51
|
Uversky VN, Davé V, Iakoucheva LM, Malaney P, Metallo SJ, Pathak RR, Joerger AC. Pathological unfoldomics of uncontrolled chaos: intrinsically disordered proteins and human diseases. Chem Rev 2014; 114:6844-79. [PMID: 24830552 PMCID: PMC4100540 DOI: 10.1021/cr400713r] [Citation(s) in RCA: 196] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Vladimir N. Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer’s Research Institute University of South Florida, Tampa, Florida 33612, United States
- Institute for Biological Instrumentation, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 22254, Saudi Arabia
| | - Vrushank Davé
- Department of Pathology and Cell Biology , Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, United States
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, United States
| | - Lilia M. Iakoucheva
- Department of Psychiatry, University of California San Diego, La Jolla, California 92093, United States
| | - Prerna Malaney
- Department of Pathology and Cell Biology , Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, United States
| | - Steven J. Metallo
- Department of Chemistry, Georgetown University, Washington, District of Columbia 20057, United States
| | - Ravi Ramesh Pathak
- Department of Pathology and Cell Biology , Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, United States
| | - Andreas C. Joerger
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| |
Collapse
|
52
|
Xue R, Zakharov MN, Xia Y, Bhasin S, Costello JC, Jasuja R. Research resource: EPSLiM: ensemble predictor for short linear motifs in nuclear hormone receptors. Mol Endocrinol 2014; 28:768-77. [PMID: 24678734 DOI: 10.1210/me.2014-1006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Nuclear receptors (NRs) are a superfamily of transcription factors central to regulating many biological processes, including cell growth, death, metabolism, and immune responses. NR-mediated gene expression can be modulated by coactivators and corepressors through direct physical interaction or protein complexes with functional domains in NRs. One class of these domains includes short linear motifs (SLiMs), which facilitate protein-protein interactions, phosphorylation, and ligand binding primarily in the intrinsically disordered regions (IDRs) of proteins. Across all proteins, the number of known SLiMs is limited due to the difficulty in studying IDRs experimentally. Computational tools provide a systematic and data-driven approach for predicting functional motifs that can be used to prioritize experimental efforts. Accordingly, several tools have been developed based on sequence conservation or biophysical features; however, discrepancies in predictions make it difficult to determine the true candidate SLiMs. In this work, we present the ensemble predictor for short linear motifs (EPSLiM), a novel strategy to prioritize the residues that are most likely to be SLiMs in IDRs. EPSLiM applies a generalized linear model to integrate predictions from individual methodologies. We show that EPSLiM outperforms individual predictors, and we apply our method to NRs. The androgen receptor is an example with an N-terminal domain of 559 disordered amino acids that contains several validated SLiMs important for transcriptional activation. We use the androgen receptor to illustrate the predictive performance of EPSLiM and make the results of all human and mouse NRs publically available through the web service http://epslim.bwh.harvard.edu.
Collapse
Affiliation(s)
- Ran Xue
- Research Program in Men's Health: Aging and Metabolism (R.X., S.B., J.C.C., R.J.), Boston Claude D. Pepper Older Americans Independence Center, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02215; The National Library of Medicine (M.N.Z.), National Center for Bioinformation Technology, The National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland 20892; and Department of Bioengineering (Y.X.), Faculty of Engineering, McGill University, Montreal, Quebec H3A 0C3, Canada
| | | | | | | | | | | |
Collapse
|
53
|
Chan SC, Dehm SM. Constitutive activity of the androgen receptor. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2014; 70:327-66. [PMID: 24931201 DOI: 10.1016/b978-0-12-417197-8.00011-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Prostate cancer (PCa) is the most frequently diagnosed cancer in the United States. The androgen receptor (AR) signaling axis is central to all stages of PCa pathophysiology and serves as the main target for endocrine-based therapy. The most advanced stage of the disease, castration-resistant prostate cancer (CRPC), is presently incurable and accounts for most PCa mortality. In this chapter, we highlight the mechanisms by which the AR signaling axis can bypass endocrine-targeted therapies and drive progression of CRPC. These mechanisms include alterations in growth factor, cytokine, and inflammatory signaling pathways, altered expression or activity of transcriptional coregulators, AR point mutations, and AR gene amplification leading to AR protein overexpression. Additionally, we will discuss the mechanisms underlying the synthesis of constitutively active AR splice variants (AR-Vs) lacking the COOH-terminal ligand-binding domain, as well as the role and regulation of AR-Vs in supporting therapeutic resistance in CRPC. Finally, we summarize the ongoing development of inhibitors targeting discrete AR functional domains as well as the status of new biomarkers for monitoring the AR signaling axis in patients.
