51
|
Razzaghi S, Qi M, Nalepa AI, Godt A, Jeschke G, Savitsky A, Yulikov M. RIDME Spectroscopy with Gd(III) Centers. J Phys Chem Lett 2014; 5:3970-5. [PMID: 26276479 DOI: 10.1021/jz502129t] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The relaxation induced dipolar modulation enhancement (RIDME) technique is applied at W-band microwave frequencies around 94 GHz to a pair of Gd(III) complexes that are connected by a rodlike spacer, and the extraction of the interspin distance distribution is discussed. A dipolar pattern derived from RIDME experimental data is a superposition of Pake-like dipolar patterns corresponding to the fundamental dipolar interaction and higher harmonics thereof. Intriguingly, the relative weights of the stretched patterns do not depend significantly on mixing time. As much larger modulation depths can be achieved than in double electron-electron resonance distance measurements at the same frequency, Gd(III)-Gd(III) RIDME may become attractive for structural characterization of biomacromolecules and biomolecular complexes.
Collapse
Affiliation(s)
- Sahand Razzaghi
- †Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Mian Qi
- ‡Faculty of Chemistry and Center for Molecular Materials, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Anna I Nalepa
- §Max-Planck-Institut für Chemische Energiekonversion, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Adelheid Godt
- ‡Faculty of Chemistry and Center for Molecular Materials, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Gunnar Jeschke
- †Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Anton Savitsky
- §Max-Planck-Institut für Chemische Energiekonversion, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Maxim Yulikov
- †Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| |
Collapse
|
52
|
Raitsimring A, Dalaloyan A, Collauto A, Feintuch A, Meade T, Goldfarb D. Zero field splitting fluctuations induced phase relaxation of Gd3+ in frozen solutions at cryogenic temperatures. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2014; 248:71-80. [PMID: 25442776 PMCID: PMC4495766 DOI: 10.1016/j.jmr.2014.09.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Revised: 09/14/2014] [Accepted: 09/16/2014] [Indexed: 05/18/2023]
Abstract
Distance measurements using double electron-electron resonance (DEER) and Gd(3+) chelates for spin labels (GdSL) have been shown to be an attractive alternative to nitroxide spin labels at W-band (95GHz). The maximal distance that can be accessed by DEER measurements and the sensitivity of such measurements strongly depends on the phase relaxation of Gd(3+) chelates in frozen, glassy solutions. In this work, we explore the phase relaxation of Gd(3+)-DOTA as a representative of GdSL in temperature and concentration ranges typically used for W-band DEER measurements. We observed that in addition to the usual mechanisms of phase relaxation known for nitroxide based spin labels, GdSL are subjected to an additional phase relaxation mechanism that features an increase in the relaxation rate from the center to the periphery of the EPR spectrum. Since the EPR spectrum of GdSL is the sum of subspectra of the individual EPR transitions, we attribute this field dependence to transition dependent phase relaxation. Using simulations of the EPR spectra and its decomposition into the individual transition subspectra, we isolated the phase relaxation of each transition and found that its rate increases with |ms|. We suggest that this mechanism is due to transient zero field splitting (tZFS), where its magnitude and correlation time are scaled down and distributed as compared with similar situations in liquids. This tZFS induced phase relaxation mechanism becomes dominant (or at least significant) when all other well-known phase relaxation mechanisms, such as spectral diffusion caused by nuclear spin diffusion, instantaneous and electron spin spectral diffusion, are significantly suppressed by matrix deuteration and low concentration, and when the temperature is sufficiently low to disable spin lattice interaction as a source of phase relaxation.
