51
|
Li D, Huo M, Liu L, Zeng M, Chen X, Wang X, Yuan J. Overcoming Kinetic Trapping for Morphology Evolution during Polymerization‐Induced Self‐Assembly. Macromol Rapid Commun 2019; 40:e1900202. [DOI: 10.1002/marc.201900202] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 05/27/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Dan Li
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of EducationDepartment of ChemistryTsinghua University 100084 Beijing China
| | - Meng Huo
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of EducationDepartment of ChemistryTsinghua University 100084 Beijing China
| | - Lei Liu
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of EducationDepartment of ChemistryTsinghua University 100084 Beijing China
| | - Min Zeng
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of EducationDepartment of ChemistryTsinghua University 100084 Beijing China
| | - Xi Chen
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of EducationDepartment of ChemistryTsinghua University 100084 Beijing China
| | - Xiaosong Wang
- Department of Chemistry and Waterloo Institute for NanotechnologyUniversity of Waterloo 200 University Avenue Waterloo ON N2L 3G1 Canada
| | - Jinying Yuan
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of EducationDepartment of ChemistryTsinghua University 100084 Beijing China
| |
Collapse
|
52
|
Xu M, Xu L, Lin Q, Pei X, Jiang J, Zhu H, Cui Z, Binks BP. Switchable Oil-in-Water Emulsions Stabilized by Like-Charged Surfactants and Particles at Very Low Concentrations. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:4058-4067. [PMID: 30807183 DOI: 10.1021/acs.langmuir.8b04159] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A novel CO2/N2 switchable n-decane-in-water emulsion was prepared, which is stabilized by a CO2/N2 switchable surfactant [ N'-dodecyl- N, N-dimethylacetamidine (DDMA)] in cationic form in combination with positively charged alumina nanoparticles at concentrations as low as 0.01 mM and 0.001 wt %, respectively. The particles do not adsorb at the oil-water interface but remain dispersed in the aqueous phase between surfactant-coated droplets. A critical zeta potential of the particles of ca. +18 mV is necessary for the stabilization of the novel emulsions, suggesting that the electrical double-layer repulsions between particles and between particles and oil droplets are responsible for their stability. By bubbling N2 into the emulsions, demulsification occurs following transformation of DDMA molecules from the surface-active cationic form to the surface-inactive neutral form and desorption from the oil-water interface. Bubbling CO2 into the demulsified mixtures, cationic DDMA molecules are re-formed, which adsorb to the droplet interfaces, ensuring stable emulsions after homogenization. Compared with Pickering emulsions and traditional emulsions, the amount of switchable surfactant and number of like-charged particles required for stabilization are significantly reduced, which is economically and environmentally benign for practical applications.
Collapse
Affiliation(s)
- Maodong Xu
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering , Jiangnan University , 1800 Lihu Road , Wuxi 214122 , Jiangsu , P.R. China
- School of Biological and Chemical Engineering , Anhui Polytechnic University , Wuhu 241000 , P.R. China
| | - Lifei Xu
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering , Jiangnan University , 1800 Lihu Road , Wuxi 214122 , Jiangsu , P.R. China
| | - Qi Lin
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering , Jiangnan University , 1800 Lihu Road , Wuxi 214122 , Jiangsu , P.R. China
| | - Xiaomei Pei
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering , Jiangnan University , 1800 Lihu Road , Wuxi 214122 , Jiangsu , P.R. China
| | - Jianzhong Jiang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering , Jiangnan University , 1800 Lihu Road , Wuxi 214122 , Jiangsu , P.R. China
| | - Haiyan Zhu
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering , Jiangnan University , 1800 Lihu Road , Wuxi 214122 , Jiangsu , P.R. China
| | - Zhenggang Cui
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering , Jiangnan University , 1800 Lihu Road , Wuxi 214122 , Jiangsu , P.R. China
| | - Bernard P Binks
- Department of Chemistry and Biochemistry , University of Hull , Hull HU6 7RX , U.K
| |
Collapse
|
53
|
Hunter SJ, Thompson KL, Lovett JR, Hatton FL, Derry MJ, Lindsay C, Taylor P, Armes SP. Synthesis, Characterization, and Pickering Emulsifier Performance of Anisotropic Cross-Linked Block Copolymer Worms: Effect of Aspect Ratio on Emulsion Stability in the Presence of Surfactant. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:254-265. [PMID: 30562037 DOI: 10.1021/acs.langmuir.8b03727] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Reversible addition-fragmentation chain transfer (RAFT) aqueous dispersion polymerization is used to prepare epoxy-functional PGMA-P(HPMA- stat-GlyMA) diblock copolymer worms, where GMA, HPMA, and GlyMA denote glycerol monomethacrylate, 2-hydroxypropyl methacrylate, and glycidyl methacrylate, respectively. The epoxy groups on the GlyMA residues were ring-opened using 3-aminopropyltriethoxysilane (APTES) in order to cross-link the worm cores via a series of hydrolysis-condensation reactions. Importantly, the worm aspect ratio can be adjusted depending on the precise conditions selected for covalent stabilization. Relatively long cross-linked worms are obtained by reaction with APTES at 20 °C, whereas much shorter worms with essentially the same copolymer composition are formed by cooling the linear worms from 20 to 4 °C prior to APTES addition. Small-angle X-ray scattering (SAXS) studies confirmed that the mean aspect ratio for the long worms is approximately eight times greater than that for the short worms. Aqueous electrophoresis studies indicated that both types of cross-linked worms acquired weak cationic surface charge at low pH as a result of protonation of APTES-derived secondary amine groups within the nanoparticle cores. These cross-linked worms were evaluated as emulsifiers for the stabilization of n-dodecane-in-water emulsions via high-shear homogenization at 20 °C and pH 8. Increasing the copolymer concentration led to a reduction in mean droplet diameter, indicating that APTES cross-linking was sufficient to allow the nanoparticles to adsorb intact at the oil/water interface and hence produce genuine Pickering emulsions, rather than undergo in situ dissociation to form surface-active diblock copolymer chains. In surfactant challenge studies, the relatively long worms required a thirty-fold higher concentration of a nonionic surfactant (Tween 80) to be displaced from the n-dodecane-water interface compared to the short worms. This suggests that the former nanoparticles are much more strongly adsorbed than the latter, indicating that significantly greater Pickering emulsion stability can be achieved by using highly anisotropic worms. In contrast, colloidosomes prepared by reacting the hydroxyl-functional adsorbed worms with an oil-soluble polymeric diisocyanate remained intact when exposed to high concentrations of Tween 80.
Collapse
Affiliation(s)
- Saul J Hunter
- Department of Chemistry , University of Sheffield , Dainton Building, Brook Hill , Sheffield , Yorkshire S3 7HF , U.K
| | - Kate L Thompson
- The School of Materials, University of Manchester , Oxford Road , Manchester M13 9PL , U.K
| | - Joseph R Lovett
- Department of Chemistry , University of Sheffield , Dainton Building, Brook Hill , Sheffield , Yorkshire S3 7HF , U.K
| | - Fiona L Hatton
- Department of Chemistry , University of Sheffield , Dainton Building, Brook Hill , Sheffield , Yorkshire S3 7HF , U.K
| | - Matthew J Derry
- Department of Chemistry , University of Sheffield , Dainton Building, Brook Hill , Sheffield , Yorkshire S3 7HF , U.K
| | - Christopher Lindsay
- Syngenta, Jealott's Hill International Research Centre , Bracknell , Berkshire RG42 6EY , U.K
| | - Philip Taylor
- Syngenta, Jealott's Hill International Research Centre , Bracknell , Berkshire RG42 6EY , U.K
| | - Steven P Armes
- Department of Chemistry , University of Sheffield , Dainton Building, Brook Hill , Sheffield , Yorkshire S3 7HF , U.K
| |
Collapse
|
54
|
Su J, Wang S, Xu Z, Wu G, Wang L, Huang X. Interfacial self-assembly of gold nanoparticle-polymer nanoconjugates into microcapsules with near-infrared light modulated biphasic catalysis efficiency. Chem Commun (Camb) 2019; 55:10760-10763. [DOI: 10.1039/c9cc05326c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Gold nanoparticle-based microcapsules based on the interfacial assembly significantly enhanced the biphasic catalytic reaction rate upon near-infrared light irradiation.
