51
|
Zhu H, Cheng P, Chen P, Pu K. Recent progress in the development of near-infrared organic photothermal and photodynamic nanotherapeutics. Biomater Sci 2018; 6:746-765. [PMID: 29485662 DOI: 10.1039/c7bm01210a] [Citation(s) in RCA: 193] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Phototherapies including photothermal therapy (PTT) and photodynamic therapy (PDT) have gained considerable attention due to their high tumor ablation efficiency, excellent spatial resolution and minimal side effects on normal tissue. In contrast to inorganic nanoparticles, near-infrared (NIR) absorbing organic nanoparticles bypass the issue of metal-ion induced toxicity and thus are generally considered to be more biocompatible. Moreover, with the guidance of different kinds of imaging methods, the efficacy of cancer phototherapy based on organic nanoparticles has shown to be optimizable. In this review, we summarize the synthesis and application of NIR-absorbing organic nanoparticles as phototherapeutic nanoagents for cancer phototherapy. The chemistry, optical properties and therapeutic efficacies of organic nanoparticles are firstly described. Their phototherapy applications are then surveyed in terms of therapeutic modalities, which include PTT, PDT and PTT/PDT combined therapy. Finally, the present challenges and potential of imaging guided PTT/PDT are discussed.
Collapse
Affiliation(s)
- Houjuan Zhu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, 637457, Singapore.
| | | | | | | |
Collapse
|
52
|
Li J, Zhen X, Lyu Y, Jiang Y, Huang J, Pu K. Cell Membrane Coated Semiconducting Polymer Nanoparticles for Enhanced Multimodal Cancer Phototheranostics. ACS NANO 2018; 12:8520-8530. [PMID: 30071159 DOI: 10.1021/acsnano.8b04066] [Citation(s) in RCA: 249] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Phototheranostic nanoagents are promising for early diagnosis and precision therapy of cancer. However, their imaging ability and therapeutic efficacy are often limited due to the presence of delivery barriers in the tumor microenvironment. Herein, we report the development of organic multimodal phototheranostic nanoagents that can biomimetically target cancer-associated fibroblasts in the tumor microenvironment for enhanced multimodal imaging-guided cancer therapy. Such biomimetic nanocamouflages comprise a near-infrared (NIR) absorbing semiconducting polymer nanoparticle (SPN) coated with the cell membranes of activated fibroblasts. The homologous targeting mechanism allows the activated fibroblast cell membrane coated SPN (AF-SPN) to specifically target cancer-associated fibroblasts, leading to enhanced tumor accumulation relative to the uncoated and cancer cell membrane coated counterparts after systemic administration in living mice. As such, AF-SPN not only provides stronger NIR fluorescence and photoacoustic signals to detect tumors but also generates enhanced cytotoxic heat and singlet oxygen to exert combinational photothermal and photodynamic therapy, ultimately leading to an antitumor efficacy higher than that of the counterparts. This study introduces an organic phototheranostic system that biomimetically targets the component in the tumor microenvironment for enhanced multimodal cancer theranostics.
Collapse
Affiliation(s)
- Jingchao Li
- School of Chemical and Biomedical Engineering , Nanyang Technological University , Singapore 637457
| | - Xu Zhen
- School of Chemical and Biomedical Engineering , Nanyang Technological University , Singapore 637457
| | - Yan Lyu
- School of Chemical and Biomedical Engineering , Nanyang Technological University , Singapore 637457
| | - Yuyan Jiang
- School of Chemical and Biomedical Engineering , Nanyang Technological University , Singapore 637457
| | - Jiaguo Huang
- School of Chemical and Biomedical Engineering , Nanyang Technological University , Singapore 637457
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering , Nanyang Technological University , Singapore 637457
| |
Collapse
|
53
|
Shanks HR, Zhu M, Milani AH, Turton J, Haigh S, Hodson NW, Adlam D, Hoyland J, Freemont T, Saunders BR. Core-shell-shell cytocompatible polymer dot-based particles with near-infrared emission and enhanced dispersion stability. Chem Commun (Camb) 2018; 54:9364-9367. [PMID: 30079412 DOI: 10.1039/c8cc04310h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Polymer dots (PDs) are promising fluorescent probes for biomaterials applications. Here, novel cytocompatible composite PD particles have been synthesised with a core-shell-shell morphology. The particles show near-infrared emission, improved fluorescent brightness and enhanced colloidal stability compared to pure PDs. The particles also show non-radiative resonance energy transfer (NRET) with a model dye.
Collapse
Affiliation(s)
- Hannah R Shanks
- School of Materials, University of Manchester, MSS Tower, Manchester, M13 9PL, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Zhang Z, Yuan Y, Liu Z, Chen H, Chen D, Fang X, Zheng J, Qin W, Wu C. Brightness Enhancement of Near-Infrared Semiconducting Polymer Dots for in Vivo Whole-Body Cell Tracking in Deep Organs. ACS APPLIED MATERIALS & INTERFACES 2018; 10:26928-26935. [PMID: 30033725 DOI: 10.1021/acsami.8b08735] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In vivo visualization of cell migration and engraftment in small animals provide crucial information in biomedical studies. Semiconducting polymer dots (Pdots) are emerging as superior probes for biological imaging. However, in vivo whole-body fluorescence imaging is largely constrained by the limited brightness of Pdots in near-infrared (NIR) region. Here, we describe the brightness enhancement of NIR fluorescent Pdots for in vivo whole-body cell tracking in deep organs. We first synthesize semiconducting polymers with strong absorption in orange and far-red regions. By molecular doping, the weak broad-band fluorescence of the Pdots was significantly narrowed and enhanced by 1 order of magnitude enhancement, yielding bright narrow-band NIR emission with a quantum yield of ∼0.21. Under an excitation of far-red light (676 nm), a trace amount of Pdots (∼2 μg) in the stomach can be clearly detected in whole-body fluorescence imaging of live mice. The Pdots coated with a cell-penetrating peptide are able to brightly label cancer cells with minimal cytotoxicity. In vivo cell tracking in live mice indicated that the entrapment and migration of the tail-vein-administered cells (∼400 000) were clearly visualized in real time. These Pdots with deep-red excitation and bright NIR emission are promising for in vivo whole-body fluorescence imaging.
