51
|
Almabruk KH, Dinh LK, Philmus B. Self-Resistance of Natural Product Producers: Past, Present, and Future Focusing on Self-Resistant Protein Variants. ACS Chem Biol 2018; 13:1426-1437. [PMID: 29763292 DOI: 10.1021/acschembio.8b00173] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Nature is a prolific producers of bioactive natural products with an array of biological activities and impact on human and animal health. But with great power comes great responsibility, and the organisms that produce a bioactive compound must be resistant to its biological effects to survive during production/accumulation. Microorganisms, particularly bacteria, have developed different strategies to prevent self-toxicity. Here, we review a few of the major mechanisms including the mechanism of resistance with a focus on self-resistant protein variants, target proteins that contain amino acid substitutions to reduce the binding of the bioactive natural product, and therefore its inhibitory effects are highlighted in depth. We also try to identify some future avenues of research and challenges that need to be addressed.
Collapse
Affiliation(s)
- Khaled H. Almabruk
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, Oregon 97331, United States
| | - Linh K. Dinh
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, Oregon 97331, United States
| | - Benjamin Philmus
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, Oregon 97331, United States
| |
Collapse
|
52
|
Winn M, Francis D, Micklefield J. De novo Biosynthesis of “Non-Natural” Thaxtomin Phytotoxins. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201801525] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Michael Winn
- School of Chemistry; Manchester Institute of Biotechnology; The University of Manchester; 131 Princess Street Manchester M1 7DN UK
| | - Daniel Francis
- School of Chemistry; Manchester Institute of Biotechnology; The University of Manchester; 131 Princess Street Manchester M1 7DN UK
| | - Jason Micklefield
- School of Chemistry; Manchester Institute of Biotechnology; The University of Manchester; 131 Princess Street Manchester M1 7DN UK
| |
Collapse
|
53
|
Winn M, Francis D, Micklefield J. De novo Biosynthesis of "Non-Natural" Thaxtomin Phytotoxins. Angew Chem Int Ed Engl 2018; 57:6830-6833. [PMID: 29603527 PMCID: PMC6001691 DOI: 10.1002/anie.201801525] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Indexed: 02/04/2023]
Abstract
Thaxtomins are diketopiperazine phytotoxins produced by Streptomyces scabies and other actinobacterial plant pathogens that inhibit cellulose biosynthesis in plants. Due to their potent bioactivity and novel mode of action there has been considerable interest in developing thaxtomins as herbicides for crop protection. To address the need for more stable derivatives, we have developed a new approach for structural diversification of thaxtomins. Genes encoding the thaxtomin NRPS from S. scabies, along with genes encoding a promiscuous tryptophan synthase (TrpS) from Salmonella typhimurium, were assembled in a heterologous host Streptomyces albus. Upon feeding indole derivatives to the engineered S. albus strain, tryptophan intermediates with alternative substituents are biosynthesized and incorporated by the NRPS to deliver a series of thaxtomins with different functionalities in place of the nitro group. The approach described herein, demonstrates how genes from different pathways and different bacterial origins can be combined in a heterologous host to create a de novo biosynthetic pathway to "non-natural" product target compounds.
Collapse
Affiliation(s)
- Michael Winn
- School of ChemistryManchester Institute of BiotechnologyThe University of Manchester131 Princess StreetManchesterM1 7DNUK
| | - Daniel Francis
- School of ChemistryManchester Institute of BiotechnologyThe University of Manchester131 Princess StreetManchesterM1 7DNUK
| | - Jason Micklefield
- School of ChemistryManchester Institute of BiotechnologyThe University of Manchester131 Princess StreetManchesterM1 7DNUK
| |
Collapse
|
54
|
Greunke C, Duell ER, D’Agostino PM, Glöckle A, Lamm K, Gulder TAM. Direct Pathway Cloning (DiPaC) to unlock natural product biosynthetic potential. Metab Eng 2018; 47:334-345. [DOI: 10.1016/j.ymben.2018.03.010] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 03/04/2018] [Accepted: 03/11/2018] [Indexed: 12/12/2022]
|
55
|
He Y, Wang B, Chen W, Cox RJ, He J, Chen F. Recent advances in reconstructing microbial secondary metabolites biosynthesis in Aspergillus spp. Biotechnol Adv 2018; 36:739-783. [DOI: 10.1016/j.biotechadv.2018.02.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 01/30/2018] [Accepted: 02/01/2018] [Indexed: 11/28/2022]
|
56
|
Thuan NH, Dhakal D, Pokhrel AR, Chu LL, Van Pham TT, Shrestha A, Sohng JK. Genome-guided exploration of metabolic features of Streptomyces peucetius ATCC 27952: past, current, and prospect. Appl Microbiol Biotechnol 2018; 102:4355-4370. [PMID: 29602983 DOI: 10.1007/s00253-018-8957-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 03/19/2018] [Accepted: 03/19/2018] [Indexed: 12/12/2022]
Abstract
Streptomyces peucetius ATCC 27952 produces two major anthracyclines, doxorubicin (DXR) and daunorubicin (DNR), which are potent chemotherapeutic agents for the treatment of several cancers. In order to gain detailed insight on genetics and biochemistry of the strain, the complete genome was determined and analyzed. The result showed that its complete sequence contains 7187 protein coding genes in a total of 8,023,114 bp, whereas 87% of the genome contributed to the protein coding region. The genomic sequence included 18 rRNA, 66 tRNAs, and 3 non-coding RNAs. In silico studies predicted ~ 68 biosynthetic gene clusters (BCGs) encoding diverse classes of secondary metabolites, including non-ribosomal polyketide synthase (NRPS), polyketide synthase (PKS I, II, and III), terpenes, and others. Detailed analysis of the genome sequence revealed versatile biocatalytic enzymes such as cytochrome P450 (CYP), electron transfer systems (ETS) genes, methyltransferase (MT), glycosyltransferase (GT). In addition, numerous functional genes (transporter gene, SOD, etc.) and regulatory genes (afsR-sp, metK-sp, etc.) involved in the regulation of secondary metabolites were found. This minireview summarizes the genome-based genome mining (GM) of diverse BCGs and genome exploration (GE) of versatile biocatalytic enzymes, and other enzymes involved in maintenance and regulation of metabolism of S. peucetius. The detailed analysis of genome sequence provides critically important knowledge useful in the bioengineering of the strain or harboring catalytically efficient enzymes for biotechnological applications.
