51
|
Mitra M, Mahapatra M, Dutta A, Roy JSD, Karmakar M, Deb M, Mondal H, Chattopadhyay PK, Bandyopadhyay A, Singha NR. Carbohydrate and collagen-based doubly-grafted interpenetrating terpolymer hydrogel via N-H activated in situ allocation of monomer for superadsorption of Pb(II), Hg(II), dyes, vitamin-C, and p-nitrophenol. JOURNAL OF HAZARDOUS MATERIALS 2019; 369:746-762. [PMID: 30836295 DOI: 10.1016/j.jhazmat.2018.12.019] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 12/04/2018] [Accepted: 12/05/2018] [Indexed: 05/20/2023]
Abstract
Herein, guar gum (GG)-g-(acrylic acid (AA)-co-3-acrylamido propanoic acid (AMPA)-co-acrylamide (AM))-g-cow buffing dust (CBD)/(GGTPCBD), a smart carbohydrate and protein-based doubly-grafted interpenetrating terpolymer hydrogel showing excellent physicochemical properties and recyclability was synthesized by in situ strategic allocation of AMPA during solution polymerization of AA and AM through systematic optimization of the amounts of components and reaction temperature for superadsorption of Hg(II), Pb(II), methyl violet (MV), methylene blue (MB), p-nitrophenol (PNP), and vitamin-C (vit.C). The in situ strategic protrusion of AMPA, grafting of both GG and CBD into AA-co-AMPA-co-AM, and ligand-selective superadsorption was inferred by advanced microstructural analyses of unadsorbed- and/or adsorbed-GGTPCBD using FTIR, 1H/13C NMR, O1s-/N1s-/C1s-/Pb4f7/2,5/2-/Hg4f7/2,5/2-XPS, UV-vis, TGA, DSC, XRD, DLS, SEM, EDX, % gel content, % -COOH, and pHPZC. The prevalence of covalent, ionic, and variegated interactions was rationalized by FTIR, fitting of kinetics data to the pseudosecond order model, and activation energies of adsorption. The BET and Langmuir isotherms fitted the best to MB and Hg(II)/Pb(II)/MV, respectively. Thermodynamically spontaneous chemisorption processes showed the maximum adsorption capacities (ACs) of 976.64, 859.23, 116.80, and 58.52 mg g-1 for Pb(II), Hg(II), MV, and MB, respectively, at 303 K, adsorbent dose = 0.01 g, and initial concentration of metal ions/dyes = 800/30 ppm.
Collapse
Affiliation(s)
- Madhushree Mitra
- Department of Leather Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata, 700106, West Bengal, India
| | - Manas Mahapatra
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata, 700106, West Bengal, India
| | - Arnab Dutta
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata, 700106, West Bengal, India
| | - Joy Sankar Deb Roy
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata, 700106, West Bengal, India; Department of Polymer Science and Technology, University of Calcutta, 92, A.P.C. Road, Kolkata, 700009, West Bengal, India
| | - Mrinmoy Karmakar
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata, 700106, West Bengal, India
| | - Mousumi Deb
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata, 700106, West Bengal, India
| | - Himarati Mondal
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata, 700106, West Bengal, India
| | - Pijush Kanti Chattopadhyay
- Department of Leather Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata, 700106, West Bengal, India.
| | - Abhijit Bandyopadhyay
- Department of Polymer Science and Technology, University of Calcutta, 92, A.P.C. Road, Kolkata, 700009, West Bengal, India
| | - Nayan Ranjan Singha
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata, 700106, West Bengal, India.