Collapse
Affiliation(s)
- Jiaojiao Su
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin
- P. R. China
| | - Shengliang Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin
- P. R. China
| | - Zhijun Xu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin
- P. R. China
| | - Guangyu Wu
- College of Biology and the Environment
- Nanjing Forestry University
- Nanjing 210037
- P. R. China
| | - Lei Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin
- P. R. China
| | - Xin Huang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin
- P. R. China
| |
Collapse
|
55
|
Piogé S, Tran TN, McKenzie TG, Pascual S, Ashokkumar M, Fontaine L, Qiao G. Sono-RAFT Polymerization-Induced Self-Assembly in Aqueous Dispersion: Synthesis of LCST-type Thermosensitive Nanogels. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b01606] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Sandie Piogé
- Institut des Molécules et Matériaux du Mans, UMR 6283 CNRS − Le Mans Université, Av. O. Messiaen, 72085 Le Mans cedex 9, France
| | - Thi Nga Tran
- Institut des Molécules et Matériaux du Mans, UMR 6283 CNRS − Le Mans Université, Av. O. Messiaen, 72085 Le Mans cedex 9, France
| | - Thomas G. McKenzie
- Polymer Science Group, Department of Chemical and Biomolecular Engineering, The University of Melbourne, Melbourne 3010, Australia
| | - Sagrario Pascual
- Institut des Molécules et Matériaux du Mans, UMR 6283 CNRS − Le Mans Université, Av. O. Messiaen, 72085 Le Mans cedex 9, France
| | - Muthupandian Ashokkumar
- Sonochemistry Research Team, School of Chemistry, The University of Melbourne, Melbourne 3010 Australia
| | - Laurent Fontaine
- Institut des Molécules et Matériaux du Mans, UMR 6283 CNRS − Le Mans Université, Av. O. Messiaen, 72085 Le Mans cedex 9, France
| | - Greg Qiao
- Polymer Science Group, Department of Chemical and Biomolecular Engineering, The University of Melbourne, Melbourne 3010, Australia
| |
Collapse
|
56
|
Yan X, Zhai Z, Xu J, Song Z, Shang S, Rao X. CO 2-Responsive Pickering Emulsions Stabilized by a Bio-based Rigid Surfactant with Nanosilica. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:10769-10776. [PMID: 30256645 DOI: 10.1021/acs.jafc.8b03458] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A novel CO2-responsive surfactant, maleopimaric acid glycidyl methacrylate ester 3-(dimethylamino)propylamine imide (MPAGN), based on sustainable resource of rosin was synthesized and used to prepare a kind of CO2-responsive Pickering emulsions with nanosilica. MPAGN can be reversibly responsive to CO2 and N2 between active cationic (MPAGNH+) and inactive nonionic (MPAGN), leading to adsorb on or desorb from the surface of nanosilica, then stabilize or break emulsion. CO2-responsive behavior of MPAGN was verified by cycle change of pH and conductivity with bubbling CO2 and N2 alternately. The type of adsorption of MPAGNH+ at the particle-water interface was explained according to the adsorption isotherms. The mechanisms of stabilization, destabilization, and restabilization of Pickering emulsion were analyzed according to zeta potentials and droplet size. This Pickering emulsion can be reversible between stable and unstable by bubbling CO2 and N2 alternately. Moreover, this emulsifier can be recycled when new oil was added after removing the initial oil. Therefore, it not only has economic benefits but also has an environmentally friendly property.
Collapse
Affiliation(s)
- Xinyan Yan
- Institute of Chemical Industry of Forest Products , CAF, National Engineering Lab. for Biomass Chemical Utilization; Key and Open Lab. of Forest Chemical Engineering, SFA; Key Lab. of Biomass Energy and Material . No. 16 Suojinbei Road , Xuanwu District, Nanjing , Jiangsu Province 210000 , China
| | - Zhaolan Zhai
- Institute of Chemical Industry of Forest Products , CAF, National Engineering Lab. for Biomass Chemical Utilization; Key and Open Lab. of Forest Chemical Engineering, SFA; Key Lab. of Biomass Energy and Material . No. 16 Suojinbei Road , Xuanwu District, Nanjing , Jiangsu Province 210000 , China
| | - Ji Xu
- Institute of Chemical Industry of Forest Products , CAF, National Engineering Lab. for Biomass Chemical Utilization; Key and Open Lab. of Forest Chemical Engineering, SFA; Key Lab. of Biomass Energy and Material . No. 16 Suojinbei Road , Xuanwu District, Nanjing , Jiangsu Province 210000 , China
| | - Zhanqian Song
- Institute of Chemical Industry of Forest Products , CAF, National Engineering Lab. for Biomass Chemical Utilization; Key and Open Lab. of Forest Chemical Engineering, SFA; Key Lab. of Biomass Energy and Material . No. 16 Suojinbei Road , Xuanwu District, Nanjing , Jiangsu Province 210000 , China
| | - Shibin Shang
- Institute of Chemical Industry of Forest Products , CAF, National Engineering Lab. for Biomass Chemical Utilization; Key and Open Lab. of Forest Chemical Engineering, SFA; Key Lab. of Biomass Energy and Material . No. 16 Suojinbei Road , Xuanwu District, Nanjing , Jiangsu Province 210000 , China
- Research Institute of Forestry New Technology , CAF , No. 1 Xiangshan Road , Haidian District, Beijing , 100091 , China
| | - Xiaoping Rao
- Institute of Chemical Industry of Forest Products , CAF, National Engineering Lab. for Biomass Chemical Utilization; Key and Open Lab. of Forest Chemical Engineering, SFA; Key Lab. of Biomass Energy and Material . No. 16 Suojinbei Road , Xuanwu District, Nanjing , Jiangsu Province 210000 , China
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources , Nanjing Forestry University . No. 159 Longpan Road , Xuanwu District, Nanjing , Jiangsu Province 210000 , China
- Research Institute of Forestry New Technology , CAF , No. 1 Xiangshan Road , Haidian District, Beijing , 100091 , China
| |
Collapse
|
57
|
Thompson KL, Derry MJ, Hatton FL, Armes SP. Long-Term Stability of n-Alkane-in-Water Pickering Nanoemulsions: Effect of Aqueous Solubility of Droplet Phase on Ostwald Ripening. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:9289-9297. [PMID: 29999324 PMCID: PMC6085727 DOI: 10.1021/acs.langmuir.8b01835] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/10/2018] [Indexed: 05/19/2023]
Abstract
High-pressure microfluidization is used to prepare a series of oil-in-water Pickering nanoemulsions using sterically-stabilized diblock copolymer nanoparticles as the Pickering emulsifier. The droplet phase comprised either n-octane, n-decane, n-dodecane, or n-tetradecane. This series of oils enabled the effect of aqueous solubility on Ostwald ripening to be studied, which is the primary instability mechanism for such nanoemulsions. Analytical centrifugation (LUMiSizer instrument) was used to evaluate the long-term stability of these Pickering nanoemulsions over time scales of weeks/months. This technique enables convenient quantification of the fraction of growing oil droplets and confirmed that using n-octane (aqueous solubility = 0.66 mg dm-3 at 20 °C) leads to instability even over relatively short time periods. However, using n-tetradecane (aqueous solubility = 0.386 μg dm-3 at 20 °C) leads to significantly improved long-term stability with respect to Ostwald ripening, with all droplets remaining below 1 μm diameter after 6 weeks storage at 20 °C. In the case of n-dodecane, the long-term stability of these new copolymer-stabilized Pickering nanoemulsions is significantly better than the silica-stabilized Pickering nanoemulsions reported in the literature by Persson et al. ( Colloids Surf., A, 2014, 459, 48-57). This is attributed to a much greater interfacial yield stress for the former system, as recently described in the literature (see P. J. Betramo et al. Proc. Natl. Acad. Sci. U.S.A., 2017, 114, 10373-10378).