Collapse
Affiliation(s)
- Nguyen Huy Thuan
- Center for Molecular Biology, Institute of Research and Development, Duy Tan University, 03 Quang Trung Street, Da Nang City, Vietnam
| | - Dipesh Dhakal
- Department of Life Science and Biochemical Engineering, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam, 31460, Republic of Korea
| | - Anaya Raj Pokhrel
- Department of Life Science and Biochemical Engineering, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam, 31460, Republic of Korea
| | - Luan Luong Chu
- Department of Life Science and Biochemical Engineering, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam, 31460, Republic of Korea
| | - Thi Thuy Van Pham
- Department of Life Science and Biochemical Engineering, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam, 31460, Republic of Korea
| | - Anil Shrestha
- Department of Life Science and Biochemical Engineering, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam, 31460, Republic of Korea
| | - Jae Kyung Sohng
- Department of Life Science and Biochemical Engineering, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam, 31460, Republic of Korea.
- Department of BT-Convergent Pharmaceutical Engineering, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam, 31460, Republic of Korea.
| |
Collapse
|
57
|
Goto Y, Suga H. ArtificialIn VitroBiosynthesis Systems for the Development of Pseudo-Natural Products. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2018. [DOI: 10.1246/bcsj.20170379] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yuki Goto
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
- JST-PRESTO, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
- JST-CREST, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
| |
Collapse
|
58
|
Yang G, Cozad MA, Holland DA, Zhang Y, Luesch H, Ding Y. Photosynthetic Production of Sunscreen Shinorine Using an Engineered Cyanobacterium. ACS Synth Biol 2018; 7:664-671. [PMID: 29304277 DOI: 10.1021/acssynbio.7b00397] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mycosporine-like amino acids (MAAs) are secondary metabolites of a variety of marine organisms including cyanobacteria and macroalgae. These compounds have strong ultraviolet (UV) absorption maxima between 310 and 362 nm and are biological sunscreens for counteracting the damaging effects of UV radiation in nature. The common MAA shinorine has been used as one key active ingredient of environmentally friendly sunscreen creams. Commercially used shinorine is isolated from one red algae that is generally harvested from the wild. Here, we describe the use of Synechocystis sp. PCC6803 as a host for the heterologous production of shinorine. We mined a shinorine gene cluster from the filamentous cyanobacterium Fischerella sp. PCC9339. When expressing the cluster in Synechocystis sp. PCC6803, we observed the production of shinorine using LC-MS analysis, but its productivity was three times lower than the native producer. Integrated transcriptional and metabolic profiling identified rate-limiting steps in the heterologous production of shinorine. The use of multiple promoters led to a 10-fold increase of its yield to 2.37 ± 0.21 mg/g dry biomass weight, comparable to commercially used shinorine producer. The UV protection of shinorine was further confirmed using the engineered Synechocystis sp. PCC6803. This work was the first time to demonstrate the photosynthetic overproduction of MAA. The results suggest that Synechocystis sp. PCC6803 can have broad applications as the synthetic biology chassis to produce other cyanobacterial natural products, expediting the translation of genomes into chemicals.