| |
Collapse
|
52
|
Singha NR, Karmakar M, Chattopadhyay PK, Roy S, Deb M, Mondal H, Mahapatra M, Dutta A, Mitra M, Roy JSD. Structures, Properties, and Performances-Relationships of Polymeric Membranes for Pervaporative Desalination. MEMBRANES 2019; 9:E58. [PMID: 31052381 PMCID: PMC6572519 DOI: 10.3390/membranes9050058] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/18/2019] [Accepted: 04/19/2019] [Indexed: 12/03/2022]
Abstract
For the fulfilment of increasing global demand and associated challenges related to the supply of clean-and-safe water, PV has been considered as one of the most attractive and promising areas in desalinating salty-water of varied salinities. In pervaporative desalination, the sustainability, endurance, and structural features of membrane, along with operating parameters, play the dominant roles and impart paramount impact in governing the overall PV efficiency. Indeed, polymeric- and organic-membranes suffer from several drawbacks, including inferior structural stability and durability, whereas the fabrication of purely inorganic membranes is complicated and costly. Therefore, recent development on the high-performance and cost-friendly PV membrane is mostly concentrated on synthesizing composite- and NCP-membranes possessing the advantages of both organic- and inorganic-membranes. This review reflects the insights into the physicochemical properties and fabrication approaches of different classes of PV membranes, especially composite- and NCP-membranes. The mass transport mechanisms interrelated to the specialized structural features have been discussed. Additionally, the performance potential and application prospects of these membranes in a wide spectrum of desalination and wastewater treatment have been elaborated. Finally, the challenges and future perspectives have been identified in developing and scaling up different high-performance membranes suitable for broader commercial applications.
Collapse
Affiliation(s)
- Nayan Ranjan Singha
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata 700106, West Bengal, India.
| | - Mrinmoy Karmakar
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata 700106, West Bengal, India.
| | - Pijush Kanti Chattopadhyay
- Department of Leather Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata 700106, West Bengal, India.
| | - Sagar Roy
- Department of Chemistry & Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, USA.
| | - Mousumi Deb
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata 700106, West Bengal, India.
| | - Himarati Mondal
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata 700106, West Bengal, India.
| | - Manas Mahapatra
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata 700106, West Bengal, India.
| | - Arnab Dutta
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata 700106, West Bengal, India.
| | - Madhushree Mitra
- Department of Leather Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata 700106, West Bengal, India.
| | - Joy Sankar Deb Roy
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata 700106, West Bengal, India.
- Department of Leather Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata 700106, West Bengal, India.
| |
Collapse
|
53
|
Midya L, Das R, Bhaumik M, Sarkar T, Maity A, Pal S. Removal of toxic pollutants from aqueous media using poly (vinyl imidazole) crosslinked chitosan synthesised through microwave assisted technique. J Colloid Interface Sci 2019; 542:187-197. [DOI: 10.1016/j.jcis.2019.01.121] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/20/2019] [Accepted: 01/28/2019] [Indexed: 10/27/2022]
|
54
|
Bello K, Sarojini BK, Narayana B. Design and fabrication of environmentally benign cellulose based hydrogel matrix for selective adsorption of toxic dyes from industrial effluvia. JOURNAL OF POLYMER RESEARCH 2019. [DOI: 10.1007/s10965-019-1724-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
55
|
Karmakar M, Mondal H, Mahapatra M, Chattopadhyay PK, Chatterjee S, Singha NR. Pectin-grafted terpolymer superadsorbent via N–H activated strategic protrusion of monomer for removals of Cd(II), Hg(II), and Pb(II). Carbohydr Polym 2019; 206:778-791. [DOI: 10.1016/j.carbpol.2018.11.032] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 11/06/2018] [Accepted: 11/11/2018] [Indexed: 02/06/2023]