Collapse
Affiliation(s)
| | - A Dalaloyan
- Weizmann Institute of Science, Rehovot, Israel
| | - A Collauto
- Weizmann Institute of Science, Rehovot, Israel
| | - A Feintuch
- Weizmann Institute of Science, Rehovot, Israel
| | - T Meade
- Northwestern University, Evanston, IL 60208, USA
| | - D Goldfarb
- Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
53
|
Edwards D, Huber T, Hussain S, Stone K, Kinnebrew M, Kaminker I, Matalon E, Sherwin M, Goldfarb D, Han S. Determining the Oligomeric Structure of Proteorhodopsin by Gd3+-Based Pulsed Dipolar Spectroscopy of Multiple Distances. Structure 2014; 22:1677-86. [DOI: 10.1016/j.str.2014.09.008] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 08/15/2014] [Accepted: 09/04/2014] [Indexed: 12/30/2022]
|
54
|
New developments in spin labels for pulsed dipolar EPR. Molecules 2014; 19:16998-7025. [PMID: 25342554 PMCID: PMC6271499 DOI: 10.3390/molecules191016998] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 10/07/2014] [Accepted: 10/13/2014] [Indexed: 11/17/2022] Open
Abstract
Spin labelling is a chemical technique that enables the integration of a molecule containing an unpaired electron into another framework for study. Given the need to understand the structure, dynamics, and conformational changes of biomacromolecules, spin labelling provides a relatively non-intrusive technique and has certain advantages over X-ray crystallography; which requires high quality crystals. The technique relies on the design of binding probes that target a functional group, for example, the thiol group of a cysteine residue within a protein. The unpaired electron is typically supplied through a nitroxide radical and sterically shielded to preserve stability. Pulsed electron paramagnetic resonance (EPR) techniques allow small magnetic couplings to be measured (e.g., <50 MHz) providing information on single label probes or the dipolar coupling between multiple labels. In particular, distances between spin labels pairs can be derived which has led to many protein/enzymes and nucleotides being studied. Here, we summarise recent examples of spin labels used for pulse EPR that serve to illustrate the contribution of chemistry to advancing discoveries in this field.
Collapse
|
55
|
Castellanos-Rubio I, Insausti M, Garaio E, Gil de Muro I, Plazaola F, Rojo T, Lezama L. Fe3O4 nanoparticles prepared by the seeded-growth route for hyperthermia: electron magnetic resonance as a key tool to evaluate size distribution in magnetic nanoparticles. NANOSCALE 2014; 6:7542-52. [PMID: 24890223 DOI: 10.1039/c4nr00646a] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Monodispersed Fe3O4 nanoparticles have been synthesized by a thermal decomposition method based on the seeded-growth technique, achieving size tunable nanoparticles with high crystallinity and high saturation magnetization. EMR spectroscopy becomes a very efficient complementary tool to determine the fine details of size distributions of MNPs and even to estimate directly the size in a system composed of a given type of magnetic nanoparticles. The size and size dispersity affect directly the efficiency of MNPs for hyperthermia and EMR provides a direct evaluation of these characteristics almost exactly in the same preparation and with the same concentration as used in hyperthermia experiments. The correlation observed between the Specific Absorption Rate (SAR) and the effective gyromagnetic factor (geff) is extremely remarkable and renders a way to assess directly the heating capacity of a MNP system.
Collapse
Affiliation(s)
- Idoia Castellanos-Rubio
- Dpto. de Química Inorgánica, Universidad del País Vasco UPV/EHU, P.O. Box. 644, E-48080, Bilbao, Spain.
| | | | | | | | | | | | | |
Collapse
|
56
|
Di Valentin M, Albertini M, Zurlo E, Gobbo M, Carbonera D. Porphyrin triplet state as a potential spin label for nanometer distance measurements by PELDOR spectroscopy. J Am Chem Soc 2014; 136:6582-5. [PMID: 24735449 DOI: 10.1021/ja502615n] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This work demonstrates, for the first time, the feasibility of applying pulsed electron-electron double resonance (PELDOR/DEER) to determine the interspin distance between a photoexcited porphyrin triplet state (S = 1) and a nitroxide spin label chemically incorporated into a small helical peptide. The PELDOR trace shows deep envelope modulation induced by electron-electron dipole interaction between the partners in the pair, providing an accurate distance measurement. This new labeling approach has a high potential for measuring nanometer distances in more complex biological systems due to the sensitivity acquired from the spin polarization of the photoexcited triplet state spectrum.
Collapse
Affiliation(s)
- Marilena Di Valentin
- Dipartimento di Scienze Chimiche, Università di Padova , via Marzolo 1, 35131 Padova, Italy
| | | | | | | | | |
Collapse
|
57
|
Ji M, Ruthstein S, Saxena S. Paramagnetic metal ions in pulsed ESR distance distribution measurements. Acc Chem Res 2014; 47:688-95. [PMID: 24289139 DOI: 10.1021/ar400245z] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The use of pulsed electron spin resonance (ESR) to measure interspin distance distributions has advanced biophysical research. The three major techniques that use pulsed ESR are relaxation rate based distance measurements, double quantum coherence (DQC), and double electron electron resonance (DEER). Among these methods, the DEER technique has become particularly popular largely because it is easy to implement on commercial instruments and because programs are available to analyze experimental data. Researchers have widely used DEER to measure the structure and conformational dynamics of molecules labeled with the methanethiosulfonate spin label (MTSSL). Recently, researchers have exploited endogenously bound paramagnetic metal ions as spin probes as a way to determine structural constraints in metalloproteins. In this context Cu(2+) has served as a useful paramagnetic metal probe at X-band for DEER based distance measurements. Sample preparation is simple, and a coordinated-Cu(2+) ion offers limited spatial flexibility, making it an attractive probe for DEER experiments. On the other hand, Cu(2+) has a broad absorption ESR spectrum at low temperature, which leads to two potential complications. First, the Cu(2+)-based DEER time domain data has lower signal to noise ratio compared with MTSSL. Second, accurate distance distribution analysis often requires high-quality experimental data at different external magnetic fields or with different frequency offsets. In this Account, we summarize characteristics of Cu(2+)-based DEER distance distribution measurements and data analysis methods. We highlight a novel application of such measurements in a protein-DNA complex to identify the metal ion binding site and to elucidate its chemical mechanism of function. We also survey the progress of research on other metal ions in high frequency DEER experiments.