Collapse
Affiliation(s)
- Guang Yang
- Department of Medicinal Chemistry
and Center for Natural Products, Drug Discovery and Development, University of Florida, Gainesville, Florida 32610, United States
| | - Monica A. Cozad
- Department of Medicinal Chemistry
and Center for Natural Products, Drug Discovery and Development, University of Florida, Gainesville, Florida 32610, United States
| | - Destin A. Holland
- Department of Medicinal Chemistry
and Center for Natural Products, Drug Discovery and Development, University of Florida, Gainesville, Florida 32610, United States
| | - Yi Zhang
- Department of Medicinal Chemistry
and Center for Natural Products, Drug Discovery and Development, University of Florida, Gainesville, Florida 32610, United States
| | - Hendrik Luesch
- Department of Medicinal Chemistry
and Center for Natural Products, Drug Discovery and Development, University of Florida, Gainesville, Florida 32610, United States
| | - Yousong Ding
- Department of Medicinal Chemistry
and Center for Natural Products, Drug Discovery and Development, University of Florida, Gainesville, Florida 32610, United States
| |
Collapse
|
59
|
Li S, Wang J, Xiang W, Yang K, Li Z, Wang W. An Autoregulated Fine-Tuning Strategy for Titer Improvement of Secondary Metabolites Using Native Promoters in Streptomyces. ACS Synth Biol 2018; 7:522-530. [PMID: 29087698 DOI: 10.1021/acssynbio.7b00318] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Streptomycetes are well-known producers of biologically active secondary metabolites. Various efforts have been made to increase productions of these metabolites, while few approaches could well coordinate the biosynthesis of secondary metabolites and other physiological events of their hosts. Here we develop a universal autoregulated strategy for fine-tuning the expression of secondary metabolites biosynthetic gene clusters (BGCs) in Streptomyces species. First, inducible promoters were used to control the expression of secondary metabolites BGCs. Then, the optimal induction condition was determined by response surface model in both dimensions of time and strength. Finally, native promoters with similar transcription profile to the inducible promoter under the optimal condition were identified based on time-course transcriptome analyses, and used to replace the inducible promoter following an elaborate replacement approach. The expression of actinorhodin (Act) and heterogeneous oxytetracycline (OTC) BGCs were optimized in Streptomyces coelicolor using this strategy. Compared to modulating the expression via constitutive promoters, our strategy could dramatically improve the titers of Act and OTC by 1.3- and 9.1-fold, respectively. The autoregulated fine-tuning strategy developed here opens a novel route for titer improvement of desired secondary metabolites in Streptomyces.
Collapse
Affiliation(s)
- Shanshan Li
- State
Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No.1 West Beichen Road, Chaoyang District, Beijing 100101, China
- State
Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute
of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District,
Beijing 100193, China
| | - Junyang Wang
- State
Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No.1 West Beichen Road, Chaoyang District, Beijing 100101, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Wensheng Xiang
- State
Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute
of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District,
Beijing 100193, China
| | - Keqian Yang
- State
Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No.1 West Beichen Road, Chaoyang District, Beijing 100101, China
| | - Zilong Li
- State
Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No.1 West Beichen Road, Chaoyang District, Beijing 100101, China
| | - Weishan Wang
- State
Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No.1 West Beichen Road, Chaoyang District, Beijing 100101, China
| |
Collapse
|
60
|
Kasey CM, Zerrad M, Li Y, Cropp TA, Williams GJ. Development of Transcription Factor-Based Designer Macrolide Biosensors for Metabolic Engineering and Synthetic Biology. ACS Synth Biol 2018; 7:227-239. [PMID: 28950701 DOI: 10.1021/acssynbio.7b00287] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Macrolides are a large group of natural products that display broad and potent biological activities and are biosynthesized by type I polyketide synthases (PKSs) and associated enzymatic machinery. There is an urgent need to access macrolides and unnatural macrolide derivatives for drug discovery, drug manufacture, and probe development. Typically, efforts to engineer the biosynthesis of macrolides and macrolide analogues in various microbial hosts are hampered by the complexity of macrolide biosynthetic pathways and our limited ability to rationally reprogram type I PKSs and post-PKS machinery. High-throughput approaches based on synthetic biology and directed evolution could overcome this problem by testing the function of large libraries of variants. Yet, methods that can identify mutant enzymes, pathways, and strains that produce the desired macrolide target are not generally available. Here we show that the promiscuous macrolide sensing transcription factor MphR is a powerful platform for engineering variants with tailored properties. We identified variants that displayed improved sensitivity toward erythromycin, tailored the inducer specificity, and significantly improved sensitivity to macrolides that were very poor inducers of the wild-type MphR biosensor. Designer macrolide biosensors should find broad utility and enable applications related to high-throughput synthetic biology and directed evolution of macrolide biosynthesis.
Collapse
Affiliation(s)
- Christian M. Kasey
- Department of Chemistry, NC State University, Raleigh, North Carolina 27695, United States
| | - Mounir Zerrad
- Department of Chemistry, NC State University, Raleigh, North Carolina 27695, United States
| | - Yiwei Li
- Department of Chemistry, NC State University, Raleigh, North Carolina 27695, United States
| | - T. Ashton Cropp
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Gavin J. Williams
- Department of Chemistry, NC State University, Raleigh, North Carolina 27695, United States
- Comparative Medicine Institute, NC State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
61
|
Kashiwagi N, Ogino C, Kondo A. Production of chemicals and proteins using biomass-derived substrates from a Streptomyces host. BIORESOURCE TECHNOLOGY 2017; 245:1655-1663. [PMID: 28651868 DOI: 10.1016/j.biortech.2017.06.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/31/2017] [Accepted: 06/01/2017] [Indexed: 06/07/2023]
Abstract
Bioproduction using microbes from biomass feedstocks is of interest in regards to environmental problems and cost reduction. Streptomyces as an industrial microorganism plays an important role in the production of useful secondary metabolites for various applications. This strain also secretes a wide range of extracellular enzymes which degrade various biopolymers in nature, and it consumes these degrading substrates as nutrients. Hence, Streptomyces can be employed as a cell factory for the conversion of biomass-derived substrates into various products. This review focuses on the following two points: (1) Streptomyces as a producer of enzymes for degrading biomass-derived polysaccharides and polymers; and, (2) wild-type and engineered strains of Streptomyces as a host for chemical production from biomass-derived substrates.