Collapse
Affiliation(s)
- Zhe Zhang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering , Jilin University , Changchun , Jilin 130012 , China
| | - Ye Yuan
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering , Jilin University , Changchun , Jilin 130012 , China
| | - Zhihe Liu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering , Jilin University , Changchun , Jilin 130012 , China
| | - Haobin Chen
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering , Jilin University , Changchun , Jilin 130012 , China
| | - Dandan Chen
- Department of Biomedical Engineering , Southern University of Science and Technology , Shenzhen , Guangdong 518055 , China
| | - Xiaofeng Fang
- Department of Biomedical Engineering , Southern University of Science and Technology , Shenzhen , Guangdong 518055 , China
| | - Jie Zheng
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering , Jilin University , Changchun , Jilin 130012 , China
| | - Weiping Qin
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering , Jilin University , Changchun , Jilin 130012 , China
| | - Changfeng Wu
- Department of Biomedical Engineering , Southern University of Science and Technology , Shenzhen , Guangdong 518055 , China
| |
Collapse
|
55
|
Rampazzo E, Genovese D, Palomba F, Prodi L, Zaccheroni N. NIR-fluorescent dye doped silica nanoparticles forin vivoimaging, sensing and theranostic. Methods Appl Fluoresc 2018; 6:022002. [DOI: 10.1088/2050-6120/aa8f57] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
56
|
Xie C, Cheng P, Pu K. Synthesis of PEGylated Semiconducting Polymer Amphiphiles for Molecular Photoacoustic Imaging and Guided Therapy. Chemistry 2018; 24:12121-12130. [DOI: 10.1002/chem.201705716] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Indexed: 01/02/2023]
Affiliation(s)
- Chen Xie
- School of Chemical and Biomedical Engineering; Nanyang Technological University; Singapore 637457 Singapore
| | - Penghui Cheng
- School of Chemical and Biomedical Engineering; Nanyang Technological University; Singapore 637457 Singapore
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering; Nanyang Technological University; Singapore 637457 Singapore
| |
Collapse
|
57
|
Chang K, Liu Y, Hu D, Qi Q, Gao D, Wang Y, Li D, Zhang X, Zheng H, Sheng Z, Yuan Z. Highly Stable Conjugated Polymer Dots as Multifunctional Agents for Photoacoustic Imaging-Guided Photothermal Therapy. ACS APPLIED MATERIALS & INTERFACES 2018; 10:7012-7021. [PMID: 29400051 DOI: 10.1021/acsami.8b00759] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Theranostic nanomedicines involved in photothermal therapy (PTT) have received constant attention as promising alternatives to traditional therapies in clinic. However, most photothermal agents are limited by their instability and low photothermal conversion efficiency. In this study, we report new conjugated polymer dots (Pdots) as multifunctional agents for photoacoustic (PA) imaging-guided PTT. The novel 4,8-bis[5-(2-ethylhexyl)thiophen-2-yl]-2,6-bis(trimethylstannyl)benzo[1,2-b:4,5-b']dithiophene-6,6'-dibromo-N,N'-(2-ethylhexyl)isoindigo (BDT-IID) Pdots are readily fabricated though nanoreprecipitation and can absorb strongly in the 650-700 nm region. Furthermore, the BDT-IID Pdots possess a stable nanostructure and an extremely low biotoxicity. In particular, its photothermal conversion efficiency can be up to 45%. More importantly, our in vivo results exhibit that the BDT-IID Pdots are able to offer concurrently enhanced PA contrast and sufficient photothermal effect. Consequently, the BDT-IID Pdots can be exploited as a unique theranostic nanoplatform for PA imaging-guided PTT of tumors, holding great promise for their clinical translational development.
Collapse
Affiliation(s)
- Kaiwen Chang
- Faculty of Health Sciences, University of Macau , Macau SAR 999708, China
- Key Laboratory of Medical Molecular Probes, Department of Chemistry, School of Basic Medical Sciences, Xinxiang Medical University , Xinxiang 453003, Henan, China
| | - Yubin Liu
- Faculty of Health Sciences, University of Macau , Macau SAR 999708, China
| | - Dehong Hu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese of Academy of Sciences , Shenzhen 518055, China
| | - Qiaofang Qi
- Faculty of Health Sciences, University of Macau , Macau SAR 999708, China
- Key Laboratory of Medical Molecular Probes, Department of Chemistry, School of Basic Medical Sciences, Xinxiang Medical University , Xinxiang 453003, Henan, China
| | - Duyang Gao
- Faculty of Health Sciences, University of Macau , Macau SAR 999708, China
| | - Yating Wang
- Faculty of Health Sciences, University of Macau , Macau SAR 999708, China
| | - Dongliang Li
- Faculty of Health Sciences, University of Macau , Macau SAR 999708, China
| | - Xuanjun Zhang
- Faculty of Health Sciences, University of Macau , Macau SAR 999708, China
| | - Hairong Zheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese of Academy of Sciences , Shenzhen 518055, China
| | - Zonghai Sheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese of Academy of Sciences , Shenzhen 518055, China
| | - Zhen Yuan
- Faculty of Health Sciences, University of Macau , Macau SAR 999708, China
| |
Collapse
|
58
|
Lyu Y, Zeng J, Jiang Y, Zhen X, Wang T, Qiu S, Lou X, Gao M, Pu K. Enhancing Both Biodegradability and Efficacy of Semiconducting Polymer Nanoparticles for Photoacoustic Imaging and Photothermal Therapy. ACS NANO 2018; 12:1801-1810. [PMID: 29385336 DOI: 10.1021/acsnano.7b08616] [Citation(s) in RCA: 234] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Theranostic nanoagents are promising for precision medicine. However, biodegradable nanoagents with the ability for photoacoustic (PA) imaging guided photothermal therapy (PTT) are rare. We herein report the development of biodegradable semiconducting polymer nanoparticles (SPNs) with enhanced PA and PTT efficacy for cancer therapy. The design capitalizes on the enzymatically oxidizable nature of vinylene bonds in conjunction with polymer chemistry to synthesize a biodegradable semiconducting polymer (DPPV) and transform it into water-soluble nanoparticles (SPNV). As compared with its counterpart SPN (SPNT), the presence of vinylene bonds within the polymer backbone also endows SPNV with a significantly enhanced mass absorption coefficient (1.3-fold) and photothermal conversion efficacy (2.4-fold). As such, SPNV provides the PA signals and the photothermal maximum temperature higher than SPNT, allowing detection and photothermal ablation of tumors in living mice in a more sensitive and effective way. Our study thus reveals a general molecular design to enhance the biodegradability of optically active polymer nanoparticles while dramatically elevating their imaging and therapeutic capabilities.