Collapse
|
58
|
Derry MJ, Mykhaylyk OO, Ryan AJ, Armes SP. Thermoreversible crystallization-driven aggregation of diblock copolymer nanoparticles in mineral oil. Chem Sci 2018; 9:4071-4082. [PMID: 29780536 PMCID: PMC5944243 DOI: 10.1039/c8sc00762d] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 04/01/2018] [Indexed: 12/18/2022] Open
Abstract
A poly(behenyl methacrylate)37 (PBeMA37) macromolecular chain transfer agent is utilized for the reversible addition-fragmentation chain transfer (RAFT) dispersion polymerization of benzyl methacrylate (BzMA) directly in mineral oil at 90 °C. Polymerization-induced self-assembly (PISA) occurs under these conditions, yielding a series of sterically-stabilized PBeMA37-PBzMA x diblock copolymer spheres of tunable diameter as confirmed by dynamic light scattering (DLS) and transmission electron microscopy (TEM) studies. Rheological studies indicate that a relatively transparent, free-flowing, concentrated dispersion of non-interacting 32 nm PBeMA37-PBzMA100 spheres at 50 °C forms a turbid, paste-like dispersion on cooling to 20 °C. Turbidimetry and differential scanning calorimetry (DSC) studies conducted on solutions of PBeMA37 homopolymer in mineral oil suggest that this switchable colloidal stability is linked to crystallization-induced phase separation exhibited by this stabilizer block. Indeed, variable-temperature small-angle X-ray scattering (SAXS) indicates that a loose mass fractal network of strongly interacting spheres is formed on cooling to 20 °C, which accounts for this thermoreversible sol-gel transition. Moreover, SAXS, DSC and wide-angle X-ray scattering (WAXS) analyses indicate that the behenyl (C22H45) side-chains first form crystalline domains comprising adjacent stabilizer chains within individual spherical nanoparticles, with subsequent crystallization between neighboring nanoparticles leading to the formation of the mass fractal aggregates.
Collapse
Affiliation(s)
- Matthew J Derry
- Department of Chemistry , The University of Sheffield , Dainton Building, Brook Hill , Sheffield , South Yorkshire S3 7HF , UK . ; ;
| | - Oleksandr O Mykhaylyk
- Department of Chemistry , The University of Sheffield , Dainton Building, Brook Hill , Sheffield , South Yorkshire S3 7HF , UK . ; ;
| | - Anthony J Ryan
- Department of Chemistry , The University of Sheffield , Dainton Building, Brook Hill , Sheffield , South Yorkshire S3 7HF , UK . ; ;
| | - Steven P Armes
- Department of Chemistry , The University of Sheffield , Dainton Building, Brook Hill , Sheffield , South Yorkshire S3 7HF , UK . ; ;
| |
Collapse
|
59
|
Chen Y, Li Z, Wang H, Pei Y, Shi Y, Wang J. Visible Light-Controlled Inversion of Pickering Emulsions Stabilized by Functional Silica Microspheres. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:2784-2790. [PMID: 29382203 DOI: 10.1021/acs.langmuir.7b03822] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A new class of donor-acceptor Stenhouse adduct (DASA)-functionalized silica microspheres (SMs) is designed and described to formulate Pickering emulsions with inversion property and large polarity change upon visible light irradiation. By tuning the hydrophilicity of the functional SM particles with visible light, these Pickering emulsions can easily perform inversion from water-in-oil to oil-in-water. The inversion performance of the emulsions is ascribed to DASA photoisomerization from an extended, hydrophobic, and intensely purple-colored triene to a compact, zwitterionic, and colorless cyclopentenone upon irradiation with visible light. This unique inversion behavior has been applied to control encapsulation and the release of fluorescein sodium salt.
Collapse
Affiliation(s)
- Yongkui Chen
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University , Xinxiang, Henan 453007, P. R. China
- School of Chemistry and Chemical Engineering, Xinxiang University , Xinxiang, Henan 453003, P. R. China
| | - Zhiyong Li
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University , Xinxiang, Henan 453007, P. R. China
| | - Huiyong Wang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University , Xinxiang, Henan 453007, P. R. China
| | - Yuanchao Pei
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University , Xinxiang, Henan 453007, P. R. China
| | - Yunlei Shi
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University , Xinxiang, Henan 453007, P. R. China
| | - Jianji Wang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University , Xinxiang, Henan 453007, P. R. China
| |
Collapse
|
60
|
Huo M, Li D, Song G, Zhang J, Wu D, Wei Y, Yuan J. Semi-Fluorinated Methacrylates: A Class of Versatile Monomers for Polymerization-Induced Self-Assembly. Macromol Rapid Commun 2018; 39:e1700840. [DOI: 10.1002/marc.201700840] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 01/05/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Meng Huo
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education; Department of Chemistry; Tsinghua University; 100084 Beijing China
- Key Lab of Bioorganic Phosphorus Chemistry and Chemical Biology of Ministry of Education; Department of Chemistry; Tsinghua University; 100084 Beijing China
| | - Dan Li
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education; Department of Chemistry; Tsinghua University; 100084 Beijing China
| | - Guangjie Song
- CAS Key Laboratory of Engineering Plastics and CAS Research/Education Center for Excellence in Molecular Sciences; Institute of Chemistry; Chinese Academy of Sciences (CAS); Beijing 100190 China
| | - Jun Zhang
- CAS Key Laboratory of Engineering Plastics and CAS Research/Education Center for Excellence in Molecular Sciences; Institute of Chemistry; Chinese Academy of Sciences (CAS); Beijing 100190 China
| | - Decheng Wu
- Beijing National Laboratory for Molecular Sciences; State Key Laboratory of Polymer Physics and Chemistry; Institute of Chemistry; Chinese Academy of Sciences (CAS); Beijing 100190 China
| | - Yen Wei
- Key Lab of Bioorganic Phosphorus Chemistry and Chemical Biology of Ministry of Education; Department of Chemistry; Tsinghua University; 100084 Beijing China
| | - Jinying Yuan
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education; Department of Chemistry; Tsinghua University; 100084 Beijing China
| |
Collapse
|
61
|
Chen J, Zhu C, Yang Z, Wang P, Yue Y, Kitaoka T. Thermally Tunable Pickering Emulsions Stabilized by Carbon-Dot-Incorporated Core-Shell Nanospheres with Fluorescence "On-Off" Behavior. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:273-283. [PMID: 29227679 DOI: 10.1021/acs.langmuir.7b03490] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Lack of deep understanding of nanoparticle (NP) actions at oil/water interface set an obstacle to practical applications of Pickering emulsions. Fluorescence labels fabricated by incorporation of carbon dots (CDs) into poly(N-isopropylacrylamide) (PNIPAM) matrix can not only mark the action of PNIPAM-based NPs in the interface but also reflect the colloidal morphologies of PNIPAM. In this work, we employed coaxial electrospraying for fabricating core-shell nanospheres of cellulose acetate encapsulated by PNIPAM, and facile incorporation of CDs in PNIPAM shells was achieved simultaneously. The coaxial electrosprayed NPs (CENPs) with temperature-dependent wettability can stabilize heptane and toluene in water at 25 °C, respectively, and reversible emulsion break can be triggered by temperature adjustment around the low critical solution temperature (LCST). Remarkably, CENP/CD composites exhibited a fluorescence "on-off" behavior because of the volume phase transition of the PNIPAM shell. CENP/CD composites in Pickering emulsions clearly elucidated the motions of CENPs in response to temperature changes. At temperatures below the LCST, the CENP concentration played an important role in surface coverage of oil droplets. Specifically, the CENP concentration above the minimum concentration for complete emulsification of oil phase led to high surface coverage and two-domain adsorption of CENPs at the interface including primary monolayer anchoring of CENPs on droplets surrounded by interconnected CENP networks, which contributed to the superior stability of the emulsions. Moreover, CENP/CD composites can be recycled with well-preserved core-shell structure and stable fluorescent properties, which offers their great potential applications in sensors and imaging.