Collapse
Affiliation(s)
- Norimasa Kashiwagi
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Chiaki Ogino
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo 657-8501, Japan.
| | - Akihiko Kondo
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo 657-8501, Japan; RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| |
Collapse
|
62
|
Li L, Jiang W, Lu Y. New strategies and approaches for engineering biosynthetic gene clusters of microbial natural products. Biotechnol Adv 2017; 35:936-949. [DOI: 10.1016/j.biotechadv.2017.03.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 03/12/2017] [Accepted: 03/15/2017] [Indexed: 12/11/2022]
|
63
|
Agrawal S, Acharya D, Adholeya A, Barrow CJ, Deshmukh SK. Nonribosomal Peptides from Marine Microbes and Their Antimicrobial and Anticancer Potential. Front Pharmacol 2017; 8:828. [PMID: 29209209 PMCID: PMC5702503 DOI: 10.3389/fphar.2017.00828] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 10/31/2017] [Indexed: 11/13/2022] Open
Abstract
Marine environments are largely unexplored and can be a source of new molecules for the treatment of many diseases such as malaria, cancer, tuberculosis, HIV etc. The Marine environment is one of the untapped bioresource of getting pharmacologically active nonribosomal peptides (NRPs). Bioprospecting of marine microbes have achieved many remarkable milestones in pharmaceutics. Till date, more than 50% of drugs which are in clinical use belong to the nonribosomal peptide or mixed polyketide-nonribosomal peptide families of natural products isolated from marine bacteria, cyanobacteria and fungi. In recent years large numbers of nonribosomal have been discovered from marine microbes using multi-disciplinary approaches. The present review covers the NRPs discovered from marine microbes and their pharmacological potential along with role of genomics, proteomics and bioinformatics in discovery and development of nonribosomal peptides drugs.
Collapse
Affiliation(s)
- Shivankar Agrawal
- Biotechnology and Management of Bioresources Division, TERI-Deakin Nano Biotechnology Centre, Energy and Resources Institute, New Delhi, India.,Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC, Australia
| | - Debabrata Acharya
- Biotechnology and Management of Bioresources Division, TERI-Deakin Nano Biotechnology Centre, Energy and Resources Institute, New Delhi, India
| | - Alok Adholeya
- Biotechnology and Management of Bioresources Division, TERI-Deakin Nano Biotechnology Centre, Energy and Resources Institute, New Delhi, India
| | - Colin J Barrow
- Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC, Australia
| | - Sunil K Deshmukh
- Biotechnology and Management of Bioresources Division, TERI-Deakin Nano Biotechnology Centre, Energy and Resources Institute, New Delhi, India
| |
Collapse
|
64
|
Robertsen HL, Weber T, Kim HU, Lee SY. Toward Systems Metabolic Engineering of Streptomycetes for Secondary Metabolites Production. Biotechnol J 2017; 13. [DOI: 10.1002/biot.201700465] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 10/20/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Helene Lunde Robertsen
- The Novo Nordisk Foundation Center for Biosustainability; Technical University of Denmark; 2800 Kongens Lyngby Denmark
| | - Tilmann Weber
- The Novo Nordisk Foundation Center for Biosustainability; Technical University of Denmark; 2800 Kongens Lyngby Denmark
| | - Hyun Uk Kim
- Department of Chemical and Biomolecular Engineering (BK21 Plus Program); Korea Advanced Institute of Science and Technology (KAIST); Yuseong-gu Daejeon 306-701 Republic of Korea
| | - Sang Yup Lee
- The Novo Nordisk Foundation Center for Biosustainability; Technical University of Denmark; 2800 Kongens Lyngby Denmark
- Department of Chemical and Biomolecular Engineering (BK21 Plus Program); Korea Advanced Institute of Science and Technology (KAIST); Yuseong-gu Daejeon 306-701 Republic of Korea
| |
Collapse
|
65
|
Machado H, Tuttle RN, Jensen PR. Omics-based natural product discovery and the lexicon of genome mining. Curr Opin Microbiol 2017; 39:136-142. [PMID: 29175703 PMCID: PMC5732065 DOI: 10.1016/j.mib.2017.10.025] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 10/28/2017] [Indexed: 11/29/2022]
Abstract
Genome sequencing and the application of omic techniques are driving many important advances in the field of microbial natural products research. Despite these gains, there remain aspects of the natural product discovery pipeline where our knowledge remains poor. These include the extent to which biosynthetic gene clusters are transcriptionally active in native microbes, the temporal dynamics of transcription, translation, and natural product assembly, as well as the relationships between small molecule production and detection. Here we touch on a number of these concepts in the context of continuing efforts to unlock the natural product potential revealed in genome sequence data and discuss nomenclatural issues that warrant consideration as the field moves forward.
