor LS, Edgar KJ. Tandem modification of amphiphilic cellulose ethers for amorphous solid dispersion via olefin cross-metathesis and thiol-Michael addition. Polym Chem 2017. [DOI: 10.1039/c7py00228a] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Tandem olefin cross-metathesis (CM) and thiol-Michael addition for modification of cellulose derivatives”.
Collapse
Affiliation(s)
- Yifan Dong
- Department of Sustainable Biomaterials
- Virginia Tech
- Blacksburg
- USA
- Department of Chemistry
| | | | - Lynne S. Taylor
- Department of Industrial and Physical Pharmacy
- College of Pharmacy
- Purdue University
- West Lafayette
- USA
| | - Kevin J. Edgar
- Department of Sustainable Biomaterials
- Virginia Tech
- Blacksburg
- USA
- Macromolecules Innovation Institute
| |
Collapse
|
85
|
Desmet GB, Sabbe MK, D'hooge DR, Espeel P, Celasun S, Marin GB, Du Prez FE, Reyniers MF. Thiol-Michael addition in polar aprotic solvents: nucleophilic initiation or base catalysis? Polym Chem 2017. [DOI: 10.1039/c7py00005g] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The thiol-Michael addition of ethanethiol to ethyl acrylate, methyl vinylsulfone and maleimide initiated by ethyl-, diethyl-, triethylamine and triethylphosphine in tetrahydrofuran (THF) is investigated at room temperature.
Collapse
Affiliation(s)
| | | | - Dagmar. R. D'hooge
- Laboratory for Chemical Technology
- Ghent University
- Gent
- Belgium
- Department of Textiles
| | - Pieter Espeel
- Polymer Chemistry Research Group
- Ghent University
- B-9000 Gent
- Belgium
| | - Sensu Celasun
- Polymer Chemistry Research Group
- Ghent University
- B-9000 Gent
- Belgium
| | - Guy B. Marin
- Laboratory for Chemical Technology
- Ghent University
- Gent
- Belgium
| | - Filip E. Du Prez
- Polymer Chemistry Research Group
- Ghent University
- B-9000 Gent
- Belgium
| | | |
Collapse
|
86
|
Xu R, Guan X, He M, Yang J. Phototriggered base proliferation: a powerful 365 nm LED photoclick tool for nucleophile-initiated thiol-Michael addition reaction. RSC Adv 2017. [DOI: 10.1039/c6ra25906e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The phototriggered base proliferation (PBP) reaction as a powerful 365 nm LED photoclick tool is presented for nucleophile-initiated thiol-Michael addition reaction.
Collapse
Affiliation(s)
- Ruixin Xu
- School of Media and Communication
- Shenzhen Polytechnic
- Shenzhen
- China
| | - Xiaoyuan Guan
- State Key Laboratory of Pulp & Paper Engineering
- South China University of Technology
- Guangzhou
- China
| | - Minghui He
- State Key Laboratory of Pulp & Paper Engineering
- South China University of Technology
- Guangzhou
- China
| | - Jianwen Yang
- DSAPM Lab, School of Materials Science and Engineering
- Sun Yat-Sen University
- Guangzhou
- China
| |
Collapse
|
87
|
Gracia R, Marradi M, Cossío U, Benito A, Pérez-San Vicente A, Gómez-Vallejo V, Grande HJ, Llop J, Loinaz I. Synthesis and functionalization of dextran-based single-chain nanoparticles in aqueous media. J Mater Chem B 2017; 5:1143-1147. [DOI: 10.1039/c6tb02773c] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Water-dispersible dextran-based single-chain polymer nanoparticles (SCPNs) were prepared in aqueous media and under mild conditions.