Collapse
Affiliation(s)
- Jianqiang Chen
- Laboratory of Advanced Environmental & Energy Storage Materials, Department of Environment Engineering, Nanjing Forestry University , 159 Longpan Road, Nanjing 210037, P. R. China
| | - Chenyang Zhu
- Laboratory of Advanced Environmental & Energy Storage Materials, Department of Environment Engineering, Nanjing Forestry University , 159 Longpan Road, Nanjing 210037, P. R. China
| | - Zhen Yang
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycling and Pollution Control, Nanjing Normal University , 1 Wenyuan Road, Nanjing 210023, P. R. China
| | - Ping Wang
- Laboratory of Advanced Environmental & Energy Storage Materials, Department of Environment Engineering, Nanjing Forestry University , 159 Longpan Road, Nanjing 210037, P. R. China
| | - Yiying Yue
- Laboratory of Advanced Environmental & Energy Storage Materials, Department of Environment Engineering, Nanjing Forestry University , 159 Longpan Road, Nanjing 210037, P. R. China
| | - Takuya Kitaoka
- Department of Agro-Environmental Sciences, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University , 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| |
Collapse
|
62
|
Biais P, Beaunier P, Stoffelbach F, Rieger J. Loop-stabilized BAB triblock copolymer morphologies by PISA in water. Polym Chem 2018. [DOI: 10.1039/c8py00914g] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Assemblies of BAB triblock copolymers are prepared by PISA via aqueous RAFT dispersion polymerization. The importance of charges in the middle of the hydrophilic stabilizer loops is highlighted.
Collapse
Affiliation(s)
- Pauline Biais
- Sorbonne Université
- CNRS
- UMR 8232
- Institut Parisien de Chimie Moléculaire (IPCM)
- 75252 Paris Cedex 05
| | - Patricia Beaunier
- Sorbonne Université
- CNRS
- UMR 7197
- Laboratoire de Réactivité de Surface (LRS)
- 75252 Paris Cedex 05
| | - François Stoffelbach
- Sorbonne Université
- CNRS
- UMR 8232
- Institut Parisien de Chimie Moléculaire (IPCM)
- 75252 Paris Cedex 05
| | - Jutta Rieger
- Sorbonne Université
- CNRS
- UMR 8232
- Institut Parisien de Chimie Moléculaire (IPCM)
- 75252 Paris Cedex 05
| |
Collapse
|
63
|
Huo M, Xu Z, Zeng M, Chen P, Liu L, Yan LT, Wei Y, Yuan J. Controlling Vesicular Size via Topological Engineering of Amphiphilic Polymer in Polymerization-Induced Self-Assembly. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b02039] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Meng Huo
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, ‡Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology of Ministry of Education, Department of Chemistry, and §Key Laboratory of Advanced Materials (MOE), Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Ziyang Xu
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, ‡Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology of Ministry of Education, Department of Chemistry, and §Key Laboratory of Advanced Materials (MOE), Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Min Zeng
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, ‡Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology of Ministry of Education, Department of Chemistry, and §Key Laboratory of Advanced Materials (MOE), Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Pengyu Chen
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, ‡Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology of Ministry of Education, Department of Chemistry, and §Key Laboratory of Advanced Materials (MOE), Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Lei Liu
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, ‡Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology of Ministry of Education, Department of Chemistry, and §Key Laboratory of Advanced Materials (MOE), Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Li-Tang Yan
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, ‡Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology of Ministry of Education, Department of Chemistry, and §Key Laboratory of Advanced Materials (MOE), Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Yen Wei
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, ‡Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology of Ministry of Education, Department of Chemistry, and §Key Laboratory of Advanced Materials (MOE), Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Jinying Yuan
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, ‡Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology of Ministry of Education, Department of Chemistry, and §Key Laboratory of Advanced Materials (MOE), Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
64
|
Higher-order assembly of crystalline cylindrical micelles into membrane-extendable colloidosomes. Nat Commun 2017; 8:426. [PMID: 28871204 PMCID: PMC5583177 DOI: 10.1038/s41467-017-00465-z] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Accepted: 06/30/2017] [Indexed: 11/24/2022] Open
Abstract
Crystallization-driven self-assembly of diblock copolymers into cylindrical micelles of controlled length has emerged as a promising approach to the fabrication of functional nanoscale objects with high shape anisotropy. Here we show the preparation of a series of crystallizable diblock copolymers with appropriate wettability and chemical reactivity, and demonstrate their self-assembly into size-specific cylindrical micelle building blocks for the hierarchical construction of mechanically robust colloidosomes with a range of membrane textures, surface chemistries and optical properties. The colloidosomes can be structurally elaborated post assembly by in situ epitaxial elongation of the membrane building blocks to produce microcapsules covered in a chemically distinct, dense network of hair-like outgrowths. Our approach provides a route to hierarchically ordered colloidosomes that retain the intrinsic growth activity of their constituent building blocks to permit biofunctionalization, and have potential applications in areas such as biomimetic encapsulation, drug delivery, catalysis and biosensing. Functional nanoscale objects can be prepared via crystallization-driven self-assembly of diblock copolymers. Here the authors show the self-assembly of crystalline block copolymers into size-specific cylindrical micelles for the hierarchical construction of mechanically robust colloidosomes with a range of membrane textures.
Collapse
|
65
|
Jalani G, Jeyachandran D, Bertram Church R, Cerruti M. Graphene oxide-stabilized perfluorocarbon emulsions for controlled oxygen delivery. NANOSCALE 2017; 9:10161-10166. [PMID: 28702585 DOI: 10.1039/c7nr00378a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Perfluorocarbon (PFC) emulsions are capable of absorbing large quantities of oxygen. They are widely used as blood alternates for quick oxygenation of tissues. However, they are unsuitable for applications where sustained oxygen supply is desired over an extended period of time. Here, we have designed a new PFC oxygen delivery system that combines perfluorodecalin with graphene oxide (GO), where GO acts both as an emulsifier and a stabilizing agent. The resulting emulsions (PFC@GO) release oxygen at least one order of magnitude slower than emulsions prepared with other common surfactants. The release rate can be controlled by varying the thickness of the GO layer. Controlled release of oxygen make these emulsions excellent oxygen carriers for applications where sustained oxygen delivery is required e.g. in tissue regeneration and vascular wound healing.
Collapse
Affiliation(s)
- Ghulam Jalani
- Department of Mining and Materials Engineering, McGill University, H3A 0C5, Montreal, QC, Canada.
| | | | - Richard Bertram Church
- Department of Mining and Materials Engineering, McGill University, H3A 0C5, Montreal, QC, Canada.
| | - Marta Cerruti
- Department of Mining and Materials Engineering, McGill University, H3A 0C5, Montreal, QC, Canada.
| |
Collapse
|
66
|
Yeow J, Boyer C. Photoinitiated Polymerization-Induced Self-Assembly (Photo-PISA): New Insights and Opportunities. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2017; 4:1700137. [PMID: 28725534 PMCID: PMC5514979 DOI: 10.1002/advs.201700137] [Citation(s) in RCA: 264] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 04/20/2017] [Indexed: 05/17/2023]
Abstract
The polymerization-induced self-assembly (PISA) process is a useful synthetic tool for the efficient synthesis of polymeric nanoparticles of different morphologies. Recently, studies on visible light initiated PISA processes have offered a number of key research opportunities that are not readily accessible using traditional thermally initiated systems. For example, visible light mediated PISA (Photo-PISA) enables a high degree of control over the dispersion polymerization process by manipulation of the wavelength and intensity of incident light. In some cases, the final nanoparticle morphology of a single formulation can be modulated by simple manipulation of these externally controlled parameters. In addition, temporal (and in principle spatial) control over the Photo-PISA process can be achieved in most cases. Exploitation of the mild room temperature polymerizations conditions can enable the encapsulation of thermally sensitive therapeutics to occur without compromising the polymerization rate and their activities. Finally, the Photo-PISA process can enable further mechanistic insights into the morphological evolution of nanoparticle formation such as the effects of temperature on the self-assembly process. The purpose of this mini-review is therefore to examine some of these recent advances that have been made in Photo-PISA processes, particularly in light of the specific advantages that may exist in comparison with conventional thermally initiated systems.