Collapse
Affiliation(s)
- Yan Lyu
- School of Chemical and Biomedical Engineering, Nanyang Technological University , Singapore 637457
| | - Jianfeng Zeng
- Center for Molecular Imaging and Nuclear Medicine, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions , Suzhou 215123, P. R. China
| | - Yuyan Jiang
- School of Chemical and Biomedical Engineering, Nanyang Technological University , Singapore 637457
| | - Xu Zhen
- School of Chemical and Biomedical Engineering, Nanyang Technological University , Singapore 637457
| | - Ting Wang
- Department of Radiology, The People's Liberation Army General Hospital , No. 28 Fuxing Road, Beijing 100853, China
| | - Shanshan Qiu
- Center for Molecular Imaging and Nuclear Medicine, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions , Suzhou 215123, P. R. China
| | - Xin Lou
- Department of Radiology, The People's Liberation Army General Hospital , No. 28 Fuxing Road, Beijing 100853, China
| | - Mingyuan Gao
- Center for Molecular Imaging and Nuclear Medicine, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions , Suzhou 215123, P. R. China
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering, Nanyang Technological University , Singapore 637457
| |
Collapse
|
59
|
Feng P, Chen Y, Zhang L, Qian CG, Xiao X, Han X, Shen QD. Near-Infrared Fluorescent Nanoprobes for Revealing the Role of Dopamine in Drug Addiction. ACS APPLIED MATERIALS & INTERFACES 2018; 10:4359-4368. [PMID: 29308644 DOI: 10.1021/acsami.7b12005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Brain imaging techniques enable visualizing the activity of central nervous system without invasive neurosurgery. Dopamine is an important neurotransmitter. Its fluctuation in brain leads to a wide range of diseases and disorders, like drug addiction, depression, and Parkinson's disease. We designed near-infrared fluorescence dopamine-responsive nanoprobes (DRNs) for brain activity imaging during drug abuse and addiction process. On the basis of light-induced electron transfer between DRNs and dopamine and molecular wire effect of the DRNs, we can track the dynamical change of the neurotransmitter level in the physiological environment and the releasing of the neurotransmitter in living dopaminergic neurons in response to nicotine stimulation. The functional near-infrared fluorescence imaging can dynamically track the dopamine level in the mice midbrain under normal or drug-activated condition and evaluate the long-term effect of addictive substances to the brain. This strategy has the potential for studying neural activity under physiological condition.
Collapse
Affiliation(s)
- Peijian Feng
- Department of Polymer Science and Engineering, Key Laboratory of High Performance Polymer Materials and Technology of MOE, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry & Chemical Engineering, Nanjing University , Nanjing 210023, China
| | - Yulei Chen
- Department of Polymer Science and Engineering, Key Laboratory of High Performance Polymer Materials and Technology of MOE, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry & Chemical Engineering, Nanjing University , Nanjing 210023, China
| | - Lei Zhang
- Department of Biomedical Engineering, College of Engineering and Applied Science, Nanjing University , Nanjing 210093, China
| | - Cheng-Gen Qian
- Department of Polymer Science and Engineering, Key Laboratory of High Performance Polymer Materials and Technology of MOE, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry & Chemical Engineering, Nanjing University , Nanjing 210023, China
| | - Xuanzhong Xiao
- Department of Polymer Science and Engineering, Key Laboratory of High Performance Polymer Materials and Technology of MOE, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry & Chemical Engineering, Nanjing University , Nanjing 210023, China
| | - Xu Han
- Department of Polymer Science and Engineering, Key Laboratory of High Performance Polymer Materials and Technology of MOE, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry & Chemical Engineering, Nanjing University , Nanjing 210023, China
| | - Qun-Dong Shen
- Department of Polymer Science and Engineering, Key Laboratory of High Performance Polymer Materials and Technology of MOE, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry & Chemical Engineering, Nanjing University , Nanjing 210023, China
| |
Collapse
|
60
|
Li J, Rao J, Pu K. Recent progress on semiconducting polymer nanoparticles for molecular imaging and cancer phototherapy. Biomaterials 2018; 155:217-235. [PMID: 29190479 PMCID: PMC5978728 DOI: 10.1016/j.biomaterials.2017.11.025] [Citation(s) in RCA: 319] [Impact Index Per Article: 53.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 10/21/2017] [Accepted: 11/21/2017] [Indexed: 12/20/2022]
Abstract
As a new class of organic optical nanomaterials, semiconducting polymer nanoparticles (SPNs) have the advantages of excellent optical properties, high photostability, facile surface functionalization, and are considered to possess good biocompatibility for biomedical applications. This review surveys recent progress made on the design and synthesis of SPNs for molecular imaging and cancer phototherapy. A variety of novel polymer design, chemical modification and nanoengineering strategies have been developed to precisely tune up optoelectronic properties of SPNs to enable fluorescence, chemiluminescence and photoacoustic (PA) imaging in living animals. With these imaging modalities, SPNs have been demonstrated not only to image tissues such as lymph nodes, vascular structure and tumors, but also to detect disease biomarkers such as reactive oxygen species (ROS) and protein sulfenic acid as well as physiological indexes such as pH and blood glucose concentration. The potentials of SPNs in cancer phototherapy including photodynamic and photothermal therapy are also highlighted with recent examples. Future efforts should further expand the use of SPNs in biomedical research and may even move them beyond pre-clinical studies.