Collapse
Affiliation(s)
- R. Gracia
- Biomaterials Unit
- IK4-CIDETEC
- Donostia-San Sebastián
- Spain
| | - M. Marradi
- Biomaterials Unit
- IK4-CIDETEC
- Donostia-San Sebastián
- Spain
| | - U. Cossío
- Radiochemistry and Nuclear Imaging Group
- CIC biomaGUNE
- Donostia-San Sebastián
- Spain
| | - A. Benito
- Biomaterials Unit
- IK4-CIDETEC
- Donostia-San Sebastián
- Spain
| | | | - V. Gómez-Vallejo
- Radiochemistry and Nuclear Imaging Group
- CIC biomaGUNE
- Donostia-San Sebastián
- Spain
| | - H.-J. Grande
- Biomaterials Unit
- IK4-CIDETEC
- Donostia-San Sebastián
- Spain
| | - J. Llop
- Radiochemistry and Nuclear Imaging Group
- CIC biomaGUNE
- Donostia-San Sebastián
- Spain
| | - I. Loinaz
- Biomaterials Unit
- IK4-CIDETEC
- Donostia-San Sebastián
- Spain
| |
Collapse
|
88
|
Strasser S, Wappl C, Slugovc C. Solvent-free macrocyclisation by nucleophile-mediated oxa-Michael addition polymerisation of divinyl sulfone and alcohols. Polym Chem 2017. [DOI: 10.1039/c7py00152e] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Divinyl sulfone and di- or multifunctional alcohols quantitatively react within minutes under solvent-less conditions upon addition of 4-dimethylaminopyridine.
Collapse
Affiliation(s)
- Simone Strasser
- Institute for Chemistry and Technology of Materials
- Graz University of Technology
- A 8010 Graz
- Austria
| | - Christina Wappl
- Institute for Chemistry and Technology of Materials
- Graz University of Technology
- A 8010 Graz
- Austria
| | - Christian Slugovc
- Institute for Chemistry and Technology of Materials
- Graz University of Technology
- A 8010 Graz
- Austria
| |
Collapse
|
89
|
Lv A, Cui Y, Du FS, Li ZC. Thermally Degradable Polyesters with Tunable Degradation Temperatures via Postpolymerization Modification and Intramolecular Cyclization. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b01325] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- An Lv
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Department of Polymer Science & Engineering, College of Chemistry and Molecular Engineering, Center for Soft Matter Science and Engineering, Peking University, Beijing100871, China
| | - Yang Cui
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Department of Polymer Science & Engineering, College of Chemistry and Molecular Engineering, Center for Soft Matter Science and Engineering, Peking University, Beijing100871, China
| | - Fu-Sheng Du
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Department of Polymer Science & Engineering, College of Chemistry and Molecular Engineering, Center for Soft Matter Science and Engineering, Peking University, Beijing100871, China
| | - Zi-Chen Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Department of Polymer Science & Engineering, College of Chemistry and Molecular Engineering, Center for Soft Matter Science and Engineering, Peking University, Beijing100871, China
| |
Collapse
|
90
|
Ionescu M, Radojčić D, Wan X, Shrestha ML, Petrović ZS, Upshaw TA. Highly functional polyols from castor oil for rigid polyurethanes. Eur Polym J 2016. [DOI: 10.1016/j.eurpolymj.2016.06.006] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
91
|
Zhang B, Digby ZA, Flum JA, Chakma P, Saul JM, Sparks JL, Konkolewicz D. Dynamic Thiol–Michael Chemistry for Thermoresponsive Rehealable and Malleable Networks. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b01061] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Borui Zhang
- Department
of Chemistry and Biochemistry and ‡Department of Chemical, Paper and
Biomedical Engineering, Miami University, Oxford, Ohio 45056, United States
| | - Zachary A. Digby
- Department
of Chemistry and Biochemistry and ‡Department of Chemical, Paper and
Biomedical Engineering, Miami University, Oxford, Ohio 45056, United States
| | - Jacob A. Flum
- Department
of Chemistry and Biochemistry and ‡Department of Chemical, Paper and
Biomedical Engineering, Miami University, Oxford, Ohio 45056, United States
| | - Progyateg Chakma
- Department
of Chemistry and Biochemistry and ‡Department of Chemical, Paper and
Biomedical Engineering, Miami University, Oxford, Ohio 45056, United States
| | - Justin M. Saul
- Department
of Chemistry and Biochemistry and ‡Department of Chemical, Paper and
Biomedical Engineering, Miami University, Oxford, Ohio 45056, United States
| | - Jessica L. Sparks
- Department
of Chemistry and Biochemistry and ‡Department of Chemical, Paper and
Biomedical Engineering, Miami University, Oxford, Ohio 45056, United States
| | - Dominik Konkolewicz
- Department
of Chemistry and Biochemistry and ‡Department of Chemical, Paper and
Biomedical Engineering, Miami University, Oxford, Ohio 45056, United States
| |
Collapse
|
92
|
