51
|
Huang Y, Liu Z, Liu C, Zhang Y, Ren J, Qu X. Selenium-Based Nanozyme as Biomimetic Antioxidant Machinery. Chemistry 2018; 24:10224-10230. [PMID: 29722080 DOI: 10.1002/chem.201801725] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Indexed: 01/24/2023]
Abstract
A self-assembly nanocomposite was designed to mimic intracellular enzymatic and non-enzymatic antioxidants-constituted antioxidant defense machinery. In this work, selenium nanocomponent served as one model to mimic antioxidant enzyme, whereas polydopamine was able to mimic non-enzymatic antioxidant biomolecule in living systems. With the excellent glutathione peroxidase-mimic capacity of selenium and the reducibility of polydopamine, this Se@pDA nanozyme could achieve synergetic antioxidative efficiency to protect cellular components against oxidative damage. The pneumonia model of mice further proved the potential of our nanocomposites for anti-inflammation therapy.
Collapse
Affiliation(s)
- Yanyan Huang
- Laboratory of Chemical Biology, State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P.R. China
- Jiangnan University, Wuxi, Jiangsu, 214122, P.R. China
| | - Zhen Liu
- Laboratory of Chemical Biology, State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P.R. China
| | - Chaoqun Liu
- Laboratory of Chemical Biology, State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P.R. China
| | - Yan Zhang
- Laboratory of Chemical Biology, State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100039, P.R. China
| | - Jinsong Ren
- Laboratory of Chemical Biology, State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P.R. China
| | - Xiaogang Qu
- Laboratory of Chemical Biology, State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P.R. China
| |
Collapse
|
52
|
Lin T, Qin Y, Huang Y, Yang R, Hou L, Ye F, Zhao S. A label-free fluorescence assay for hydrogen peroxide and glucose based on the bifunctional MIL-53(Fe) nanozyme. Chem Commun (Camb) 2018; 54:1762-1765. [PMID: 29380827 DOI: 10.1039/c7cc09819g] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A label-free nanozyme MIL-53(Fe) with the dual-function of catalyzing and emitting fluorescence was utilized for turn-on fluorescence detection of hydrogen peroxide and glucose. The proposed strategy provides a cost-effective, safe and sensitive method for the design and development of multiple enzyme cascade assays for various biomolecules.
Collapse
Affiliation(s)
- Tianran Lin
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, College of Chemistry and Pharmaceutical Science of Guangxi Normal University, Guilin 541004, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
53
|
Cheng X, Ni X, Wu R, Chong Y, Gao X, Ge C, Yin JJ. Evaluation of the structure–activity relationship of carbon nanomaterials as antioxidants. Nanomedicine (Lond) 2018. [DOI: 10.2217/nnm-2017-0314] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Aim: To develop the potential application of carbon nanomaterials as antioxidants calls for better understanding of how the specific structure affects their antioxidant activity. Materials & methods: Several typical carbon nanomaterials, including graphene quantum dots and fullerene derivatives were characterized and their radical scavenging activities were evaluated; in addition, the in vitro and in vivo radioprotection experiments were performed. Results: These carbon nanomaterials can efficiently scavenge free radicals in a structure-dependent manner. In vitro assays demonstrate that administration of these carbon nanomaterials markedly increases the surviving fraction of cells exposed to ionizing radiation. Moreover, in vivo experiments confirm that their administration can also increase the survival rates of mice exposed to radiation. Conclusion: All results confirm that large, buckyball-shaped fullerenes show the strongest antioxidant properties and the best radioprotective efficiency. Our work will be useful in guiding the design and optimization of nanomaterials for potential antioxidant and radioprotection bio-applications.
Collapse
Affiliation(s)
- Xiaju Cheng
- School for Radiological & Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, PR China
| | - Xiaohu Ni
- School for Radiological & Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, PR China
| | - Renfei Wu
- School for Radiological & Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, PR China
| | - Yu Chong
- School for Radiological & Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, PR China
| | - Xingfa Gao
- College of Chemistry & Chemical Engineering, Jiangxi Normal University, Nanchang 330022, PR China
| | - Cuicui Ge
- School for Radiological & Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, PR China
| | - Jun-Jie Yin
- Division of Bioanalytical Chemistry & Division of Analytical Chemistry, Office of Regulatory Science, Center for Food Safety & Applied Nutrition, US Food & Drug Administration, College Park, MD 20740, USA
| |
Collapse
|
54
|
Abstract
Nanomaterials represent one of the most promising frontiers in the research for improved antioxidants. Some nanomaterials, including organic (i.e. melanin, lignin) metal oxides (i.e. cerium oxide) or metal (i.e. gold, platinum) based nanoparticles, exhibit intrinsic redox activity that is often associated with radical trapping and/or with superoxide dismutase-like and catalase-like activities. Redox inactive nanomaterials can be transformed into antioxidants by grafting low molecular weight antioxidants on them. Herein, we propose a classification of nanoantioxidants based on their mechanism of action, and we review the chemical methods used to measure antioxidant activity by providing a rationale of the chemistry behind them.