Collapse
Affiliation(s)
- Jonathan Yeow
- School of Chemical EngineeringCentre for Advanced Macromolecular Design (CAMD) and Australian Centre for Nanomedicine (ACN)UNSW SydneySydneyNSW2052Australia
| | - Cyrille Boyer
- School of Chemical EngineeringCentre for Advanced Macromolecular Design (CAMD) and Australian Centre for Nanomedicine (ACN)UNSW SydneySydneyNSW2052Australia
| |
Collapse
|
67
|
Zhu Y, Fu T, Liu K, Lin Q, Pei X, Jiang J, Cui Z, Binks BP. Thermoresponsive Pickering Emulsions Stabilized by Silica Nanoparticles in Combination with Alkyl Polyoxyethylene Ether Nonionic Surfactant. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:5724-5733. [PMID: 28510456 DOI: 10.1021/acs.langmuir.7b00273] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We put forward a simple protocol to prepare thermoresponsive Pickering emulsions. Using hydrophilic silica nanoparticles in combination with a low concentration of alkyl polyoxyethylene monododecyl ether (C12En) nonionic surfactant as emulsifier, oil-in-water (o/w) emulsions can be obtained, which are stable at room temperature but demulsified at elevated temperature. The stabilization can be restored once the separated mixture is cooled and rehomogenized, and this stabilization-destabilization behavior can be cycled many times. It is found that the adsorption of nonionic surfactant at the silica nanoparticle-water interface via hydrogen bonding between the oxygen atoms in the polyoxyethylene headgroup and the SiOH groups on particle surfaces at low temperature is responsible for the in situ hydrophobization of the particles rendering them surface-active. Dehydrophobization can be achieved at elevated temperature due to weakening or loss of this hydrogen bonding. The time required for demulsification decreases with increasing temperature, and the temperature interval between stabilization and destabilization of the emulsions is affected by the surfactant headgroup length. Experimental evidence including microscopy, adsorption isotherms, and three-phase contact angles is provided to support the mechanism.
Collapse
Affiliation(s)
- Yue Zhu
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University , 1800 Lihu Road, Wuxi, Jiangsu 214122, People's Republic of China
- School of Chemistry and Chemical Engineering, Nantong University , 9 Seyuan Road, Nantong, Jiangsu 226019, People's Republic of China
| | - Ting Fu
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University , 1800 Lihu Road, Wuxi, Jiangsu 214122, People's Republic of China
| | - Kaihong Liu
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University , 1800 Lihu Road, Wuxi, Jiangsu 214122, People's Republic of China
| | - Qi Lin
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University , 1800 Lihu Road, Wuxi, Jiangsu 214122, People's Republic of China
| | - Xiaomei Pei
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University , 1800 Lihu Road, Wuxi, Jiangsu 214122, People's Republic of China
| | - Jianzhong Jiang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University , 1800 Lihu Road, Wuxi, Jiangsu 214122, People's Republic of China
| | - Zhenggang Cui
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University , 1800 Lihu Road, Wuxi, Jiangsu 214122, People's Republic of China
| | - Bernard P Binks
- School of Mathematics and Physical Sciences, University of Hull , Hull HU6 7RX, United Kingdom
| |
Collapse
|
68
|
Tritschler U, Pearce S, Gwyther J, Whittell GR, Manners I. 50th Anniversary Perspective: Functional Nanoparticles from the Solution Self-Assembly of Block Copolymers. Macromolecules 2017. [DOI: 10.1021/acs.macromol.6b02767] [Citation(s) in RCA: 238] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ulrich Tritschler
- School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - Sam Pearce
- School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - Jessica Gwyther
- School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - George R. Whittell
- School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - Ian Manners
- School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| |
Collapse
|
69
|
Xie G, Krys P, Tilton RD, Matyjaszewski K. Heterografted Molecular Brushes as Stabilizers for Water-in-Oil Emulsions. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b00006] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Guojun Xie
- Department
of Chemistry, ‡Department of Biomedical Engineering, and §Department of
Chemical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Pawel Krys
- Department
of Chemistry, ‡Department of Biomedical Engineering, and §Department of
Chemical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Robert D. Tilton
- Department
of Chemistry, ‡Department of Biomedical Engineering, and §Department of
Chemical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Krzysztof Matyjaszewski
- Department
of Chemistry, ‡Department of Biomedical Engineering, and §Department of
Chemical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
70
|
Pei Y, Lowe AB, Roth PJ. Stimulus-Responsive Nanoparticles and Associated (Reversible) Polymorphism via Polymerization Induced Self-assembly (PISA). Macromol Rapid Commun 2016; 38. [DOI: 10.1002/marc.201600528] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 10/07/2016] [Indexed: 12/22/2022]
Affiliation(s)
- Yiwen Pei
- Department of Chemistry; Faculty of Engineering and Physical Sciences; University of Surrey; Guildford GU2 7XH United Kingdom
| | - Andrew B. Lowe
- Nanochemistry Research Institute and Department of Chemistry; Curtin University; Bentley Perth 6102 WA Australia
| | - Peter J. Roth
- Department of Chemistry; Faculty of Engineering and Physical Sciences; University of Surrey; Guildford GU2 7XH United Kingdom
| |
Collapse
|
71
|
Chen Y, Wang Z, Wang D, Ma N, Li C, Wang Y. Surfactant-Free Emulsions with Erasable Triggered Phase Inversions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:11039-11042. [PMID: 27682193 DOI: 10.1021/acs.langmuir.6b03189] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Complex emulsions including double emulsions and high-internal-phase emulsions (HIPEs) are wonderful templates for producing porous polymeric materials. Yet, surfactants and multiple emulsifications are generally needed. In this work, surfactant-free complex emulsions are successfully prepared using a CO2-responsive block copolymer through one-step emulsification. Phase inversion from HIPEs to double emulsions happens in one system upon the change in polymer amphiphilicity as a result of CO2 triggering. The one-step emulsification method offers great convenience for converting the block copolymer into porous 3D scaffolds and particles. Moreover, CO2 triggering is erasable so that the polymer can be repeatedly used for controllable complex emulsions as well as porous materials.