Controlling the kinetics of thiol-maleimide Michael-type addition gelation kinetics for the generation of homogenous poly(ethylene glycol) hydrogels. Biomaterials 2016; 101:199-206. [DOI: 10.1016/j.biomaterials.2016.05.053] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 05/14/2016] [Accepted: 05/30/2016] [Indexed: 12/17/2022]
|
93
|
Abel BA, McCormick CL. “One-Pot” Aminolysis/Thiol–Maleimide End-Group Functionalization of RAFT Polymers: Identifying and Preventing Michael Addition Side Reactions. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b01512] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Brooks A. Abel
- Department of Polymer Science and
Engineering and ‡Department of Chemistry and Biochemistry, The University of Southern Mississippi, Hattiesburg, Mississippi 39406-5050, United States
| | - Charles L. McCormick
- Department of Polymer Science and
Engineering and ‡Department of Chemistry and Biochemistry, The University of Southern Mississippi, Hattiesburg, Mississippi 39406-5050, United States
| |
Collapse
|
94
|
Scian M, Guttman M, Bouldin SD, Outten CE, Atkins WM. The Myeloablative Drug Busulfan Converts Cysteine to Dehydroalanine and Lanthionine in Redoxins. Biochemistry 2016; 55:4720-30. [PMID: 27490699 DOI: 10.1021/acs.biochem.6b00622] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The myeloablative agent busulfan (1,4-butanediol dimethanesulfonate) is an old drug that is used routinely to eliminate cancerous bone marrow prior to hematopoietic stem cell transplant. The myeloablative activity and systemic toxicity of busulfan have been ascribed to its ability to cross-link DNA. In contrast, here we demonstrate that incubation of busulfan with the thiol redox proteins glutaredoxin or thioredoxin at pH 7.4 and 37 °C results in the formation of putative S-tetrahydrothiophenium adducts at their catalytic Cys residues, followed by β-elimination to yield dehydroalanine. Both proteins contain a second Cys, in their catalytic C-X-X-C motif, which reacts with the dehydroalanine, the initial Cys adduct with busulfan, or the S-tetrahydrothiophenium, to form novel intramolecular cross-links. The reactivity of the dehydroalanine (DHA) formed is further demonstrated by adduction with glutathione to yield a lanthionine and by a novel reaction with the reducing agent tris(2-carboxyethyl)phosphine (TCEP), which yields a phosphine adduct via Michael addition to the DHA. Formation of a second quaternary organophosphonium salt via nucleophilic substitution with TCEP on the initial busulfan-protein adduct or on the THT(+)-Redoxin species is also observed. These results reveal a rich potential for reactions of busulfan with proteins in vitro, and likely in vivo. It is striking that several of the chemically altered protein products retain none of the atoms of busulfan, in contrast to typical drug-protein adducts or traditional protein modification reagents. In particular, the ability of a clinically used drug to convert Cys to dehydrolanine in intact proteins, and its subsequent reaction with biological thiols, is unprecedented.
Collapse
Affiliation(s)
- Michele Scian
- Department of Medicinal Chemistry, University of Washington , Box 357610, Seattle, Washington 98195-7610, United States
| | - Miklos Guttman
- Department of Medicinal Chemistry, University of Washington , Box 357610, Seattle, Washington 98195-7610, United States
| | - Samantha D Bouldin
- Department of Chemistry and Biochemistry, University of South Carolina , Columbia, South Carolina 29208, United States
| | - Caryn E Outten
- Department of Chemistry and Biochemistry, University of South Carolina , Columbia, South Carolina 29208, United States
| | - William M Atkins
- Department of Medicinal Chemistry, University of Washington , Box 357610, Seattle, Washington 98195-7610, United States
| |
Collapse
|
95
|
Dhulst EA, Heath WH, Torkelson JM. Hybrid thiol-acrylate-epoxy polymer networks: Comparison of one-pot synthesis with sequential reactions and shape memory properties. POLYMER 2016. [DOI: 10.1016/j.polymer.2016.04.032] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
96
|
|
97
|
Beloqui A, Baur S, Trouillet V, Welle A, Madsen J, Bastmeyer M, Delaittre G. Single-Molecule Encapsulation: A Straightforward Route to Highly Stable and Printable Enzymes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:1716-22. [PMID: 26849308 DOI: 10.1002/smll.201503405] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Revised: 01/05/2016] [Indexed: 05/11/2023]
Abstract
A mild, fast, and sequence-independent method for controlled enzyme immobilization is presented. This novel approach involves the encapsulation of single-enzyme molecules and the covalent attachment of these nanobiocatalysts onto surfaces. Fast and mild immobilization conditions, combined with low nonspecific adsorption on hydrophobic substrates, enables well-defined surface patterns via microcontact printing. The biohybrid materials show enhanced activity in organic solvents.