Collapse
Affiliation(s)
- Luca Valgimigli
- Department of Chemistry "G. Ciamician", University of Bologna, Via S. Giacomo 11, Bologna 40126, Italy.
| | | | | |
Collapse
|
55
|
Wu X, Chen T, Wang J, Yang G. Few-layered MoSe2 nanosheets as an efficient peroxidase nanozyme for highly sensitive colorimetric detection of H2O2 and xanthine. J Mater Chem B 2018; 6:105-111. [DOI: 10.1039/c7tb02434g] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
MoSe2 nanosheets possess intrinsic peroxidase-like activity and are applied to H2O2 and xanthine detection with high sensitivity and selectivity.
Collapse
Affiliation(s)
- Xiaoju Wu
- State Key Laboratory of Optoelectronic Materials and Technologies
- Nanotechnology Research Center
- School of Materials Science & Engineering
- School of Physics
- Sun Yat-sen University
| | - Tongming Chen
- State Key Laboratory of Optoelectronic Materials and Technologies
- Nanotechnology Research Center
- School of Materials Science & Engineering
- School of Physics
- Sun Yat-sen University
| | - Jianxing Wang
- State Key Laboratory of Optoelectronic Materials and Technologies
- Nanotechnology Research Center
- School of Materials Science & Engineering
- School of Physics
- Sun Yat-sen University
| | - Guowei Yang
- State Key Laboratory of Optoelectronic Materials and Technologies
- Nanotechnology Research Center
- School of Materials Science & Engineering
- School of Physics
- Sun Yat-sen University
| |
Collapse
|
56
|
Xia J, Li F, Ji S, Xu H. Selenium-Functionalized Graphene Oxide That Can Modulate the Balance of Reactive Oxygen Species. ACS APPLIED MATERIALS & INTERFACES 2017; 9:21413-21421. [PMID: 28586192 DOI: 10.1021/acsami.7b05951] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Graphene oxide (GO) is an important two-dimensional material since it is water-soluble and can be functionalized to adapt to different applications. However, the current covalent functionalization methods usually require hash conditions, long duration, and sometimes even multiple steps, while noncovalent functionalization is inevitably unstable, especially under a physiological environment where competing species exist. Diselenide bond is a dynamic covalent bond and can respond to both redox conditions and visible light irradiation in a sensitive manner. Thus, in this work by combining the stimuli response of diselenide bond and the oxidative/radical attackable nature of GO, we achieved the in situ covalent functionalization of GO simply by stirring GO with diselenide-containing molecules in aqueous solution. The covalent functionalization was proved by Fourier transform infrared, time-of-flight secondary ion mass spectrometry, atomic force microscopy, thermogravimetric analysis, and so forth, and the functionalization mechanism was deduced to involve both redox reaction and radical addition reaction according to the X-ray photoelectron spectrscopy, atomic emission spectroscopy, and Raman spectroscopy. Moreover, we modified GO with a biocompatible diselenide-containing polymer (mPEGSe)2 and found selenium-functionalized GO could modulate the balance of reactive oxygen species (ROS). GOSe could decrease ROS level by accelerating the reduction of peroxides when the ROS concentration is high while boosting the ROS level by in situ generating ROS when its concentration is relatively low.
Collapse
Affiliation(s)
- Jiahao Xia
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University , Beijing 100084, People's Republic of China
| | - Feng Li
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University , Beijing 100084, People's Republic of China
| | - Shaobo Ji
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University , Beijing 100084, People's Republic of China
| | - Huaping Xu
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University , Beijing 100084, People's Republic of China
| |
Collapse
|
57
|
Golchin J, Golchin K, Alidadian N, Ghaderi S, Eslamkhah S, Eslamkhah M, Akbarzadeh A. Nanozyme applications in biology and medicine: an overview. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 45:1-8. [DOI: 10.1080/21691401.2017.1313268] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Jafar Golchin
- Division of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kazem Golchin
- Division of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Neda Alidadian
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shahrooz Ghaderi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Division of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sajjad Eslamkhah
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoud Eslamkhah
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abolfazl Akbarzadeh
- Division of Nanomedicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|