Collapse
Affiliation(s)
- Yiwen Chen
- School of Materials Science and Engineering, University of Science and Technology Beijing , Beijing 100083, China
| | - Zhen Wang
- Department of Chemistry, Renmin University of China , Beijing 100872, China
| | - Dingguan Wang
- Department of Chemistry, Renmin University of China , Beijing 100872, China
| | - Ning Ma
- School of Materials Science and Engineering, University of Science and Technology Beijing , Beijing 100083, China
- College of Materials Science and Chemical Engineering, Harbin Engineering University , Harbin 150001, China
| | - Cancan Li
- School of Materials Science and Engineering, University of Science and Technology Beijing , Beijing 100083, China
| | - Yapei Wang
- Department of Chemistry, Renmin University of China , Beijing 100872, China
| |
Collapse
|
72
|
Mable CJ, Thompson KL, Derry MJ, Mykhaylyk OO, Binks BP, Armes SP. ABC Triblock Copolymer Worms: Synthesis, Characterization, and Evaluation as Pickering Emulsifiers for Millimeter-Sized Droplets. Macromolecules 2016; 49:7897-7907. [PMID: 27795581 PMCID: PMC5081568 DOI: 10.1021/acs.macromol.6b01729] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 09/21/2016] [Indexed: 01/28/2023]
Abstract
![]()
Polymerization-induced
self-assembly (PISA) is used to prepare
linear poly(glycerol monomethacrylate)–poly(2-hydroxypropyl
methacrylate)–poly(benzyl methacrylate) [PGMA–PHPMA–PBzMA]
triblock copolymer nano-objects in the form of a concentrated aqueous
dispersion via a three-step synthesis based on reversible addition–fragmentation
chain transfer (RAFT) polymerization. First, GMA is polymerized via
RAFT solution polymerization in ethanol, then HPMA is polymerized
via RAFT aqueous solution polymerization, and finally BzMA is polymerized
via “seeded” RAFT aqueous emulsion polymerization. For
certain block compositions, highly anisotropic worm-like particles
are obtained, which are characterized by small-angle X-ray scattering
(SAXS) and transmission electron microscopy (TEM). The design rules
for accessing higher order morphologies (i.e., worms or vesicles)
are briefly explored. Surprisingly, vesicular morphologies cannot
be accessed by targeting longer PBzMA blocks—instead, only
spherical nanoparticles are formed. SAXS is used to rationalize these
counterintuitive observations, which are best explained by considering
subtle changes in the relative enthalpic incompatibilities between
the three blocks during the growth of the PBzMA block. Finally, the
PGMA–PHPMA–PBzMA worms are evaluated as Pickering emulsifiers
for the stabilization of oil-in-water emulsions. Millimeter-sized
oil droplets can be obtained using low-shear homogenization (hand-shaking)
in the presence of 20 vol % n-dodecane. In contrast,
control experiments performed using PGMA–PHPMA diblock copolymer
worms indicate that these more delicate nanostructures do not survive
even these mild conditions.
Collapse
Affiliation(s)
- C J Mable
- Department of Chemistry, University of Sheffield , Brook Hill, Sheffield S3 7HF, U.K
| | - K L Thompson
- Department of Chemistry, University of Sheffield , Brook Hill, Sheffield S3 7HF, U.K
| | - M J Derry
- Department of Chemistry, University of Sheffield , Brook Hill, Sheffield S3 7HF, U.K
| | - O O Mykhaylyk
- Department of Chemistry, University of Sheffield , Brook Hill, Sheffield S3 7HF, U.K
| | - B P Binks
- School of Mathematics and Physical Sciences, University of Hull , Hull HU6 7RX, U.K
| | - S P Armes
- Department of Chemistry, University of Sheffield , Brook Hill, Sheffield S3 7HF, U.K
| |
Collapse
|
73
|
Yang P, Mykhaylyk O, Jones ER, Armes SP. RAFT Dispersion Alternating Copolymerization of Styrene with N-Phenylmaleimide: Morphology Control and Application as an Aqueous Foam Stabilizer. Macromolecules 2016; 49:6731-6742. [PMID: 27708458 PMCID: PMC5041161 DOI: 10.1021/acs.macromol.6b01563] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 08/22/2016] [Indexed: 01/26/2023]
Abstract
We report a new nonaqueous polymerization-induced self-assembly (PISA) formulation based on the reversible addition-fragmentation chain transfer (RAFT) dispersion alternating copolymerization of styrene with N-phenylmaleimide using a nonionic poly(N,N-dimethylacrylamide) stabilizer in a 50/50 w/w ethanol/methyl ethyl ketone (MEK) mixture. The MEK cosolvent is significantly less toxic than the 1,4-dioxane cosolvent reported previously [Yang P.; Macromolecules2013, 46, 8545-8556]. The core-forming alternating copolymer block has a relatively high glass transition temperature (Tg), which leads to vesicular morphologies being observed during PISA, as well as the more typical sphere and worm phases. Each of these copolymer morphologies has been characterized by transmission electron microscopy (TEM) and small-angle X-ray scattering (SAXS) studies. TEM studies reveal micrometer-sized elliptical particles with internal structure, with SAXS analysis suggesting an oligolamellar vesicle morphology. This structure differs from that previously reported for a closely related PISA formulation utilizing a poly(methacrylic acid) stabilizer block for which unilamellar platelet-like particles are observed by TEM and SAXS. This suggests that interlamellar interactions are governed by the nature of the steric stabilizer layer. Moreover, using the MEK cosolvent also enables access to a unilamellar vesicular morphology, despite the high Tg of the alternating copolymer core-forming block. This was achieved by simply conducting the PISA synthesis at a higher temperature for a longer reaction time (80 °C for 24 h). Presumably, MEK solvates the core-forming block more than the previously utilized 1,4-dioxane cosolvent, which leads to greater chain mobility. Finally, preliminary experiments indicate that the worms are much more efficient stabilizers for aqueous foams than either the spheres or the oligolamellar elliptical vesicles.
Collapse
Affiliation(s)
- Pengcheng Yang
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K.
| | - Oleksandr
O. Mykhaylyk
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K.
| | - Elizabeth R. Jones
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K.
| | - Steven P. Armes
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K.
| |
Collapse
|
74
|
Wu J, Ma GH. Recent Studies of Pickering Emulsions: Particles Make the Difference. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:4633-48. [PMID: 27337222 DOI: 10.1002/smll.201600877] [Citation(s) in RCA: 419] [Impact Index Per Article: 52.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 05/13/2016] [Indexed: 05/20/2023]
Abstract
In recent years, emulsions stabilized by micro- or nanoparticles (known as Pickering emulsions) have attracted much attention. Micro- or nanoparticles, as the main components of the emulsion, play a key role in the preparation and application of Pickering emulsions. The existence of particles at the interface between the oil and aqueous phases affects not only the preparation, but also the properties of Pickering emulsions, affording superior stability, low toxicity, and stimuli-responsiveness compared to classical emulsions stabilized by surfactants. These advantages of Pickering emulsions make them attractive, especially in biomedicine. In this review, the effects of the characteristics of micro- and nanoparticles on the preparation and properties of Pickering emulsions are introduced. In particular, the preparation methods of Pickering emulsions, especially uniform-sized emulsions, are listed. Uniform Pickering emulsions are convenient for both mechanistic research and applications. Furthermore, some biomedical applications of Pickering emulsions are discussed and the problems hindering their clinical application are identified.
Collapse
Affiliation(s)
- Jie Wu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Guang-Hui Ma
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China.
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing, 211800, China.
| |
Collapse
|
75
|
Jiang J, Ma Y, Cui Z, Binks BP. Pickering Emulsions Responsive to CO2/N2 and Light Dual Stimuli at Ambient Temperature. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:8668-8675. [PMID: 27477238 DOI: 10.1021/acs.langmuir.6b01475] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A dual stimuli-responsive n-octane-in-water Pickering emulsion with CO2/N2 and light triggers is prepared using negatively charged silica nanoparticles in combination with a trace amount of dual switchable surfactant, 4-butyl-4-(4-N,N-dimethylbutoxyamine) azobenzene bicarbonate (AZO-B4), as stabilizers. On one hand, the emulsion can be transformed between stable and unstable at ambient temperature rapidly via the N2/CO2 trigger, and on the other hand, a change in droplet size of the emulsion can occur upon light irradiation/rehomogenization cycles without changing the particle/surfactant concentration. The dual responsiveness thus allows for a precise control of emulsion properties. Compared with emulsions stabilized by specially synthesized stimuli-responsive particles or by stimuli-responsive surfactants, the method reported here is much easier and requires a relatively low concentration of surfactant (≈1/10 cmc), which is important for potential applications.