Collapse
Affiliation(s)
- Siu Chiu Chan
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Scott M Dehm
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA; Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, USA.
| |
Collapse
|
54
|
Lallous N, Dalal K, Cherkasov A, Rennie PS. Targeting alternative sites on the androgen receptor to treat castration-resistant prostate cancer. Int J Mol Sci 2013; 14:12496-519. [PMID: 23771019 PMCID: PMC3709796 DOI: 10.3390/ijms140612496] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 05/29/2013] [Accepted: 06/03/2013] [Indexed: 01/22/2023] Open
Abstract
Recurrent, metastatic prostate cancer continues to be a leading cause of cancer-death in men. The androgen receptor (AR) is a modular, ligand-inducible transcription factor that regulates the expression of genes that can drive the progression of this disease, and as a consequence, this receptor is a key therapeutic target for controlling prostate cancer. The current drugs designed to directly inhibit the AR are called anti-androgens, and all act by competing with androgens for binding to the androgen/ligand binding site. Unfortunately, with the inevitable progression of the cancer to castration resistance, many of these drugs become ineffective. However, there are numerous other regulatory sites on this protein that have not been exploited therapeutically. The regulation of AR activity involves a cascade of complex interactions with numerous chaperones, co-factors and co-regulatory proteins, leading ultimately to direct binding of AR dimers to specific DNA androgen response elements within the promoter and enhancers of androgen-regulated genes. As part of the family of nuclear receptors, the AR is organized into modular structural and functional domains with specialized roles in facilitating their inter-molecular interactions. These regions of the AR present attractive, yet largely unexploited, drug target sites for reducing or eliminating androgen signaling in prostate cancers. The design of small molecule inhibitors targeting these specific AR domains is only now being realized and is the culmination of decades of work, including crystallographic and biochemistry approaches to map the shape and accessibility of the AR surfaces and cavities. Here, we review the structure of the AR protein and describe recent advancements in inhibiting its activity with small molecules specifically designed to target areas distinct from the receptor’s androgen binding site. It is anticipated that these new classes of anti-AR drugs will provide an additional arsenal to treat castration-resistant prostate cancer.
Collapse
Affiliation(s)
- Nada Lallous
- Vancouver Prostate Centre, University of British Columbia, 2660 Oak Street, Vancouver, BC V6H 3Z6, Canada.
| | | | | | | |
Collapse
|
55
|
Abstract
Androgenic steroids are important for male development in utero and secondary sexual characteristics at puberty. In addition, androgens play a role in non-reproductive tissues, such as bone and muscle in both sexes. The actions of the androgens testosterone and dihydrotestosterone are mediated by a single receptor protein, the androgen receptor. Over the last 60–70 years there has been considerable research interest in the development of inhibitors of androgen receptor for the management of diseases such as prostate cancer. However, more recently, there is also a growing appreciation of the need for selective androgen modulators that would demonstrate tissue-selective agonist or antagonist activity. The chemistry and biology of selective agonists, antagonists and selective androgen receptor modulators will be discussed in this review.
Collapse
|
56
|
Kragelund BB, Jensen MK, Skriver K. Order by disorder in plant signaling. TRENDS IN PLANT SCIENCE 2012; 17:625-32. [PMID: 22819467 DOI: 10.1016/j.tplants.2012.06.010] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2012] [Revised: 06/19/2012] [Accepted: 06/20/2012] [Indexed: 05/10/2023]
Abstract
Protein intrinsic disorder (ID), referring to the lack of a fixed tertiary structure, is an emerging topic in plant science. Proteins with ID challenge our perception of protein interactions because of their malleable behavior. They are abundant in highly regulated processes such as cellular signaling and transcription, where they exploit the flexibility of ID. In this opinion article we highlight trends in the field of protein ID and discuss its implications for interactions between plant transcription factors (TFs) and the cellular signaling hub protein RADICAL-INDUCED CELL DEATH 1 (RCD1). We envision RCD1-TF interactions as models for translating knowledge of ID-based interactions in vitro to the organismal level in vivo, and urge increased focus on ID in basic plant research and agricultural sciences.