Collapse
Affiliation(s)
- Jingchao Li
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, 637457, Singapore
| | - Jianghong Rao
- Molecular Imaging Program at Stanford, Departments of Radiology and Chemistry, Stanford University, 1201 Welch Road, Stanford, CA 94305-5484, USA.
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, 637457, Singapore.
| |
Collapse
|
61
|
Zhu H, Li J, Qi X, Chen P, Pu K. Oxygenic Hybrid Semiconducting Nanoparticles for Enhanced Photodynamic Therapy. NANO LETTERS 2018; 18:586-594. [PMID: 29220576 DOI: 10.1021/acs.nanolett.7b04759] [Citation(s) in RCA: 230] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Photodynamic nanotheranostics has shown great promise for cancer therapy; however, its therapeutic efficacy is limited due to the hypoxia of tumor microenvironment and the unfavorable bioavailability of existing photodynamic agents. We herein develop hybrid core-shell semiconducting nanoparticles (SPN-Ms) that can undergo O2 evolution in hypoxic solid tumor to promote photodynamic process. Such oxygenic nanoparticles are synthesized through a one-pot surface growth reaction and have a unique multilayer structure cored and coated with semiconducting polymer nanoparticles (SPNs) and manganese dioxide (MnO2) nanosheets, respectively. The SPN core serves as both NIR fluorescence imaging and photodynamic agent, while the MnO2 nanosheets act as a sacrificing component to convert H2O2 to O2 under hypoxic and acidic tumor microenvironment. As compared with the uncoated SPN (SPN-0), the oxygenic nanoparticles (SPN-M1) generate 2.68-fold more 1O2 at hypoxic and acidic conditions under NIR laser irradiation at 808 nm. Because of such an oxygen-evolution property, SPN-M1 can effectively eradicate cancer cells both in vitro and in vivo. Our study thus not only reports an in situ synthetic method to coat organic nanoparticles but also develops a tumor-microenvironment-sensitive theranostic nanoagent to overcome hypoxia for amplified therapy.
Collapse
Affiliation(s)
- Houjuan Zhu
- School of Chemical and Biomedical Engineering, Nanyang Technological University , Singapore 637457, Singapore
| | - Jingchao Li
- School of Chemical and Biomedical Engineering, Nanyang Technological University , Singapore 637457, Singapore
| | - Xiaoying Qi
- Singapore Institute of Manufacturing Technology (SIMTech), A*STAR (Agency for Science Technology and Research) , 71 Nanyang Drive, Singapore 638075, Singapore
| | - Peng Chen
- School of Chemical and Biomedical Engineering, Nanyang Technological University , Singapore 637457, Singapore
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering, Nanyang Technological University , Singapore 637457, Singapore
| |
Collapse
|
62
|
Zhu H, Fang Y, Miao Q, Qi X, Ding D, Chen P, Pu K. Regulating Near-Infrared Photodynamic Properties of Semiconducting Polymer Nanotheranostics for Optimized Cancer Therapy. ACS NANO 2017; 11:8998-9009. [PMID: 28841279 DOI: 10.1021/acsnano.7b03507] [Citation(s) in RCA: 186] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Development of optical nanotheranostics for the capability of photodynamic therapy (PDT) provides opportunities for advanced cancer therapy. However, most nanotheranostic systems fail to regulate their generation levels of reactive oxygen species (ROS) according to the disease microenvironment, which can potentially limit their therapeutic selectivity and increase the risk of damage to normal tissues. We herein report the development of hybrid semiconducting polymer nanoparticles (SPNs) with self-regulated near-infrared (NIR) photodynamic properties for optimized cancer therapy. The SPNs comprise a binary component nanostructure: a NIR-absorbing semiconducting polymer acts as the NIR fluorescent PDT agent, while nanoceria serves as the smart intraparticle regular to decrease and increase ROS generation at physiologically neutral and pathologically acidic environments, respectively. As compared with nondoped SPNs, the NIR fluorescence imaging ability of nanoceria-doped SPNs is similar due to the optically inactive nature of nanoceria; however, the self-regulated photodynamic properties of nanoceria-doped SPN not only result in dramatically reduced nonspecific damage to normal tissue under NIR laser irradiation but also lead to significantly enhanced photodynamic efficacy for cancer therapy in a murine mouse model. This study thus provides a simple yet effective hybrid approach to modulate the phototherapeutic performance of organic photosensitizers.
Collapse
Affiliation(s)
- Houjuan Zhu
- School of Chemical and Biomedical Engineering, Nanyang Technological University , Singapore 637457, Singapore
| | - Yuan Fang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University , Tianjin 300071, China
| | - Qingqing Miao
- School of Chemical and Biomedical Engineering, Nanyang Technological University , Singapore 637457, Singapore
| | - Xiaoying Qi
- Singapore Institute of Manufacturing Technology (SIMTech), Agency for Science Technology and Research (A*STAR) , 71 Nanyang Drive, Singapore 638075, Singapore
| | - Dan Ding
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University , Tianjin 300071, China
| | - Peng Chen
- School of Chemical and Biomedical Engineering, Nanyang Technological University , Singapore 637457, Singapore
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering, Nanyang Technological University , Singapore 637457, Singapore
| |
Collapse
|
63
|
Zhen X, Tao Y, An Z, Chen P, Xu C, Chen R, Huang W, Pu K. Ultralong Phosphorescence of Water-Soluble Organic Nanoparticles for In Vivo Afterglow Imaging. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29. [PMID: 28657119 DOI: 10.1002/adma.201606665] [Citation(s) in RCA: 226] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 03/06/2017] [Indexed: 05/05/2023]
Abstract
Afterglow or persistent luminescence eliminates the need for light excitation and thus circumvents the issue of autofluorescence, holding promise for molecular imaging. However, current persistent luminescence agents are rare and limited to inorganic nanoparticles. This study reports the design principle, synthesis, and proof-of-concept application of organic semiconducting nanoparticles (OSNs) with ultralong phosphorescence for in vivo afterglow imaging. The design principle leverages the formation of aggregates through a top-down nanoparticle formulation to greatly stabilize the triplet excited states of a phosphorescent molecule. This prolongs the particle luminesce to the timescale that can be detected by the commercial whole-animal imaging system after removal of external light source. Such ultralong phosphorescent of OSNs is inert to oxygen and can be repeatedly activated, permitting imaging of lymph nodes in living mice with a high signal-to-noise ratio. This study not only introduces the first category of water-soluble ultralong phosphorescence organic nanoparticles but also reveals a universal design principle to prolong the lifetime of phosphorescent molecules to the level that can be effective for molecular imaging.