Collapse
Affiliation(s)
- Jianzhong Jiang
- The Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University , 1800 Lihu Road, Wuxi, Jiangsu, P.R. China
| | - Yuxuan Ma
- The Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University , 1800 Lihu Road, Wuxi, Jiangsu, P.R. China
| | - Zhenggang Cui
- The Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University , 1800 Lihu Road, Wuxi, Jiangsu, P.R. China
| | - Bernard P Binks
- Department of Chemistry, University of Hull , Hull HU6 7RX, U.K
| |
Collapse
|
76
|
Rymaruk MJ, Thompson KL, Derry MJ, Warren NJ, Ratcliffe LPD, Williams CN, Brown SL, Armes SP. Bespoke contrast-matched diblock copolymer nanoparticles enable the rational design of highly transparent Pickering double emulsions. NANOSCALE 2016; 8:14497-506. [PMID: 27406976 PMCID: PMC5047046 DOI: 10.1039/c6nr03856e] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 07/04/2016] [Indexed: 05/28/2023]
Abstract
We report the preparation of highly transparent oil-in-water Pickering emulsions using contrast-matched organic nanoparticles. This is achieved via addition of judicious amounts of either sucrose or glycerol to an aqueous dispersion of poly(glycerol monomethacrylate)56-poly(2,2,2-trifluoroethyl methacrylate)500 [PGMA-PTFEMA] diblock copolymer nanoparticles prior to high shear homogenization with an equal volume of n-dodecane. The resulting Pickering emulsions comprise polydisperse n-dodecane droplets of 20-100 μm diameter and exhibit up to 96% transmittance across the visible spectrum. In contrast, control experiments using non-contrast-matched poly(glycerol monomethacrylate)56-poly(benzyl methacrylate)300 [PGMA56-PBzMA300] diblock copolymer nanoparticles as a Pickering emulsifier only produced conventional highly turbid emulsions. Thus contrast-matching of the two immiscible phases is a necessary but not sufficient condition for the preparation of highly transparent Pickering emulsions: it is essential to use isorefractive nanoparticles in order to minimize light scattering. Furthermore, highly transparent oil-in-water-in-oil Pickering double emulsions can be obtained by homogenizing the contrast-matched oil-in-water Pickering emulsion prepared using the PGMA56-PTFEMA500 nanoparticles with a contrast-matched dispersion of hydrophobic poly(lauryl methacrylate)39-poly(2,2,2-trifluoroethyl methacrylate)800 [PLMA39-PTFEMA800] diblock copolymer nanoparticles in n-dodecane. Finally, we show that an isorefractive oil-in-water Pickering emulsion enables fluorescence spectroscopy to be used to monitor the transport of water-insoluble small molecules (pyrene and benzophenone) between n-dodecane droplets. Such transport is significantly less efficient than that observed for the equivalent isorefractive surfactant-stabilized emulsion. Conventional turbid emulsions do not enable such a comparison to be made because the intense light scattering leads to substantial spectral attenuation.
Collapse
Affiliation(s)
- Matthew J. Rymaruk
- Dainton Building , Department of Chemistry , The University of Sheffield , Brook Hill , Sheffield , S3 7HF , Yorkshire , UK . ;
| | - Kate L. Thompson
- Dainton Building , Department of Chemistry , The University of Sheffield , Brook Hill , Sheffield , S3 7HF , Yorkshire , UK . ;
| | - Matthew J. Derry
- Dainton Building , Department of Chemistry , The University of Sheffield , Brook Hill , Sheffield , S3 7HF , Yorkshire , UK . ;
| | - Nicholas J. Warren
- Dainton Building , Department of Chemistry , The University of Sheffield , Brook Hill , Sheffield , S3 7HF , Yorkshire , UK . ;
| | - Liam P. D. Ratcliffe
- Dainton Building , Department of Chemistry , The University of Sheffield , Brook Hill , Sheffield , S3 7HF , Yorkshire , UK . ;
| | - Clive N. Williams
- Scott Bader Company Ltd , Wollaston, Wellingborough , NN29 7RL , Northants , UK
| | - Steven L. Brown
- Scott Bader Company Ltd , Wollaston, Wellingborough , NN29 7RL , Northants , UK
| | - Steven P. Armes
- Dainton Building , Department of Chemistry , The University of Sheffield , Brook Hill , Sheffield , S3 7HF , Yorkshire , UK . ;
| |
Collapse
|
77
|
Canning S, Smith GN, Armes SP. A Critical Appraisal of RAFT-Mediated Polymerization-Induced Self-Assembly. Macromolecules 2016; 49:1985-2001. [PMID: 27019522 PMCID: PMC4806311 DOI: 10.1021/acs.macromol.5b02602] [Citation(s) in RCA: 654] [Impact Index Per Article: 81.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 02/01/2016] [Indexed: 12/16/2022]
Abstract
Recently, polymerization-induced self-assembly (PISA) has become widely recognized as a robust and efficient route to produce block copolymer nanoparticles of controlled size, morphology, and surface chemistry. Several reviews of this field have been published since 2012, but a substantial number of new papers have been published in the last three years. In this Perspective, we provide a critical appraisal of the various advantages offered by this approach, while also pointing out some of its current drawbacks. Promising future research directions as well as remaining technical challenges and unresolved problems are briefly highlighted.
Collapse
Affiliation(s)
- Sarah
L. Canning
- Dainton Building, Department
of Chemistry, University of Sheffield, Brook Hill, Sheffield, South
Yorkshire S3 7HF, U.K.
| | - Gregory N. Smith
- Dainton Building, Department
of Chemistry, University of Sheffield, Brook Hill, Sheffield, South
Yorkshire S3 7HF, U.K.
| | - Steven P. Armes
- Dainton Building, Department
of Chemistry, University of Sheffield, Brook Hill, Sheffield, South
Yorkshire S3 7HF, U.K.
| |
Collapse
|
78
|
Cunningham VJ, Armes SP, Musa OM. Synthesis, characterisation and Pickering emulsifier performance of poly(stearyl methacrylate)-poly( N-2-(methacryloyloxy)ethyl pyrrolidone) diblock copolymer nano-objects via RAFT dispersion polymerisation in n-dodecane. Polym Chem 2016; 7:1882-1891. [PMID: 28496522 PMCID: PMC5361141 DOI: 10.1039/c6py00138f] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 02/11/2016] [Indexed: 01/19/2023]
Abstract
A near-monodisperse poly(stearyl methacrylate) macromolecular chain transfer agent (PSMA macro-CTA) was prepared via reversible addition-fragmentation chain transfer (RAFT) solution polymerisation in toluene. This PSMA macro-CTA was then utilised as a stabiliser block for the RAFT dispersion polymerisation of a highly polar monomer, N-2-(methacryloyloxy)ethyl pyrrolidone (NMEP), in n-dodecane at 90 °C. 1H NMR studies confirmed that the rate of NMEP polymerisation was significantly faster than that of a non-polar monomer (benzyl methacrylate, BzMA) under the same conditions. For example, when targeting a PSMA14-PNMEP100 diblock copolymer, more than 99% NMEP conversion was achieved within 30 min, whereas only 19% BzMA conversion was obtained on the same time scale for the corresponding PSMA14-PBzMA100 synthesis. The resulting PSMA-PNMEP diblock copolymer chains underwent polymerisation-induced self-assembly (PISA) during growth of the insoluble PNMEP block to form either spherical micelles, highly anisotropic worms or polydisperse vesicles, depending on the target DP of the PNMEP chains. Systematic variation of this latter parameter, along with the solids content, allowed the construction of a phase diagram which enabled pure morphologies to be reproducibly targeted. Syntheses conducted at 10% w/w solids led to the formation of kinetically-trapped spheres. A monotonic increase in particle diameter with PNMEP DP was observed for such PISA syntheses, with particle diameters of up to 462 nm being obtained for PSMA14-PNMEP960. Increasing the copolymer concentration to 15% w/w solids led to worm-like micelles, while vesicles were obtained at 27.5% w/w solids. High (≥95%) NMEP conversions were achieved in all cases and 3 : 1 chloroform/methanol GPC analysis indicated relatively high blocking efficiencies. However, relatively broad molecular weight distributions (Mw/Mn > 1.50) were observed when targeting PNMEP DPs greater than 150. This indicates light branching caused by the presence of a low level of dimethacrylate impurity. Finally, PSMA14-PNMEP49 spheres were evaluated as Pickering emulsifiers. Unexpectedly, it was found that either water-in-oil or oil-in-water Pickering emulsions could be obtained depending on the shear rate employed for homogenisation. Further investigation suggested that high shear rates lead to in situ inversion of the initial hydrophobic PSMA14-PNMEP49 spheres to form hydrophilic PNMEP49-PSMA14 spheres.