|
56
|
Singha NR, Dutta A, Mahapatra M, Roy JSD, Mitra M, Deb M, Chattopadhyay PK. In Situ Attachment of Acrylamido Sulfonic Acid-Based Monomer in Terpolymer Hydrogel Optimized by Response Surface Methodology for Individual and/or Simultaneous Removal(s) of M(III) and Cationic Dyes. ACS OMEGA 2019; 4:1763-1780. [PMID: 31459433 PMCID: PMC6648733 DOI: 10.1021/acsomega.8b02545] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 12/25/2018] [Indexed: 05/20/2023]
Abstract
Herein, grafting of starch (STR) and in situ strategic inclusion of 2-(3-(acrylamido)propylamido)-2-methylpropane sulfonic acid (APMPS) via solution polymerization of 2-(acrylamido)-2-methylpropanesulfonic acid (AMPS) and acrylamide (AM) have resulted in the synthesis of smart STR-grafted-AMPS-co-APMPS-co-AM (i.e., STR-g-TerPol) interpenetrating terpolymer (TerPol) network hydrogels. For fabricating the optimum hydrogel showing excellent physicochemical properties and recyclability, amounts of ingredients and temperature of synthesis have been optimized using multistage response surface methodology. STR-g-TerPol bearing the maximum swelling ability, along with the retention of network integrity, has been employed for individual and/or simultaneous removal(s) of metal ions (i.e., M(III)), such as Bi(III) and Sb(III), and dyes, such as tris(4-(dimethylamino)phenyl)methylium chloride (i.e., crystal violet) and (7-amino-8-phenoxazin-3-ylidene)-diethylazanium dichlorozinc dichloride (i.e., brilliant cresyl blue). The in situ strategic protrusion of APMPS, grafting of STR into the TerPol matrix, variation of crystallinity, thermal stabilities, surface properties, mechanical properties, swellability, adsorption capacities (ACs), and ligand-selective superadsorption have been inferred via analyses of unadsorbed and/or adsorbed STR-g-TerPol using Fourier transform infrared (FTIR), 1H/13C NMR, UV-vis, thermogravimetric analysis, differential scanning calorimetry, X-ray diffraction, field emission scanning electron microscopy, energy-dispersive X-ray, dynamic light scattering, and rheological analyses and measuring the lower critical solution temperature, % gel content, pH at point of zero charge (pHPZC), and network parameters, such as ρc and M c. The prevalence of covalent, ionic (I), and variegated interactions between STR-g-TerPol and M(III) has been understood through FTIR analyses, fitting of kinetics data to the pseudosecond-order model, and by the measurement of activation energies of adsorption. The formation of H-aggregate type dimers and hypochromic and hypsochromic shifts has been explained via UV-vis analyses during individual and/or simultaneous removal(s) of cationic dyes. Several isotherm models were fitted to the equilibrium experimental data, of which Langmuir and combined Langmuir-Freundlich models have been best fitted for individual Bi(III)/Sb(III) and simultaneous Sb(III) + Bi(III) removals, respectively. Thermodynamically spontaneous chemisorption processes have shown the maximum ACs of 1047.39/282.39 and 932.08/137.85 mg g-1 for Bi(III) and Sb(III), respectively, at 303 K, adsorbent dose = 0.01 g, and initial concentration of M(III) = 1000/30 ppm. The maximum ACs have been changed to 173.09 and 136.02 mg g-1 for Bi(III) and Sb(III), respectively, for binary Sb(III) + Bi(III) removals at 303 K, adsorbent dose = 0.01 g, and initial concentration of Bi(III)/Sb(III) at 30/5 and 5/30 ppm.
Collapse
Affiliation(s)
- Nayan Ranjan Singha
- Advanced Polymer Laboratory, Department of Polymer
Science and Technology, and Department of
Leather Technology, Government College of Engineering and Leather
Technology (Post-Graduate), Maulana Abul
Kalam Azad University of Technology,
Salt Lake, Kolkata 700106, West Bengal, India
| | - Arnab Dutta
- Advanced Polymer Laboratory, Department of Polymer
Science and Technology, and Department of
Leather Technology, Government College of Engineering and Leather
Technology (Post-Graduate), Maulana Abul