Collapse
Affiliation(s)
- Xu Zhen
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637457, Singapore
| | - Ye Tao
- Key Laboratory for Organic Electronics and Information Displays (KLOEI) and Institute of Advanced Materials (IAM), Synergistic Innovation Center for Organic Electronic and Information Displays (SICOEID), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Zhongfu An
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211816, China
| | - Peng Chen
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637457, Singapore
| | - Chenjie Xu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637457, Singapore
| | - Runfeng Chen
- Key Laboratory for Organic Electronics and Information Displays (KLOEI) and Institute of Advanced Materials (IAM), Synergistic Innovation Center for Organic Electronic and Information Displays (SICOEID), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211816, China
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637457, Singapore
| |
Collapse
|
64
|
Crossley DL, Urbano L, Neumann R, Bourke S, Jones J, Dailey LA, Green M, Humphries MJ, King SM, Turner ML, Ingleson MJ. Post-polymerization C-H Borylation of Donor-Acceptor Materials Gives Highly Efficient Solid State Near-Infrared Emitters for Near-IR-OLEDs and Effective Biological Imaging. ACS APPLIED MATERIALS & INTERFACES 2017; 9:28243-28249. [PMID: 28783304 DOI: 10.1021/acsami.7b08473] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Post-polymerization modification of the donor-acceptor polymer, poly(9,9-dioctylfluorene-alt-benzothiadiazole), PF8-BT, by electrophilic C-H borylation is a simple method to introduce controllable quantities of near-infrared (near-IR) emitting chromophore units into the backbone of a conjugated polymer. The highly stable borylated unit possesses a significantly lower LUMO energy than the pristine polymer resulting in a reduction in the band gap of the polymer by up to 0.63 eV and a red shift in emission of more than 150 nm. Extensively borylated polymers absorb strongly in the deep red/near-IR and are highly emissive in the near-IR region of the spectrum in solution and solid state. Photoluminescence quantum yield (PLQY) values are extremely high in the solid state for materials with emission maxima ≥ 700 nm with PLQY values of 44% at 700 nm and 11% at 757 nm for PF8-BT with different borylation levels. This high brightness enables efficient solution processed near-IR emitting OLEDs to be fabricated and highly emissive borylated polymer loaded conjugated polymer nanoparticles (CPNPs) to be prepared. The latter are bright, photostable, low toxicity bioimaging agents that in phantom mouse studies show higher signal to background ratios for emission at 820 nm than the ubiquitous near-IR emissive bioimaging agent indocyanine green. This methodology represents a general approach for the post-polymerization functionalization of donor-acceptor polymers to reduce the band gap as confirmed by the C-H borylation of poly((9,9-dioctylfluorene)-2,7-diyl-alt-[4,7-bis(3-hexylthien-5-yl)-2,1,3-benzothiadiazole]-2c,2cc-diyl) (PF8TBT) resulting in a red shift in emission of >150 nm, thereby shifting the emission maximum to 810 nm.
Collapse
Affiliation(s)
- Daniel L Crossley
- School of Chemistry, University of Manchester , Manchester M13 9PL, United Kingdom
| | - Laura Urbano
- Institute of Pharmaceutical Sciences, King's College London , Waterloo Campus, London SE1 9NH, United Kingdom
| | - Robert Neumann
- Institute of Pharmacy, Martin-Luther University Halle-Wittenberg , Wolfgang-Langenbeck-Strasse 4, 06120 Halle, Saale, Germany
| | - Struan Bourke
- Department of Physics, King's College London , Strand Campus, London WC2R 2LS, United Kingdom
| | - Jennifer Jones
- School of Chemistry, University of Manchester , Manchester M13 9PL, United Kingdom
| | - Lea Ann Dailey
- Institute of Pharmacy, Martin-Luther University Halle-Wittenberg , Wolfgang-Langenbeck-Strasse 4, 06120 Halle, Saale, Germany
| | - Mark Green
- Department of Physics, King's College London , Strand Campus, London WC2R 2LS, United Kingdom
| | - Martin J Humphries
- Cambridge Display Technology Ltd. (Company Number 02672530), Unit 12, Cardinal Park, Cardinal Way, Godmanchester PE29 2XG, United Kingdom
| | - Simon M King
- Cambridge Display Technology Ltd. (Company Number 02672530), Unit 12, Cardinal Park, Cardinal Way, Godmanchester PE29 2XG, United Kingdom
| | - Michael L Turner
- School of Chemistry, University of Manchester , Manchester M13 9PL, United Kingdom
| | - Michael J Ingleson
- School of Chemistry, University of Manchester , Manchester M13 9PL, United Kingdom
| |
Collapse
|
65
|
Lyu Y, Pu K. Recent Advances of Activatable Molecular Probes Based on Semiconducting Polymer Nanoparticles in Sensing and Imaging. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2017; 4:1600481. [PMID: 28638783 PMCID: PMC5473328 DOI: 10.1002/advs.201600481] [Citation(s) in RCA: 156] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 12/29/2016] [Indexed: 05/21/2023]
Abstract
Molecular probes that change their signals in response to the target of interest have a critical role in fundamental biology and medicine. Semiconducting polymer nanoparticles (SPNs) have recently emerged as a new generation of purely organic photonic nanoagents with desirable properties for biological applications. In particular, tunable optical properties of SPNs allow them to be developed into photoluminescence, chemiluminescence, and photoacoustic probes, wherein SPNs usually serve as the energy donor and internal reference for luminescence and photoacoustic probes, respectively. Moreover, facile surface modification and intraparticle engineering provide the versatility to make them responsive to various biologically and pathologically important substances and indexes including small-molecule mediators, proteins, pH and temperature. This article focuses on recent advances in the development of SPN-based activatable molecular probes for sensing and imaging. The designs and applications of these probes are discussed in details, and the present challenges to further advance them into life science are also analyzed.