Collapse
Affiliation(s)
- Birthe B Kragelund
- Biomolecular Sciences, Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, DK-2200 Copenhagen N, Denmark
| | | | | |
Collapse
|
57
|
What lies beneath: natural products from marine organisms as nuclear receptor modulators. Biochem J 2012; 446:e1-3. [PMID: 22835216 DOI: 10.1042/bj20121018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The marine environment has long been known to be species-rich and to be a source of molecules with interesting and beneficial biochemical and clinical properties. However, despite some notable successes the potential of the 'marine pipeline' has yet to be fully realized. Recent studies involving members of the nuclear receptor superfamily illustrate the chemical richness of molecules from marine species and helps to re-emphasize the translational possibilities of natural products in drug discovery. In this issue of the Biochemical Journal Wang et al. describe the identification and characterization of such a compound, an agonist for the retinoic acid receptor isolated from the sponges Luffariella sp. and Fascaplysinopsis.
Collapse
|
58
|
Pongtepaditep S, Limjindaporn T, Lertrit P, Srisawat C, Limwongse C. Polyglutamined expanded androgen receptor interacts with chaperonin CCT. Eur J Med Genet 2012; 55:599-604. [PMID: 22796525 DOI: 10.1016/j.ejmg.2012.06.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Accepted: 06/21/2012] [Indexed: 11/17/2022]
Abstract
CCT chaperonin is a highly conserved molecular chaperone, which plays an important role in the folding of complex proteins in mammalian cells. CCT chaperonin interacts with huntingtin and results in decrease of aggregate formation followed by increase of cell survival. Using yeast-two-hybrid system, we screen for specific CCT chaperonin subunit, which can recognize and bind to androgen receptor. We show that subunit 6 of CCT chaperonin interacts with androgen receptor. Interestingly, CCT chaperonin shows higher binding affinity to polyglutamine expanded androgen receptor than that of the wild-type. We prove this interaction in mammalian cell models, which show co-localization of androgen receptor and subunit 6 of CCT in cellular cytosol. Therefore, not only huntingtin but also androgen receptor is a polyglutamine expanded protein, which is a substrate of CCT chaperonin. Our results suggest that CCT might play an essential role in modulation of folding of polyglutamine expanded proteins and could be another target for further therapeutic studies.
Collapse
Affiliation(s)
- Suttikarn Pongtepaditep
- Division of Molecular Genetics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | | | | | | | | |
Collapse
|
59
|
Kumar R, McEwan IJ. Allosteric modulators of steroid hormone receptors: structural dynamics and gene regulation. Endocr Rev 2012; 33:271-99. [PMID: 22433123 PMCID: PMC3596562 DOI: 10.1210/er.2011-1033] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Steroid hormones are synthesized from cholesterol primarily in the adrenal gland and the gonads and play vital roles in normal physiology, the control of development, differentiation, metabolic homeostasis, and reproduction. The actions of these small lipophilic molecules are mediated by intracellular receptor proteins. It is just over 25 yr since the first cDNA for steroid receptors were cloned, a development that led to the birth of a superfamily of ligand-activated transcription factors: the nuclear receptors. The receptor proteins share structurally and functionally related ligand binding and DNA-binding domains but possess distinct N-terminal domains and hinge regions that are intrinsically disordered. Since the original cloning experiments, considerable progress has been made in our understanding of the structure, mechanisms of action, and biology of this important class of ligand-activated transcription factors. In recent years, there has been interest in the structural plasticity and function of the N-terminal domain of steroid hormone receptors and in the allosteric regulation of protein folding and function in response to hormone, DNA response element architecture, and coregulatory protein binding partners. The N-terminal domain can exist as an ensemble of conformers, having more or less structure, which prime this region of the receptor to rapidly respond to changes in the intracellular environment through hormone binding and posttranslation modifications. In this review, we address the question of receptor structure and function dynamics with particular emphasis on the structurally flexible N-terminal domain, intra- and interdomain communications, and the allosteric regulation of receptor action.
Collapse
Affiliation(s)
- Raj Kumar
- Department of Basic Sciences, The Commonwealth Medical College, Scranton, Pennsylvania 18510, USA
| | | |
Collapse
|