Collapse
Affiliation(s)
- Henrique Machado
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, USA
| | - Robert N Tuttle
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, USA
| | - Paul R Jensen
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, USA; Center for Microbiome Innovation, University of California, San Diego, USA.
| |
Collapse
|
66
|
Cyanobacterial Sfp-type phosphopantetheinyl transferases functionalize carrier proteins of diverse biosynthetic pathways. Sci Rep 2017; 7:11888. [PMID: 28928426 PMCID: PMC5605751 DOI: 10.1038/s41598-017-12244-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 09/06/2017] [Indexed: 11/25/2022] Open
Abstract
Cyanobacteria produce structurally and functionally diverse polyketides, nonribosomal peptides and their hybrids. Sfp-type phosphopantetheinyl transferases (PPTases) are essential to the production of these compounds via functionalizing carrier proteins (CPs) of biosynthetic megaenzymes. However, cyanobacterial Sfp-type PPTases remain poorly characterized, posing a significant barrier to the exploitation of cyanobacteria for biotechnological and biomedical applications. Herein, we describe the detailed characterization of multiple cyanobacterial Sfp-type PPTases that were rationally selected. Biochemical characterization of these enzymes along with the prototypic enzyme Sfp from Bacillus subtilis demonstrated their varying specificities toward 11 recombinant CPs of different types of biosynthetic pathways from cyanobacterial and Streptomyces strains. Kinetic analysis further indicated that PPTases possess the higher binding affinity and catalytic efficiency toward their cognate CPs in comparison with noncognate substrates. Moreover, when chromosomally replacing the native PPTase gene of Synechocystis sp. PCC6803, two selected cyanobacterial PPTases and Sfp supported the growth of resulted mutants. Cell lysates of the cyanobacterial mutants further functionalized recombinant CP substrates. Collectively, these studies reveal the versatile catalysis of selected cyanobacterial PPTases and provide new tools to synthesize cyanobacterial natural products using in vitro and in vivo synthetic biology approaches.
Collapse
|
67
|
Niu G, Zheng J, Tan H. Biosynthesis and combinatorial biosynthesis of antifungal nucleoside antibiotics. SCIENCE CHINA-LIFE SCIENCES 2017; 60:939-947. [DOI: 10.1007/s11427-017-9116-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 05/08/2017] [Indexed: 11/28/2022]
|
68
|
Enabling techniques in the search for new antibiotics: Combinatorial biosynthesis of sugar-containing antibiotics. Biochem Pharmacol 2017; 134:56-73. [DOI: 10.1016/j.bcp.2016.10.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 10/24/2016] [Indexed: 12/12/2022]
|
69
|
Basitta P, Westrich L, Rösch M, Kulik A, Gust B, Apel AK. AGOS: A Plug-and-Play Method for the Assembly of Artificial Gene Operons into Functional Biosynthetic Gene Clusters. ACS Synth Biol 2017; 6:817-825. [PMID: 28182401 DOI: 10.1021/acssynbio.6b00319] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The generation of novel secondary metabolites by reengineering or refactoring biochemical pathways is a rewarding but also challenging goal of synthetic biology. For this, the development of tools for the reconstruction of secondary metabolite gene clusters as well as the challenge of understanding the obstacles in this process is of great interest. The artificial gene operon assembly system (AGOS) is a plug-and-play method developed as a tool to consecutively assemble artificial gene operons into a destination vector and subsequently express them under the control of a de-repressed promoter in a Streptomyces host strain. AGOS was designed as a set of entry plasmids for the construction of artificial gene operons and a SuperCos1 based destination vector, into which the constructed operons can be assembled by Red/ET-mediated recombination. To provide a proof-of-concept of this method, we disassembled the well-known novobiocin biosynthetic gene cluster into four gene operons, encoding for the different moieties of novobiocin. We then genetically reorganized these gene operons with the help of AGOS to finally obtain the complete novobiocin gene cluster again. The production of novobiocin precursors and of novobiocin could successfully be detected by LC-MS and LC-MS/MS. Furthermore, we demonstrated that the omission of terminator sequences only had a minor impact on product formation in our system.
Collapse
Affiliation(s)
- Patrick Basitta
- Pharmaceutical
Biology, Pharmaceutical Institute, University of Tübingen, Auf
der Morgenstelle 8, Tübingen, 72076, Germany
| | - Lucia Westrich
- Pharmaceutical
Biology, Pharmaceutical Institute, University of Tübingen, Auf
der Morgenstelle 8, Tübingen, 72076, Germany
| | - Manuela Rösch
- Pharmaceutical
Biology, Pharmaceutical Institute, University of Tübingen, Auf
der Morgenstelle 8, Tübingen, 72076, Germany
| | | | - Bertolt Gust
- Pharmaceutical
Biology, Pharmaceutical Institute, University of Tübingen, Auf
der Morgenstelle 8, Tübingen, 72076, Germany
| | - Alexander Kristian Apel
- Pharmaceutical
Biology, Pharmaceutical Institute, University of Tübingen, Auf
der Morgenstelle 8, Tübingen, 72076, Germany
| |
Collapse
|
70
|
Heijstra BD, Leang C, Juminaga A. Gas fermentation: cellular engineering possibilities and scale up. Microb Cell Fact 2017; 16:60. [PMID: 28403896 PMCID: PMC5389167 DOI: 10.1186/s12934-017-0676-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 04/04/2017] [Indexed: 12/11/2022] Open
Abstract
Low carbon fuels and chemicals can be sourced from renewable materials such as biomass or from industrial and municipal waste streams. Gasification of these materials allows all of the carbon to become available for product generation, a clear advantage over partial biomass conversion into fermentable sugars. Gasification results into a synthesis stream (syngas) containing carbon monoxide (CO), carbon dioxide (CO2), hydrogen (H2) and nitrogen (N2). Autotrophy-the ability to fix carbon such as CO2 is present in all domains of life but photosynthesis alone is not keeping up with anthropogenic CO2 output. One strategy is to curtail the gaseous atmospheric release by developing waste and syngas conversion technologies. Historically microorganisms have contributed to major, albeit slow, atmospheric composition changes. The current status and future potential of anaerobic gas-fermenting bacteria with special focus on acetogens are the focus of this review.