Collapse
Affiliation(s)
- Ming Ji
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Sharon Ruthstein
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department of Chemistry, Faculty of Exact Science, Bar Ilan University, Ramat-Gan 5290002, Israel
| | - Sunil Saxena
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
58
|
Goldfarb D. Gd3+ spin labeling for distance measurements by pulse EPR spectroscopy. Phys Chem Chem Phys 2014; 16:9685-99. [DOI: 10.1039/c3cp53822b] [Citation(s) in RCA: 145] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
59
|
Joseph B, Korkhov VM, Yulikov M, Jeschke G, Bordignon E. Conformational cycle of the vitamin B12 ABC importer in liposomes detected by double electron-electron resonance (DEER). J Biol Chem 2013; 289:3176-85. [PMID: 24362024 DOI: 10.1074/jbc.m113.512178] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Double electron-electron resonance is used here to investigate intermediates of the transport cycle of the Escherichia coli vitamin B12 ATP-binding cassette importer BtuCD-F. Previously, we showed the ATP-induced opening of the cytoplasmic gate I in TM5 helices, later confirmed by the AMP-PNP-bound BtuCD-F crystal structure. Here, other key residues are analyzed in TM10 helices (positions 307 and 322) and in the cytoplasmic gate II, i.e. the loop between TM2 and TM3 (positions 82 and 85). Without BtuF, binding of ATP induces detectable changes at positions 307 and 85 in BtuCD in liposomes. Together with BtuF, ATP triggers the closure of the cytoplasmic gate II in liposomes (reported by both positions 82 and 85). This forms a sealed cavity in the translocation channel in agreement with the AMP-PNP·BtuCD-F x-ray structure. When vitamin B12 and AMP-PNP are simultaneously present, the extent of complex formation is reduced, but the short 82-82 interspin distance detected indicates that the substrate does not affect the closed conformation of this gate. The existence of the BtuCD-F complex under these conditions is verified with spectroscopically orthogonal nitroxide and Gd(III)-based labels. The cytoplasmic gate II remains closed also in the vanadate-trapped state, but it reopens in the ADP-bound state of the complex. Therefore, we suggest that the substrate likely trapped in ATP·BtuCD-F can be released after ATP hydrolysis but before the occluded ADP-bound conformation is reached.
Collapse
Affiliation(s)
- Benesh Joseph
- From the Laboratory of Physical Chemistry, ETH Zurich, Wolfgang-Pauli-Strasse 10 and
| | | | | | | | | |
Collapse
|
60
|
Kattnig DR, Reichenwallner J, Hinderberger D. Modeling Excluded Volume Effects for the Faithful Description of the Background Signal in Double Electron–Electron Resonance. J Phys Chem B 2013; 117:16542-57. [DOI: 10.1021/jp408338q] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Jörg Reichenwallner
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Institute
of Chemistry, Martin-Luther-Universität Halle-Wittenberg, Von-Danckelmann-Platz
4, 06120 Halle (Saale), Germany
| | - Dariush Hinderberger
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Institute
of Chemistry, Martin-Luther-Universität Halle-Wittenberg, Von-Danckelmann-Platz
4, 06120 Halle (Saale), Germany
| |
Collapse
|
61
|
Razzaghi S, Brooks EK, Bordignon E, Hubbell WL, Yulikov M, Jeschke G. EPR relaxation-enhancement-based distance measurements on orthogonally spin-labeled T4-lysozyme. Chembiochem 2013; 14:1883-90. [PMID: 23775845 PMCID: PMC3804414 DOI: 10.1002/cbic.201300165] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Indexed: 12/20/2022]
Abstract
Lanthanide-induced enhancement of the longitudinal relaxation of nitroxide radicals in combination with orthogonal site-directed spin labeling is presented as a systematic distance measurement method intended for studies of bio-macromolecules and bio-macromolecular complexes. The approach is tested on a water-soluble protein (T4-lysozyme) for two different commercially available lanthanide labels, and complemented by previously reported data on a membrane-inserted polypeptide. Single temperature measurements are shown to be sufficient for reliable distance determination, with an upper measurable distance limit of about 5-6 nm. The extracted averaged distances represent the closest approach in Ln(III) -nitroxide distance distributions. Studies of conformational changes and of bio-macromolecule association-dissociation are proposed as possible application area of the relaxation-enhancement-based distance measurements.
