Vidal AB, Feria L, Evans J, Takahashi Y, Liu P, Nakamura K, Illas F, Rodriguez JA. CO2 Activation and Methanol Synthesis on Novel Au/TiC and Cu/TiC Catalysts.
J Phys Chem Lett 2012;
3:2275-80. [PMID:
26295783 DOI:
10.1021/jz300989e]
[Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Small Cu and Au particles in contact with a TiC(001) surface undergo a charge polarization that makes them very active for CO2 activation and the catalytic synthesis of methanol. The binding energy of CO2 on these systems is in the range of 0.6 to 1.1 eV, much larger than those observed on surfaces or nanoparticles of Cu and Au. Thus, in spite of the poor CO2 hydrogenation performance of Cu(111) and Au(111), the Cu/TiC(001) and Au/TiC(001) systems display a catalytic activity for methanol synthesis substantially higher than that of conventional Cu/ZnO catalysts. The turnover frequencies for methanol production on Cu/TiC(001) are 170-500 times much larger than on Cu(111). The present study moves away from the typical approach of using metal/oxide catalysts for the synthesis of methanol via CO2 hydrogenation. This work shows that metal carbides can be excellent supports for enhancing the ability of noble metals to bond and activate CO2.
Collapse