Collapse
Affiliation(s)
| | - Ching Leang
- LanzaTech, Inc., 8045 Lamon Ave, Suite 400, Skokie, IL USA
| | - Alex Juminaga
- LanzaTech, Inc., 8045 Lamon Ave, Suite 400, Skokie, IL USA
| |
Collapse
|
71
|
Zhang MM, Qiao Y, Ang EL, Zhao H. Using natural products for drug discovery: the impact of the genomics era. Expert Opin Drug Discov 2017; 12:475-487. [PMID: 28277838 DOI: 10.1080/17460441.2017.1303478] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Evolutionarily selected over billions of years for their interactions with biomolecules, natural products have been and continue to be a major source of pharmaceuticals. In the 1990s, pharmaceutical companies scaled down their natural product discovery programs in favor of synthetic chemical libraries due to major challenges such as high rediscovery rates, challenging isolation, and low production titers. Propelled by advances in DNA sequencing and synthetic biology technologies, insights into microbial secondary metabolism provided have inspired a number of strategies to address these challenges. Areas covered: This review highlights the importance of genomics and metagenomics in natural product discovery, and provides an overview of the technical and conceptual advances that offer unprecedented access to molecules encoded by biosynthetic gene clusters. Expert opinion: Genomics and metagenomics revealed nature's remarkable biosynthetic potential and her vast chemical inventory that we can now prioritize and systematically mine for novel chemical scaffolds with desirable bioactivities. Coupled with synthetic biology and genome engineering technologies, significant progress has been made in identifying and predicting the chemical output of biosynthetic gene clusters, as well as in optimizing cluster expression in native and heterologous host systems for the production of pharmaceutically relevant metabolites and their derivatives.
Collapse
Affiliation(s)
- Mingzi M Zhang
- a Metabolic Engineering Research Laboratory , Science and Engineering Institutes, Agency for Science, Technology and Research (A*STAR) , Singapore , Singapore
| | - Yuan Qiao
- a Metabolic Engineering Research Laboratory , Science and Engineering Institutes, Agency for Science, Technology and Research (A*STAR) , Singapore , Singapore
| | - Ee Lui Ang
- a Metabolic Engineering Research Laboratory , Science and Engineering Institutes, Agency for Science, Technology and Research (A*STAR) , Singapore , Singapore
| | - Huimin Zhao
- a Metabolic Engineering Research Laboratory , Science and Engineering Institutes, Agency for Science, Technology and Research (A*STAR) , Singapore , Singapore.,b Department of Chemical and Biomolecular Engineering , University of Illinois at Urbana-Champaign , Urbana , IL , USA
| |
Collapse
|
72
|
Covington BC, McLean JA, Bachmann BO. Comparative mass spectrometry-based metabolomics strategies for the investigation of microbial secondary metabolites. Nat Prod Rep 2017; 34:6-24. [PMID: 27604382 PMCID: PMC5214543 DOI: 10.1039/c6np00048g] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Covering: 2000 to 2016The labor-intensive process of microbial natural product discovery is contingent upon identifying discrete secondary metabolites of interest within complex biological extracts, which contain inventories of all extractable small molecules produced by an organism or consortium. Historically, compound isolation prioritization has been driven by observed biological activity and/or relative metabolite abundance and followed by dereplication via accurate mass analysis. Decades of discovery using variants of these methods has generated the natural pharmacopeia but also contributes to recent high rediscovery rates. However, genomic sequencing reveals substantial untapped potential in previously mined organisms, and can provide useful prescience of potentially new secondary metabolites that ultimately enables isolation. Recently, advances in comparative metabolomics analyses have been coupled to secondary metabolic predictions to accelerate bioactivity and abundance-independent discovery work flows. In this review we will discuss the various analytical and computational techniques that enable MS-based metabolomic applications to natural product discovery and discuss the future prospects for comparative metabolomics in natural product discovery.
Collapse
Affiliation(s)
- Brett C Covington
- Department of Chemistry, Vanderbilt University, 7330 Stevenson Center, Nashville, TN 37235, USA.
| | - John A McLean
- Department of Chemistry, Vanderbilt University, 7330 Stevenson Center, Nashville, TN 37235, USA. and Center for Innovative Technology, Vanderbilt University, 5401 Stevenson Center, Nashville, TN 37235, USA
| | - Brian O Bachmann
- Department of Chemistry, Vanderbilt University, 7330 Stevenson Center, Nashville, TN 37235, USA.