Collapse
Affiliation(s)
- V J Cunningham
- Department of Chemistry , University of Sheffield , Brook Hill , Sheffield , South Yorkshire S3 7HF , UK .
| | - S P Armes
- Department of Chemistry , University of Sheffield , Brook Hill , Sheffield , South Yorkshire S3 7HF , UK .
| | - O M Musa
- Ashland Specialty Ingredients , 1005 US 202/206 , Bridgewater , NJ 08807 , USA
| |
Collapse
|
79
|
Huang J, Zhu H, Liang H, Lu J. Salicylaldehyde-functionalized block copolymer nano-objects: one-pot synthesis via polymerization-induced self-assembly and their simultaneous cross-linking and fluorescence modification. Polym Chem 2016. [DOI: 10.1039/c6py00794e] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Salicylaldehyde-functionalized nano-objects are prepared via RAFT-mediated polymerization-induced self-assembly. Their simultaneous stabilization and fluorescence modification can be achieved by one-step reaction.
Collapse
Affiliation(s)
- Jianbing Huang
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education
- Guangdong Provincial Key Laboratory for High Performance Polymer-based Composites
- School of Chemistry and Chemical Engineering
- Sun Yat-sen University
- Guangzhou, 510275
| | - Hanjun Zhu
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education
- Guangdong Provincial Key Laboratory for High Performance Polymer-based Composites
- School of Chemistry and Chemical Engineering
- Sun Yat-sen University
- Guangzhou, 510275
| | - Hui Liang
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education
- Guangdong Provincial Key Laboratory for High Performance Polymer-based Composites
- School of Chemistry and Chemical Engineering
- Sun Yat-sen University
- Guangzhou, 510275
| | - Jiang Lu
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education
- Guangdong Provincial Key Laboratory for High Performance Polymer-based Composites
- School of Chemistry and Chemical Engineering
- Sun Yat-sen University
- Guangzhou, 510275
| |
Collapse
|
80
|
Derry MJ, Fielding LA, Armes SP. Polymerization-induced self-assembly of block copolymer nanoparticles via RAFT non-aqueous dispersion polymerization. Prog Polym Sci 2016. [DOI: 10.1016/j.progpolymsci.2015.10.002] [Citation(s) in RCA: 353] [Impact Index Per Article: 44.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
81
|
Yeow J, Xu J, Boyer C. Polymerization-Induced Self-Assembly Using Visible Light Mediated Photoinduced Electron Transfer-Reversible Addition-Fragmentation Chain Transfer Polymerization. ACS Macro Lett 2015; 4:984-990. [PMID: 35596469 DOI: 10.1021/acsmacrolett.5b00523] [Citation(s) in RCA: 217] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The ruthenium-based photoredox catalyst, Ru(bpy)3Cl2, was employed to activate reversible addition-fragmentation chain transfer (RAFT) dispersion polymerization via a photoinduced electron transfer (PET) process under visible light (λ = 460 nm, 0.7 mW/cm2). Poly(oligo(ethylene glycol) methyl ether methacrylate) was chain extended with benzyl methacrylate to afford in situ self-assembled polymeric nanoparticles with various morphologies. The effect of different intrinsic reaction parameters, such as catalyst concentration, total solids content, and cosolvent addition was investigated with respect to the formation of different nanoparticle morphologies, including spherical micelles, worm-like micelles, and vesicles. Importantly, highly pure worm-like micelles were readily isolated due to the in situ formation of highly viscous gels. Finally, "ON/OFF" control over the dispersion polymerization was demonstrated by online Fourier transform near-infrared (FTNIR) spectroscopy, allowing for temporal control over the nanoparticle morphology.
Collapse
Affiliation(s)
- Jonathan Yeow
- Centre for Advanced Macromolecular
Design (CAMD) and Australian Centre for NanoMedicine (ACN), School
of Chemical Engineering, UNSW Australia, Sydney, NSW 2052, Australia
| | - Jiangtao Xu
- Centre for Advanced Macromolecular
Design (CAMD) and Australian Centre for NanoMedicine (ACN), School
of Chemical Engineering, UNSW Australia, Sydney, NSW 2052, Australia
| | - Cyrille Boyer
- Centre for Advanced Macromolecular
Design (CAMD) and Australian Centre for NanoMedicine (ACN), School
of Chemical Engineering, UNSW Australia, Sydney, NSW 2052, Australia
| |
Collapse
|
82
|
Thompson KL, Mable CJ, Lane J, Derry MJ, Fielding LA, Armes SP. Preparation of Pickering double emulsions using block copolymer worms. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:4137-44. [PMID: 25834923 PMCID: PMC4415048 DOI: 10.1021/acs.langmuir.5b00741] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 03/25/2015] [Indexed: 05/25/2023]
Abstract
The rational formulation of Pickering double emulsions is described using a judicious combination of hydrophilic and hydrophobic block copolymer worms as highly anisotropic emulsifiers. More specifically, RAFT dispersion polymerization was utilized to prepare poly(lauryl methacrylate)-poly(benzyl methacrylate) worms at 20% w/w solids in n-dodecane and poly(glycerol monomethacrylate)-poly(2-hydroxypropyl methacrylate)-poly(benzyl methacrylate) worms at 13% w/w solids in water by polymerization-induced self-assembly (PISA). Water-in-oil-in-water (w/o/w) double emulsions can be readily prepared with mean droplet diameters ranging from 30 to 80 μm using a two-stage approach. First, a w/o precursor emulsion comprising 25 μm aqueous droplets is prepared using the hydrophobic worms, followed by encapsulation within oil droplets stabilized by the hydrophilic worms. The double emulsion droplet diameter and number of encapsulated water droplets can be readily varied by adjusting the stirring rate employed during the second stage. For each stage, the droplet volume fraction is relatively high at 0.50. The double emulsion nature of the final formulation was confirmed by optical and fluorescence microscopy studies. Such double emulsions are highly stable to coalescence, with little or no change in droplet diameter being detected over storage at 20 °C for 10 weeks as judged by laser diffraction. Preliminary experiments indicate that the complementary o/w/o emulsions can also be prepared using the same pair of worms by changing the order of homogenization, although somewhat lower droplet volume fractions were required in this case. Finally, we demonstrate that triple and even quadruple emulsions can be formulated using these new highly anisotropic Pickering emulsifiers.
Collapse
Affiliation(s)
- Kate L. Thompson
- Department of Chemistry,
Dainton Building, University of Sheffield, Brook Hill, Sheffield, Yorkshire S3 7HF, U.K.
| | - Charlotte J. Mable
- Department of Chemistry,
Dainton Building, University of Sheffield, Brook Hill, Sheffield, Yorkshire S3 7HF, U.K.
| | - Jacob
A. Lane
- Department of Chemistry,
Dainton Building, University of Sheffield, Brook Hill, Sheffield, Yorkshire S3 7HF, U.K.
| | - Mathew J. Derry
- Department of Chemistry,
Dainton Building, University of Sheffield, Brook Hill, Sheffield, Yorkshire S3 7HF, U.K.
| | - Lee A. Fielding
- Department of Chemistry,
Dainton Building, University of Sheffield, Brook Hill, Sheffield, Yorkshire S3 7HF, U.K.
| | - Steven P. Armes
- Department of Chemistry,
Dainton Building, University of Sheffield, Brook Hill, Sheffield, Yorkshire S3 7HF, U.K.
| |
Collapse
|