Kalam Azad University of Technology,
Salt Lake, Kolkata 700106, West Bengal, India
| | - Manas Mahapatra
- Advanced Polymer Laboratory, Department of Polymer
Science and Technology, and Department of
Leather Technology, Government College of Engineering and Leather
Technology (Post-Graduate), Maulana Abul
Kalam Azad University of Technology,
Salt Lake, Kolkata 700106, West Bengal, India
| | - Joy Sankar Deb Roy
- Advanced Polymer Laboratory, Department of Polymer
Science and Technology, and Department of
Leather Technology, Government College of Engineering and Leather
Technology (Post-Graduate), Maulana Abul
Kalam Azad University of Technology,
Salt Lake, Kolkata 700106, West Bengal, India
| | - Madhushree Mitra
- Advanced Polymer Laboratory, Department of Polymer
Science and Technology, and Department of
Leather Technology, Government College of Engineering and Leather
Technology (Post-Graduate), Maulana Abul
Kalam Azad University of Technology,
Salt Lake, Kolkata 700106, West Bengal, India
| | - Mousumi Deb
- Advanced Polymer Laboratory, Department of Polymer
Science and Technology, and Department of
Leather Technology, Government College of Engineering and Leather
Technology (Post-Graduate), Maulana Abul
Kalam Azad University of Technology,
Salt Lake, Kolkata 700106, West Bengal, India
| | - Pijush Kanti Chattopadhyay
- Advanced Polymer Laboratory, Department of Polymer
Science and Technology, and Department of
Leather Technology, Government College of Engineering and Leather
Technology (Post-Graduate), Maulana Abul
Kalam Azad University of Technology,
Salt Lake, Kolkata 700106, West Bengal, India
| |
Collapse
|
57
|
Mondal H, Karmakar M, Dutta A, Mahapatra M, Deb M, Mitra M, Roy JSD, Roy C, Chattopadhyay PK, Singha NR. Tetrapolymer Network Hydrogels via Gum Ghatti-Grafted and N-H/C-H-Activated Allocation of Monomers for Composition-Dependent Superadsorption of Metal Ions. ACS OMEGA 2018; 3:10692-10708. [PMID: 31459187 PMCID: PMC6644869 DOI: 10.1021/acsomega.8b01218] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Accepted: 08/23/2018] [Indexed: 05/21/2023]
Abstract
Herein, gum ghatti (GGTI)-g-[sodium acrylate (SA)-co-3-(N-(4-(4-methyl pentanoate))acrylamido)propanoate (NMPAP)-co-4-(acrylamido)-4-methyl pentanoate (AMP)-co-N-isopropylacrylamide (NIPA)] (i.e., GGTI-g-TetraP), a novel interpenetrating tetrapolymer network-based sustainable hydrogel, possessing extraordinary physicochemical properties and excellent recyclability, has been synthesized via grafting of GGTI and in situ strategic protrusion of NMPAP and AMP during the solution polymerization of SA and NIPA, through systematic multistage optimization of ingredients and temperature, for ligand-selective superadsorption of hazardous metal ions (M(II)), such as Sr(II), Hg(II), and Cu(II). The in situ allocation of NMPAP and AMP via N-H and C-H activations, grafting of GGTI into the SA-co-NMPAP-co-AMP-co-NIPA (TetraP) matrix, the effect of comonomer compositions on ligand-selective adsorption, crystallinity, thermal stabilities, surface properties, swellability, adsorption capacities (ACs), mechanical properties, and the superadsorption mechanism have been apprehended via extensive microstructural analyses of unloaded and/or loaded GGTI-g-TetraP1 and GGTI-g-TetraP2 bearing SA/NIPA in 8:1 and 2:1 ratios, respectively, using Fourier transform infrared (FTIR), 1H/13C/DEPT-135 NMR, X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis, differential scanning calorimetry, X-ray diffraction, field emission scanning electron microscopy, rheological analysis, and energy-dispersive X-ray spectrometry, along with measuring % gel content, pH at point of zero charge (pHPZC), and % graft ratio. The thermodynamically spontaneous chemisorption has been inferred from FTIR, XPS, fitting of kinetics data to pseudo-second-order model, and activation energies. The chemisorption data have exhibited excellent fitting to the Langmuir isotherm model. For Sr(II), Hg(II), and Cu(II), ACs were 1940.24/1748.36, 1759.50/1848.03, and 1903.64/1781.63 mg g-1, respectively, at 293 K, 0.02 g of GGTI-g-TetraP1/2, and initial concentration of M(II) = 500-1000 ppm.