Collapse
Affiliation(s)
| | - Evan K. Brooks
- Jules Stein Eye Institute and the Department of Chemistry and Biochemistry, University of California, Los Angeles, USA
| | | | - Wayne L. Hubbell
- Jules Stein Eye Institute and the Department of Chemistry and Biochemistry, University of California, Los Angeles, USA
| | - Maxim Yulikov
- Laboratory of Physical Chemistry, ETH Zurich, Switzerland
| | - Gunnar Jeschke
- Laboratory of Physical Chemistry, ETH Zurich, Switzerland
| |
Collapse
|
62
|
Baldauf C, Schulze K, Lueders P, Bordignon E, Tampé R. In-situ spin labeling of his-tagged proteins: distance measurements under in-cell conditions. Chemistry 2013; 19:13714-9. [PMID: 24038571 DOI: 10.1002/chem.201301921] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Indexed: 12/29/2022]
Abstract
New spin labeling strategies have immense potential in studying protein structure and dynamics under physiological conditions with electron paramagnetic resonance (EPR) spectroscopy. Here, a new spin-labeled chemical recognition unit for switchable and concomitantly high affinity binding to His-tagged proteins was synthesized. In combination with an orthogonal site-directed spin label, this novel spin probe, Proxyl-trisNTA (P-trisNTA) allows the extraction of structural constraints within proteins and macromolecular complexes by EPR. By using the multisubunit maltose import system of E. coli: 1) the topology of the substrate-binding protein, 2) its substrate-dependent conformational change, and 3) the formation of the membrane multiprotein complex can be extracted. Notably, the same distance information was retrieved both in vitro and in situ allowing for site-specific spin labeling in cell lysates under in-cell conditions. This approach will open new avenues towards in-cell EPR.
Collapse
Affiliation(s)
- Christoph Baldauf
- Institute of Biochemistry, Biocenter, Cluster of Excellence-Macromolecular Complexes (CEF-MC), Goethe-University Frankfurt, Max-von-Laue Str. 9, 60438 Frankfurt a.M. (Germany)
| | | | | | | | | |
Collapse
|
63
|
Ezhevskaya M, Bordignon E, Polyhach Y, Moens L, Dewilde S, Jeschke G, Van Doorslaer S. Distance determination between low-spin ferric haem and nitroxide spin label using DEER: the neuroglobin case. Mol Phys 2013. [DOI: 10.1080/00268976.2013.813592] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
64
|
Lueders P, Razzaghi S, Jäger H, Tschaggelar R, Hemminga MA, Yulikov M, Jeschke G. Distance determination from dysprosium induced relaxation enhancement: a case study on membrane-inserted WALP23 polypeptides. Mol Phys 2013. [DOI: 10.1080/00268976.2013.806683] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
65
|
Kattnig DR, Hinderberger D. Analytical distance distributions in systems of spherical symmetry with applications to double electron-electron resonance. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2013; 230:50-63. [PMID: 23454574 DOI: 10.1016/j.jmr.2013.01.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 01/24/2013] [Accepted: 01/25/2013] [Indexed: 05/24/2023]
Abstract
Based on a simple geometrical approach, we derive analytical expression of the probability density functions (pdfs) of distance of probe molecules distributed homogeneously in spherical aggregates with shell structure. These distance distributions can be utilized in the investigation of double electron-electron resonance (DEER) data of disordered nanometer-sized spin clusters. Structural insights and geometrical parameters of the aggregates can be extracted by modeling the DEER time traces based on the analytical pdfs. This approach is efficient and avoids difficulties of the model-free solution of the inverse problem that are related to multi-spin effects, limited excitation bandwidth, bias introduced by the regularization scheme, or ambiguity resulting from broad distance distributions. The derived pdfs can serve as building blocks, from which the distance distributions in arbitrary spherically symmetric objects can be assembled. The scenario of the pumped species being chemically distinct from the observed species is covered as well as that of a single type of probe molecules. We demonstrate the merits of analytical distance distributions by studying the distribution of three different spin probes in SDS micelles. By simultaneously analyzing DEER data corresponding to different spin probe concentrations, the distribution of the spin probes over the micelle can be determined. Employing Bayesian inference it is found that for all probes studied, a spherical shell model is most appropriate among the studied models and by orders of magnitude more likely than a homogeneous distribution in a ball. This statement also applies to probes that are deemed nonpolar. We envisage that the spin probe distributions in disordered soft and hard matter systems can now be quantified using DEER spectroscopy with greater precision and reduced ambiguity.