Collapse
Affiliation(s)
- Ana Beloqui
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
- Preparative Macromolecular Chemistry, Institute for Technical Chemistry and Polymer Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstrasse 15, 76131, Karlsruhe, Germany
| | - Sarah Baur
- Zoological Institute, Department of Cell and Neurobiology, Karlsruhe Institute of Technology (KIT), Haid-und-Neu-Strasse 9, 76131, Karlsruhe, Germany
| | - Vanessa Trouillet
- Institute for Applied Materials (IAM), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
- Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Alexander Welle
- Preparative Macromolecular Chemistry, Institute for Technical Chemistry and Polymer Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstrasse 15, 76131, Karlsruhe, Germany
- Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
- Institute for Biological Interfaces (IBG), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Jeppe Madsen
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, S3 7HF, UK
| | - Martin Bastmeyer
- Zoological Institute, Department of Cell and Neurobiology, Karlsruhe Institute of Technology (KIT), Haid-und-Neu-Strasse 9, 76131, Karlsruhe, Germany
- Institute for Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Guillaume Delaittre
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
- Preparative Macromolecular Chemistry, Institute for Technical Chemistry and Polymer Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstrasse 15, 76131, Karlsruhe, Germany
| |
Collapse
|
98
|
|
99
|
Maturavongsadit P, Luckanagul JA, Metavarayuth K, Zhao X, Chen L, Lin Y, Wang Q. Promotion of In Vitro Chondrogenesis of Mesenchymal Stem Cells Using In Situ Hyaluronic Hydrogel Functionalized with Rod-Like Viral Nanoparticles. Biomacromolecules 2016; 17:1930-8. [DOI: 10.1021/acs.biomac.5b01577] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Panita Maturavongsadit
- Department
of Chemistry and Biochemistry, University of South Carolina, 631
Sumter Street, Columbia, South Carolina 29208, United States
| | - Jittima Amie Luckanagul
- Department
of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, 254 Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand
| | - Kamolrat Metavarayuth
- Department
of Chemistry and Biochemistry, University of South Carolina, 631
Sumter Street, Columbia, South Carolina 29208, United States
| | - Xia Zhao
- State
Key Laboratory of Polymer Physics and Chemistry, Changchun Institute
of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People’s Republic of China
| | - Limin Chen
- State
Key Laboratory of Polymer Physics and Chemistry, Changchun Institute
of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People’s Republic of China
| | - Yuan Lin
- State
Key Laboratory of Polymer Physics and Chemistry, Changchun Institute
of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People’s Republic of China
| | - Qian Wang
- Department
of Chemistry and Biochemistry, University of South Carolina, 631
Sumter Street, Columbia, South Carolina 29208, United States
| |
Collapse
|
100
|
Hoff EA, Abel BA, Tretbar CA, McCormick CL, Patton DL. RAFT Polymerization of “Splitters” and “Cryptos”: Exploiting Azole-N-carboxamides As Blocked Isocyanates for Ambient Temperature Postpolymerization Modification. Macromolecules 2016. [DOI: 10.1021/acs.macromol.5b02377] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Emily A. Hoff
- School of Polymers and High
Performance Materials, University of Southern Mississippi, Hattiesburg, Mississippi 39406, United States
| | - Brooks A. Abel
- School of Polymers and High
Performance Materials, University of Southern Mississippi, Hattiesburg, Mississippi 39406, United States
| | - Chase A. Tretbar
- School of Polymers and High
Performance Materials, University of Southern Mississippi, Hattiesburg, Mississippi 39406, United States
| | - Charles L. McCormick
- School of Polymers and High
Performance Materials, University of Southern Mississippi, Hattiesburg, Mississippi 39406, United States
| | - Derek L. Patton
- School of Polymers and High
Performance Materials, University of Southern Mississippi, Hattiesburg, Mississippi 39406, United States
| |
Collapse
|