Collapse
Affiliation(s)
- Yan Lyu
- School of Chemical and Biomedical EngineeringNanyang Technological University70 Nanyang DriveSingapore637457
| | - Kanyi Pu
- School of Chemical and Biomedical EngineeringNanyang Technological University70 Nanyang DriveSingapore637457
| |
Collapse
|
66
|
Chen D, Wu IC, Liu Z, Tang Y, Chen H, Yu J, Wu C, Chiu DT. Semiconducting polymer dots with bright narrow-band emission at 800 nm for biological applications. Chem Sci 2017; 8:3390-3398. [PMID: 28507710 PMCID: PMC5416912 DOI: 10.1039/c7sc00441a] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Accepted: 03/01/2017] [Indexed: 12/21/2022] Open
Abstract
The development of near-infrared (NIR) fluorescent probes is critical for in vivo exploration of the fundamental and complex processes in living systems by noninvasive fluorescence imaging techniques. Semiconducting polymer dots (Pdots) are emerging as important probes that exhibit several advantages, such as high brightness and biocompatibility. However, NIR-emitting Pdots are very rare, particularly at the center (∼800 nm) of the first optical window of biological tissues (between 650 nm and 950 nm). In this paper, we describe the synthesis of a semiconducting polymer with bright and narrow-band emission at 800 nm. The polymer was designed by incorporating a NIR porphyrin unit into a conjugated backbone; the polymer used a cascade energy transfer to produce the signal. The resulting Pdots possessed a narrow emission bandwidth (FWHM ∼ 23 nm) and good fluorescence quantum yield (QY = 8%), which is high for a near-IR emitter. The Pdots were bioconjugated with streptavidin for specific labeling of cellular targets, yielding higher staining index when compared with commercial NIR probes, such as PE-Cy7. Moreover, the NIR polymer was combined with a long-wavelength absorbing polymer to make bright Pdots (QY = 15%) for in vivo noninvasive imaging. These NIR Pdots with surface PEGylation led to high-contrast imaging of lymph nodes and tumors in a mouse model. This work highlights the great potential of the NIR Pdots for cellular and in vivo imaging applications.
Collapse
Affiliation(s)
- Dandan Chen
- Department of Biomedical Engineering , Southern University of Science and Technology , Shenzhen , Guangdong 510855 , China .
- State Key Laboratory on Integrated Optoelectronics , College of Electronic Science and Engineering , Jilin University , Changchun , Jilin 130012 , China
| | - I-Che Wu
- Department of Chemistry and Bioengineering , University of Washington , Seattle , Washington 98195 , USA .
| | - Zhihe Liu
- State Key Laboratory on Integrated Optoelectronics , College of Electronic Science and Engineering , Jilin University , Changchun , Jilin 130012 , China
| | - Ying Tang
- State Key Laboratory on Integrated Optoelectronics , College of Electronic Science and Engineering , Jilin University , Changchun , Jilin 130012 , China
| | - Haobin Chen
- State Key Laboratory on Integrated Optoelectronics , College of Electronic Science and Engineering , Jilin University , Changchun , Jilin 130012 , China
| | - Jiangbo Yu
- Department of Chemistry and Bioengineering , University of Washington , Seattle , Washington 98195 , USA .
| | - Changfeng Wu
- Department of Biomedical Engineering , Southern University of Science and Technology , Shenzhen , Guangdong 510855 , China .
| | - Daniel T Chiu
- Department of Chemistry and Bioengineering , University of Washington , Seattle , Washington 98195 , USA .
| |
Collapse
|
67
|
Zhen X, Feng X, Xie C, Zheng Y, Pu K. Surface engineering of semiconducting polymer nanoparticles for amplified photoacoustic imaging. Biomaterials 2017; 127:97-106. [DOI: 10.1016/j.biomaterials.2017.03.003] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/03/2017] [Accepted: 03/03/2017] [Indexed: 11/16/2022]
|
68
|
Cui D, Xie C, Pu K. Development of Semiconducting Polymer Nanoparticles for Photoacoustic Imaging. Macromol Rapid Commun 2017; 38. [PMID: 28401627 DOI: 10.1002/marc.201700125] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 03/23/2017] [Indexed: 01/01/2023]
Abstract
Semiconducting polymer nanoparticles (SPNs) have evolved into a new class of photonic materials with great potential for biomedical applications. Depending on the polymer structures, SPNs can be developed into optical agents for fluorescence and chemiluminescence imaging, photosensitizers for photodynamic therapy, and heat converters for photothermal therapy. In this feature article, recent work is summarized on the development of SPNs for in vivo photoacoustic (PA) imaging, a state-of-the-art imaging modality that converts light energy into mechanical acoustic waves to provide deep tissue penetration. The structure-property relationship and doping approaches are discussed to reveal the importance of promoting nonradiative decay in amplifying the PA brightness of SPNs. Moreover, their imaging applications, including lymph node mapping, tumor imaging, and monitoring of pathological indexes, are highlighted. These studies demonstrate that SPNs can serve as versatile PA agents for advanced molecular imaging applications.
Collapse
Affiliation(s)
- Dong Cui
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637457, Singapore
| | - Chen Xie
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637457, Singapore
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637457, Singapore
| |
Collapse
|
69
|
Chen D, Li Q, Meng Z, Guo L, Tang Y, Liu Z, Yin S, Qin W, Yuan Z, Zhang X, Wu C. Bright Polymer Dots Tracking Stem Cell Engraftment and Migration to Injured Mouse Liver. Theranostics 2017. [PMID: 28638470 PMCID: PMC5479271 DOI: 10.7150/thno.18614] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Stem cell therapy holds promise for treatment of intractable diseases and injured organs. For clinical translation, it is pivotal to understand the homing, engraftment, and differentiation processes of stem cells in a living body. Here we report near-infrared (NIR) fluorescent semiconductor polymer dots (Pdots) for bright labeling and tracking of human mesenchymal stem cells (MSCs). The Pdots exhibit narrow-band emission at 775 nm with a quantum yield of 22%, among the highest value for various NIR probes. The Pdots together with a cell penetrating peptide are able to track stem cells over two weeks without disturbing their multipotent properties, as confirmed by the analyses on cell proliferation, differentiation, stem-cell markers, and immunophenotyping. The in vivo cell tracking was demonstrated in a liver-resection mouse model, which indicated that the Pdot-labeled MSCs after tail-vein transplantation were initially trapped in lung, gradually migrated to the injured liver, and then proliferated into cell clusters. Liver-function analysis and histological examination revealed that the inflammation induced by liver resection was apparently decreased after stem cell transplantation. With the bright labeling, superior biocompatibility, and long-term tracking performance, the Pdot probes are promising for stem cell research and regenerative medicine.