| |
Collapse
|
73
|
Tan GY, Liu T. Rational synthetic pathway refactoring of natural products biosynthesis in actinobacteria. Metab Eng 2017; 39:228-236. [DOI: 10.1016/j.ymben.2016.12.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 10/31/2016] [Accepted: 12/05/2016] [Indexed: 11/28/2022]
|
74
|
Nothias LF, Knight R, Dorrestein PC. Antibiotic discovery is a walk in the park. Proc Natl Acad Sci U S A 2016; 113:14477-14479. [PMID: 27940910 PMCID: PMC5187748 DOI: 10.1073/pnas.1618221114] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Louis-Félix Nothias
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093
| | - Rob Knight
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093
- Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA 92093
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA 92093
| | - Pieter C Dorrestein
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093;
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA 92093
| |
Collapse
|
75
|
Narcross L, Bourgeois L, Fossati E, Burton E, Martin VJJ. Mining Enzyme Diversity of Transcriptome Libraries through DNA Synthesis for Benzylisoquinoline Alkaloid Pathway Optimization in Yeast. ACS Synth Biol 2016; 5:1505-1518. [PMID: 27442619 DOI: 10.1021/acssynbio.6b00119] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The ever-increasing quantity of data deposited to GenBank is a valuable resource for mining new enzyme activities. Falling costs of DNA synthesis enables metabolic engineers to take advantage of this resource for identifying superior or novel enzymes for pathway optimization. Previously, we reported synthesis of the benzylisoquinoline alkaloid dihydrosanguinarine in yeast from norlaudanosoline at a molar conversion of 1.5%. Molar conversion could be improved by reduction of the side-product N-methylcheilanthifoline, a key bottleneck in dihydrosanguinarine biosynthesis. Two pathway enzymes, an N-methyltransferase and a cytochrome P450 of the CYP719A subfamily, were implicated in the synthesis of the side-product. Here, we conducted an extensive screen to identify enzyme homologues whose coexpression reduces side-product synthesis. Phylogenetic trees were generated from multiple sources of sequence data to identify a library of candidate enzymes that were purchased codon-optimized and precloned into expression vectors designed to facilitate high-throughput analysis of gene expression as well as activity assay. Simple in vivo assays were sufficient to guide the selection of superior enzyme homologues that ablated the synthesis of the side-product, and improved molar conversion of norlaudanosoline to dihydrosanguinarine to 10%.
Collapse
Affiliation(s)
- Lauren Narcross
- Department
of Biology, Concordia University, Montréal, Québec H4B 1R6, Canada
- Centre
for Structural and Functional Genomics, Concordia University, Montréal, Québec H4B 1R6, Canada
| | - Leanne Bourgeois
- Department
of Biology, Concordia University, Montréal, Québec H4B 1R6, Canada
- Centre
for Structural and Functional Genomics, Concordia University, Montréal, Québec H4B 1R6, Canada
| | | | - Euan Burton
- Department
of Biology, Concordia University, Montréal, Québec H4B 1R6, Canada
- Centre
for Structural and Functional Genomics, Concordia University, Montréal, Québec H4B 1R6, Canada
| | - Vincent J. J. Martin
- Department
of Biology, Concordia University, Montréal, Québec H4B 1R6, Canada
- Centre
for Structural and Functional Genomics, Concordia University, Montréal, Québec H4B 1R6, Canada
| |
Collapse
|
76
|
New antibiotics from Nature’s chemical inventory. Bioorg Med Chem 2016; 24:6227-6252. [DOI: 10.1016/j.bmc.2016.09.014] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 09/07/2016] [Indexed: 01/07/2023]
|
77
|
Yin S, Li Z, Wang X, Wang H, Jia X, Ai G, Bai Z, Shi M, Yuan F, Liu T, Wang W, Yang K. Heterologous expression of oxytetracycline biosynthetic gene cluster in Streptomyces venezuelae WVR2006 to improve production level and to alter fermentation process. Appl Microbiol Biotechnol 2016; 100:10563-10572. [PMID: 27709288 DOI: 10.1007/s00253-016-7873-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 08/28/2016] [Accepted: 09/16/2016] [Indexed: 02/06/2023]
Abstract
Heterologous expression is an important strategy to activate biosynthetic gene clusters of secondary metabolites. Here, it is employed to activate and manipulate the oxytetracycline (OTC) gene cluster and to alter OTC fermentation process. To achieve these goals, a fast-growing heterologous host Streptomyces venezuelae WVR2006 was rationally selected among several potential hosts. It shows rapid and dispersed growth and intrinsic high resistance to OTC. By manipulating the expression of two cluster-situated regulators (CSR) OtcR and OtrR and precursor supply, the OTC production level was significantly increased in this heterologous host from 75 to 431 mg/l only in 48 h, a level comparable to the native producer Streptomyces rimosus M4018 in 8 days. This work shows that S. venezuelae WVR2006 is a promising chassis for the production of secondary metabolites, and the engineered heterologous OTC producer has the potential to completely alter the fermentation process of OTC production.
Collapse
Affiliation(s)
- Shouliang Yin
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, People's Republic of China
| | - Zilong Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, People's Republic of China
| | - Xuefeng Wang
- Shengxue Dacheng Pharmaceutical Co., Ltd., Shijiazhuang, 051430, Hebei, People's Republic of China
| | - Huizhuan Wang
- Shengxue Dacheng Pharmaceutical Co., Ltd., Shijiazhuang, 051430, Hebei, People's Republic of China
| | - Xiaole Jia
- Shengxue Dacheng Pharmaceutical Co., Ltd., Shijiazhuang, 051430, Hebei, People's Republic of China
| | - Guomin Ai
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, People's Republic of China
| | - Zishang Bai
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, People's Republic of China
| | - Mingxin Shi
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, People's Republic of China
| | - Fang Yuan
- Shengxue Dacheng Pharmaceutical Co., Ltd., Shijiazhuang, 051430, Hebei, People's Republic of China
| | - Tiejun Liu
- Shengxue Dacheng Pharmaceutical Co., Ltd., Shijiazhuang, 051430, Hebei, People's Republic of China
| | - Weishan Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, People's Republic of China.
