Wu J, Liu Y, Tang Y, Wang S, Wang C, Li Y, Su X, Tian J, Tian Y, Pan J, Su Y, Zhu H, Teng Z, Lu G. Synergistic Chemo-Photothermal Therapy of Breast Cancer by Mesenchymal Stem Cell-Encapsulated Yolk-Shell GNR@HPMO-PTX Nanospheres.
ACS APPLIED MATERIALS & INTERFACES 2016;
8:17927-17935. [PMID:
27356586 DOI:
10.1021/acsami.6b05677]
[Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Mesenchymal stem cells (MSCs) have attracted increasing attention as vehicles for cancer treatment. Herein, MSC-based synergistic oncotherapy strategy is presented for the first time. To achieve this goal, yolk-shell structured gold nanorod embedded hollow periodic mesoporous organosilica nanospheres (GNR@HPMOs) with high paclitaxel (PTX) loading capability and excellent photothermal transfer ability upon near-infrared (NIR) light irradiation are first prepared. Cytotoxicity and migration assays show that the viability and tumor-homing capability of MSCs are well-retained after internalization of high content of PTX loaded GNR@HPMOs (denoted as GNR@HPMOs-PTX). In vitro experiments show the GNR@HPMOs-PTX loaded MSCs (GNR@HPMOs-PTX@MSCs) possess synergistic chemo-photothermal killing effects for breast cancer cells. Also, photoacoustic imaging shows that the MSCs can improve dispersion and distribution in tumor tissue for GNR@HPMOs-PTX after intratumoral injection. In vivo experiments in breast cancer model of nude mice further demonstrate that the GNR@HPMOs-PTX@MSCs significantly inhibit tumor growth, suggesting their great potential for synergistic therapy of cancer.
Collapse