Collapse
|
70
|
Cui D, Xie C, Lyu Y, Zhen X, Pu K. Near-infrared absorbing amphiphilic semiconducting polymers for photoacoustic imaging. J Mater Chem B 2017; 5:4406-4409. [PMID: 32263967 DOI: 10.1039/c6tb03393h] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Development of photoacoustic (PA) imaging agents is crucial to advancing PA imaging in biology and medicine. In this study, we report the design and synthesis of near-infrared (NIR) absorbing amphiphilic semiconducting polymers that can spontaneously self-assemble into homogeneous water-soluble nanoparticles for PA imaging of tumor in living mice.
Collapse
Affiliation(s)
- Dong Cui
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore.
| | | | | | | | | |
Collapse
|
71
|
Tang Y, Chen H, Chang K, Liu Z, Wang Y, Qu S, Xu H, Wu C. Photo-Cross-Linkable Polymer Dots with Stable Sensitizer Loading and Amplified Singlet Oxygen Generation for Photodynamic Therapy. ACS APPLIED MATERIALS & INTERFACES 2017; 9:3419-3431. [PMID: 28067486 DOI: 10.1021/acsami.6b14325] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Photodynamic therapy (PDT) is a promising treatment modality for clinical cancer therapy. However, the therapeutic effect of PDT is strongly dependent on the property of photosensitizer. Here, we developed photo-cross-linkable semiconductor polymer dots doped with photosensitizer Chlorin e6 (Ce6) to construct a nanoparticle platform for photodynamic therapy. Photoreactive oxetane groups were attached to the side chains of the semiconductor polymer. After photo-cross-linking reaction, the Ce6-doped Pdots formed an interpenetrated structure to prevent Ce6 leaching out from the Pdot matrix. Spectroscopic characterizations revealed an efficient energy transfer from the polymer to Ce6 molecules, resulting in amplified generation of singlet oxygen. We evaluated the cellular uptake, cytotoxicity, and photodynamic effect of the Pdots in gastric adenocarcinoma cells. In vitro photodynamic experiments indicated that the Ce6-doped Pdots (∼10 μg/mL) effectively killed the cancer cells under low dose of light irradiation (∼60 J/cm2). Furthermore, in vivo photodynamic experiments were carried out in tumor-bearing nude mice, which indicated that the Pdot photosensitizer apparently suppressed the growth of solid tumors. Our results demonstrate that the photo-cross-linkable Pdots doped with photosensitizer are promising for photodynamic cancer treatment.
Collapse
Affiliation(s)
- Ying Tang
- Department of Gastroenterology, The First Hospital of Jilin University , Changchun 130021, China
| | - Haobin Chen
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University , Changchun 130012, China
| | - Kaiwen Chang
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University , Changchun 130012, China
| | - Zhihe Liu
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University , Changchun 130012, China
| | - Yu Wang
- Department of Gastroenterology, The First Hospital of Jilin University , Changchun 130021, China
| | - Songnan Qu
- State Key Laboratory of Luminescence and Applications, Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences , Changchun 130033, China
| | - Hong Xu
- Department of Gastroenterology, The First Hospital of Jilin University , Changchun 130021, China
| | - Changfeng Wu
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University , Changchun 130012, China
| |
Collapse
|
72
|
Zhang J, Zhen X, Upputuri PK, Pramanik M, Chen P, Pu K. Activatable Photoacoustic Nanoprobes for In Vivo Ratiometric Imaging of Peroxynitrite. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29. [PMID: 27906478 DOI: 10.1002/adma.201604764] [Citation(s) in RCA: 190] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 10/11/2016] [Indexed: 05/12/2023]
Abstract
Organic semiconducting nanoprobes doped with bulky borane can undergo specific activation by ONOO- even at tumor-relevant acidic pH (6.8), permitting in vivo ratiometric photoacoustic imaging of ONOO- in the tumor environment of living mice.
Collapse
Affiliation(s)
- Jianjian Zhang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 637457, Singapore
| | - Xu Zhen
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 637457, Singapore
| | - Paul Kumar Upputuri
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 637457, Singapore
| | - Manojit Pramanik
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 637457, Singapore
| | - Peng Chen
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 637457, Singapore
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 637457, Singapore
| |
Collapse
|
73
|
|
74
|
Li J, Zhu Z, Rong S, Li H, Guo Y, Xue Q, Ding D. A specific environment-sensitive near-infrared fluorescent turn-on probe for synergistic enhancement of anticancer activity of a chemo-drug. Biomater Sci 2017; 5:1622-1628. [DOI: 10.1039/c7bm00270j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A near-infrared fluorescent turn-on probe has been reported for specific HER2 imaging and synergistic enhancement of anticancer activity of doxorubicin.