| | - Keqian Yang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, People's Republic of China.
| |
Collapse
|
78
|
Wang Y, Cobb RE, Zhao H. High-Efficiency Genome Editing of Streptomyces Species by an Engineered CRISPR/Cas System. Methods Enzymol 2016; 575:271-84. [PMID: 27417933 DOI: 10.1016/bs.mie.2016.03.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Next-generation sequencing technologies have rapidly expanded the genomic information of numerous organisms and revealed a rich reservoir of natural product gene clusters from microbial genomes, especially from Streptomyces, the largest genus of known actinobacteria at present. However, genetic engineering of these bacteria is often time consuming and labor intensive, if even possible. In this chapter, we describe the design and construction of pCRISPomyces, an engineered Type II CRISPR/Cas system, for targeted multiplex gene deletions in Streptomyces lividans, Streptomyces albus, and Streptomyces viridochromogenes with editing efficiency ranging from 70% to 100%. We demonstrate pCRISPomyces as a powerful tool for genome editing in Streptomyces.
Collapse
Affiliation(s)
- Y Wang
- University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - R E Cobb
- University of Illinois at Urbana-Champaign, Urbana, IL, United States; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - H Zhao
- University of Illinois at Urbana-Champaign, Urbana, IL, United States; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States.
| |
Collapse
|
79
|
Newman DJ, Cragg GM. Natural Products as Sources of New Drugs from 1981 to 2014. JOURNAL OF NATURAL PRODUCTS 2016; 79:629-61. [PMID: 26852623 DOI: 10.1021/acs.jnatprod.5b01055] [Citation(s) in RCA: 3734] [Impact Index Per Article: 466.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
This contribution is a completely updated and expanded version of the four prior analogous reviews that were published in this journal in 1997, 2003, 2007, and 2012. In the case of all approved therapeutic agents, the time frame has been extended to cover the 34 years from January 1, 1981, to December 31, 2014, for all diseases worldwide, and from 1950 (earliest so far identified) to December 2014 for all approved antitumor drugs worldwide. As mentioned in the 2012 review, we have continued to utilize our secondary subdivision of a "natural product mimic", or "NM", to join the original primary divisions and the designation "natural product botanical", or "NB", to cover those botanical "defined mixtures" now recognized as drug entities by the U.S. FDA (and similar organizations). From the data presented in this review, the utilization of natural products and/or their novel structures, in order to discover and develop the final drug entity, is still alive and well. For example, in the area of cancer, over the time frame from around the 1940s to the end of 2014, of the 175 small molecules approved, 131, or 75%, are other than "S" (synthetic), with 85, or 49%, actually being either natural products or directly derived therefrom. In other areas, the influence of natural product structures is quite marked, with, as expected from prior information, the anti-infective area being dependent on natural products and their structures. We wish to draw the attention of readers to the rapidly evolving recognition that a significant number of natural product drugs/leads are actually produced by microbes and/or microbial interactions with the "host from whence it was isolated", and therefore it is considered that this area of natural product research should be expanded significantly.
Collapse
Affiliation(s)
- David J Newman
- NIH Special Volunteer, Wayne, Pennsylvania 19087, United States
| | - Gordon M Cragg
- NIH Special Volunteer, Bethesda, Maryland 20814, United States
| |
Collapse
|
80
|
Zhang G, Li J, Zhu T, Gu Q, Li D. Advanced tools in marine natural drug discovery. Curr Opin Biotechnol 2016; 42:13-23. [PMID: 26954946 DOI: 10.1016/j.copbio.2016.02.021] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 02/18/2016] [Accepted: 02/22/2016] [Indexed: 01/10/2023]
Abstract
Marine natural products (MNPs) remain promising drug sources with several marine-derived drugs having been successfully approved. Nevertheless, it is never a smooth sailing to seek bioactive compounds from marine environments, during which many challenges are need to be faced to, for example, discovering unique marine resources, reviving unculturable organisms outside the marine environment, distinguishing novel compounds from the known ones, and disclosing the function of MNPs and optimizing their pharmacological use. Herein we review some advanced techniques and methodologies that can be employed to deal with above challenges with the intent of inspiring the forthcoming efforts in MNPs discovery pipelines.
Collapse
Affiliation(s)
- Guojian Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Jing Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Tianjiao Zhu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Qianqun Gu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Dehai Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
81
|
Kim HU, Charusanti P, Lee SY, Weber T. Metabolic engineering with systems biology tools to optimize production of prokaryotic secondary metabolites. Nat Prod Rep 2016; 33:933-41. [DOI: 10.1039/c6np00019c] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This Highlight examines current status of metabolic engineering and systems biology tools deployed for the optimal production of prokaryotic secondary metabolites.
Collapse
Affiliation(s)
- Hyun Uk Kim
- BioInformatics Research Center
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon
- Republic of Korea
- The Novo Nordisk Foundation Center for Biosustainability
| | - Pep Charusanti
- The Novo Nordisk Foundation Center for Biosustainability
- Technical University of Denmark
- Hørsholm
- Denmark
| | - Sang Yup Lee
- BioInformatics Research Center
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon
- Republic of Korea
- The Novo Nordisk Foundation Center for Biosustainability
| | - Tilmann Weber
- The Novo Nordisk Foundation Center for Biosustainability
- Technical University of Denmark
- Hørsholm
- Denmark
| |
Collapse
|