Collapse
Affiliation(s)
- Daniel R Kattnig
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | | |
Collapse
|
66
|
Garbuio L, Bordignon E, Brooks EK, Hubbell WL, Jeschke G, Yulikov M. Orthogonal spin labeling and Gd(III)-nitroxide distance measurements on bacteriophage T4-lysozyme. J Phys Chem B 2013; 117:3145-53. [PMID: 23442004 DOI: 10.1021/jp401806g] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We present the first example of chemoselective site-specific spin labeling of a monomeric protein with two spectroscopically orthogonal spin labels: a gadolinium(III) chelate complex and a nitroxide radical. A detailed analysis of the performance of two commercially available Gd(III) ligands in the Gd(III)-nitroxide pulse double electron-electron resonance (DEER or PELDOR) experiment is reported. A modification of the flip angle of the pump pulse in the Gd(III)-nitroxide DEER experiment is proposed to optimize sensitivity.
Collapse
Affiliation(s)
- Luca Garbuio
- Laboratory of Physical Chemistry, ETH Zurich, Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|
67
|
Lueders P, Jäger H, Hemminga MA, Jeschke G, Yulikov M. Distance Measurements on Orthogonally Spin-Labeled Membrane Spanning WALP23 Polypeptides. J Phys Chem B 2013; 117:2061-8. [DOI: 10.1021/jp311287t] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Petra Lueders
- Laboratory of Physical Chemistry, ETH Zurich, Switzerland
| | - Heidrun Jäger
- Laboratory
of Biophysics, Wageningen University, Wageningen,
The Netherlands
| | - Marcus A. Hemminga
- Laboratory
of Biophysics, Wageningen University, Wageningen,
The Netherlands
| | - Gunnar Jeschke
- Laboratory of Physical Chemistry, ETH Zurich, Switzerland
| | - Maxim Yulikov
- Laboratory of Physical Chemistry, ETH Zurich, Switzerland
| |
Collapse
|
68
|
Kaminker I, Tkach I, Manukovsky N, Huber T, Yagi H, Otting G, Bennati M, Goldfarb D. W-band orientation selective DEER measurements on a Gd3+/nitroxide mixed-labeled protein dimer with a dual mode cavity. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2013; 227:66-71. [PMID: 23314001 DOI: 10.1016/j.jmr.2012.11.028] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 11/29/2012] [Accepted: 11/29/2012] [Indexed: 06/01/2023]
Abstract
Double electron-electron resonance (DEER) at W-band (95 GHz) was applied to measure the distance between a pair of nitroxide and Gd(3+) chelate spin labels, about 6 nm apart, in a homodimer of the protein ERp29. While high-field DEER measurements on systems with such mixed labels can be highly attractive in terms of sensitivity and the potential to access long distances, a major difficulty arises from the large frequency spacing (about 700 MHz) between the narrow, intense signal of the Gd(3+) central transition and the nitroxide signal. This is particularly problematic when using standard single-mode cavities. Here we show that a novel dual-mode cavity that matches this large frequency separation dramatically increases the sensitivity of DEER measurements, allowing evolution times as long as 12 μs in a protein. This opens the possibility of accessing distances of 8 nm and longer. In addition, orientation selection can be resolved and analyzed, thus providing additional structural information. In the case of W-band DEER on a Gd(3+)-nitroxide pair, only two angles and their distributions have to be determined, which is a much simpler problem to solve than the five angles and their distributions associated with two nitroxide spin labels.
Collapse
Affiliation(s)
- Ilia Kaminker
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | | | | | | | |
Collapse
|
69
|
Orientation-Selective DEER Using Rigid Spin Labels, Cofactors, Metals, and Clusters. STRUCTURAL INFORMATION FROM SPIN-LABELS AND INTRINSIC PARAMAGNETIC CENTRES IN THE BIOSCIENCES 2013. [DOI: 10.1007/430_2013_115] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|