Collapse
Affiliation(s)
- Jun Li
- State Key Laboratory of Medicinal Chemical Biology
- Key Laboratory of Bioactive Materials
- Ministry of Education
- and College of Life Sciences
- Nankai University
| | - Zhipeng Zhu
- State Key Laboratory of Medicinal Chemical Biology
- Key Laboratory of Bioactive Materials
- Ministry of Education
- and College of Life Sciences
- Nankai University
| | - Shaoqin Rong
- State Key Laboratory of Medicinal Chemical Biology
- Key Laboratory of Bioactive Materials
- Ministry of Education
- and College of Life Sciences
- Nankai University
| | - Heran Li
- State Key Laboratory of Medicinal Chemical Biology
- Key Laboratory of Bioactive Materials
- Ministry of Education
- and College of Life Sciences
- Nankai University
| | - Yuenan Guo
- Tianjin Medical University Cancer Institute and Hospital
- National Clinical Research Center for Cancer
- Tianjin's Clinical Research Center for Cancer
- and Key Laboratory of Cancer Prevention and Therapy
- Tianjin
| | - Qiang Xue
- Tianjin Medical University Cancer Institute and Hospital
- National Clinical Research Center for Cancer
- Tianjin's Clinical Research Center for Cancer
- and Key Laboratory of Cancer Prevention and Therapy
- Tianjin
| | - Dan Ding
- State Key Laboratory of Medicinal Chemical Biology
- Key Laboratory of Bioactive Materials
- Ministry of Education
- and College of Life Sciences
- Nankai University
| |
Collapse
|
75
|
Han J, Weng Z, Wu Z, Cai J, Wang J, Jian X. Construction of flexible and stable near-infrared absorbing polymer films containing nickel-bis(dithiolene) moieties via ligand-exchange post-polymerization modification. Polym Chem 2017. [DOI: 10.1039/c7py00802c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The expected combinational merits of polymeric materials and nickel-bis(dithiolene) complexes are successfully achieved by a ligand-exchange post-polymerization modification method.
Collapse
Affiliation(s)
- Jianhua Han
- Polymer Science & Materials
- Chemical Engineering College
- Dalian University of Technology
- Dalian
- China
| | - Zhihuan Weng
- Polymer Science & Materials
- Chemical Engineering College
- Dalian University of Technology
- Dalian
- China
| | - Zuoqiang Wu
- Polymer Science & Materials
- Chemical Engineering College
- Dalian University of Technology
- Dalian
- China
| | - Jingwen Cai
- Polymer Science & Materials
- Chemical Engineering College
- Dalian University of Technology
- Dalian
- China
| | - Jinyan Wang
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian
- China
| | - Xigao Jian
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian
- China
| |
Collapse
|
76
|
Miao Q, Pu K. Emerging Designs of Activatable Photoacoustic Probes for Molecular Imaging. Bioconjug Chem 2016; 27:2808-2823. [DOI: 10.1021/acs.bioconjchem.6b00641] [Citation(s) in RCA: 147] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Qingqing Miao
- School of Chemical and Biomedical
Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457
| | - Kanyi Pu
- School of Chemical and Biomedical
Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457
| |
Collapse
|
77
|
Self-quenched semiconducting polymer nanoparticles for amplified in vivo photoacoustic imaging. Biomaterials 2016; 119:1-8. [PMID: 27988405 DOI: 10.1016/j.biomaterials.2016.12.004] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Revised: 10/14/2016] [Accepted: 12/06/2016] [Indexed: 12/11/2022]
Abstract
Development of photoacoustic (PA) imaging agents provides opportunities for advancing PA imaging in fundamental biology and medicine. Despite the promise of semiconducting polymer nanoparticles (SPNs) for PA imaging, the molecular guidelines to enhance their imaging performance are limited. In this study, semiconducting polymers (SPs) with self-quenched fluorescence are synthesized and transformed into SPNs for amplified PA imaging in living mice. The self-quenched process is induced by the incorporation of an electron-deficient structure unit into the backbone of SPs, which in turn promotes the nonradiative decay and enhances the heat generation. Such a simple chemical alteration of SP eventually leads to 1.7-fold PA amplification for the corresponding SPN. By virtue of the targeting capability of cyclic-RGD, the amplified SPN can effectively delineate tumor in living mice and increase the PA intensity of tumor by 4.7-fold after systemic administration. Our study thus provides an effective molecular guideline to amplify the PA brightness of organic imaging agents for in vivo PA imaging.
Collapse
|
78
|
Zhen X, Zhang C, Xie C, Miao Q, Lim KL, Pu K. Intraparticle Energy Level Alignment of Semiconducting Polymer Nanoparticles to Amplify Chemiluminescence for Ultrasensitive In Vivo Imaging of Reactive Oxygen Species. ACS NANO 2016; 10:6400-9. [PMID: 27299477 DOI: 10.1021/acsnano.6b02908] [Citation(s) in RCA: 230] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Detection of reactive oxygen species (ROS), a hallmark of many pathological processes, is imperative to understanding, detection and treatment of many life-threatening diseases. However, methods capable of real-time in situ imaging of ROS in living animals are still very limited. We herein report the development and optimization of chemiluminescent semiconducting polymer nanoparticles (SPNs) for ultrasensitive in vivo imaging of hydrogen peroxide (H2O2). The chemiluminescence is amplified by adjusting the energy levels between the luminescence reporter and the chemiluminescence substrate to facilitate intermolecular electron transfer in the process of H2O2-activated luminescence. The optimized SPN can emit chemiluminescence with the quantum yield up to 2.30 × 10(-2) einsteins/mol and detect H2O2 down to 5 nM, which substantially outperforms the previous probes. Further doping of this SPN with a naphthalocyanine dye creates intraparticle chemiluminescence resonance energy transfer (CRET), leading to the near-infrared (NIR) luminescence responding to H2O2. By virtue of high brightness and ideal NIR optical window, SPN-NIR permits ultrasensitive imaging of H2O2 in the mouse models of peritonitis and neuroinflammation with the minute administration quantity. Thus, this study not only provides a category of optical probes that eliminates the need of external light excitation for imaging of H2O2, but also reveals the underlying principle to enhance the brightness of chemiluminescence systems.
Collapse
Affiliation(s)
- Xu Zhen
- School of Chemical and Biomedical Engineering, Nanyang Technological University , Singapore 637457, Singapore
| | - Chengwu Zhang
- National Neuroscience Institute , Singapore 308433, Singapore
| | - Chen Xie
- School of Chemical and Biomedical Engineering, Nanyang Technological University , Singapore 637457, Singapore
| | - Qingqing Miao
- School of Chemical and Biomedical Engineering, Nanyang Technological University , Singapore 637457, Singapore
| | - Kah Leong Lim
- National Neuroscience Institute , Singapore 308433, Singapore
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering, Nanyang Technological University , Singapore 637457, Singapore
| |
Collapse
|