Collapse
Affiliation(s)
- Himarati Mondal
- Advanced
Polymer Laboratory, Department of Polymer Science and Technology, and Department of
Leather Technology, Government College of Engineering and Leather
Technology (Post-Graduate), Maulana Abul
Kalam Azad University of Technology,
Salt Lake, Kolkata 700106, West Bengal, India
| | - Mrinmoy Karmakar
- Advanced
Polymer Laboratory, Department of Polymer Science and Technology, and Department of
Leather Technology, Government College of Engineering and Leather
Technology (Post-Graduate), Maulana Abul
Kalam Azad University of Technology,
Salt Lake, Kolkata 700106, West Bengal, India
| | - Arnab Dutta
- Advanced
Polymer Laboratory, Department of Polymer Science and Technology, and Department of
Leather Technology, Government College of Engineering and Leather
Technology (Post-Graduate), Maulana Abul
Kalam Azad University of Technology,
Salt Lake, Kolkata 700106, West Bengal, India
| | - Manas Mahapatra
- Advanced
Polymer Laboratory, Department of Polymer Science and Technology, and Department of
Leather Technology, Government College of Engineering and Leather
Technology (Post-Graduate), Maulana Abul
Kalam Azad University of Technology,
Salt Lake, Kolkata 700106, West Bengal, India
| | - Mousumi Deb
- Advanced
Polymer Laboratory, Department of Polymer Science and Technology, and Department of
Leather Technology, Government College of Engineering and Leather
Technology (Post-Graduate), Maulana Abul
Kalam Azad University of Technology,
Salt Lake, Kolkata 700106, West Bengal, India
| | - Madhushree Mitra
- Advanced
Polymer Laboratory, Department of Polymer Science and Technology, and Department of
Leather Technology, Government College of Engineering and Leather
Technology (Post-Graduate), Maulana Abul
Kalam Azad University of Technology,
Salt Lake, Kolkata 700106, West Bengal, India
| | - Joy Sankar Deb Roy
- Advanced
Polymer Laboratory, Department of Polymer Science and Technology, and Department of
Leather Technology, Government College of Engineering and Leather
Technology (Post-Graduate), Maulana Abul
Kalam Azad University of Technology,
Salt Lake, Kolkata 700106, West Bengal, India
| | - Chandan Roy
- Advanced
Polymer Laboratory, Department of Polymer Science and Technology, and Department of
Leather Technology, Government College of Engineering and Leather
Technology (Post-Graduate), Maulana Abul
Kalam Azad University of Technology,
Salt Lake, Kolkata 700106, West Bengal, India
| | - Pijush Kanti Chattopadhyay
- Advanced
Polymer Laboratory, Department of Polymer Science and Technology, and Department of
Leather Technology, Government College of Engineering and Leather
Technology (Post-Graduate), Maulana Abul
Kalam Azad University of Technology,
Salt Lake, Kolkata 700106, West Bengal, India
| | - Nayan Ranjan Singha
- Advanced
Polymer Laboratory, Department of Polymer Science and Technology, and Department of
Leather Technology, Government College of Engineering and Leather
Technology (Post-Graduate), Maulana Abul
Kalam Azad University of Technology,
Salt Lake, Kolkata 700106, West Bengal, India
| |
Collapse
|
58
|
Mahapatra M, Karmakar M, Dutta A, Singha NR. Fabrication of composite membranes for pervaporation of tetrahydrofuran-water: Optimization of intrinsic property by response surface methodology and studies on vulcanization mechanism by density functional theory. KOREAN J CHEM ENG 2018. [DOI: 10.1007/s11814-018-0099-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
59
|
Singha NR, Dutta A, Mahapatra M, Karmakar M, Mondal H, Chattopadhyay PK, Maiti DK. Guar Gum-Grafted Terpolymer Hydrogels for Ligand-Selective Individual and Synergistic Adsorption: Effect of Comonomer Composition. ACS OMEGA 2018; 3:472-494. [PMID: 31457906 PMCID: PMC6641655 DOI: 10.1021/acsomega.7b01682] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 12/27/2017] [Indexed: 05/20/2023]
Abstract
Grafting of guar gum (GG) and in situ strategic attachment of acrylamidosodiumpropanoate (ASP) via solution polymerization of acrylamide (AM) and sodium acrylate (SA) resulted in the synthesis of a sustainable GG-g-(AM-co-SA-co-ASP)/GGAMSAASP interpenetrating polymer network (IPN)-based smart superadsorbent with excellent physicochemical properties and reusability, through systematic optimization by response surface methodology (RSM) for removal of methyl violet (MV) and/or Hg(II). The relative effects of SA/AM ratios, in situ allocation of ASP, grafting of GG into the AMSAASP terpolymer, ligand-selective superadsorption mechanism, and relative microstructural changes in individually/synergistically-adsorbed MV-/Hg(II)-/Hg(II)-MV-GGAMSAASPs were determined by extensive analyses using Fourier transform infrared (FTIR), proton nuclear magnetic resonance, ultraviolet-visible (UV-vis), and O 1s-/N 1s-/C 1s-/Hg 4f7/2,5/2-X-ray photoelectron spectroscopies, thermogravimetric analysis, differential scanning calorimetry, X-ray diffraction, field emission scanning electron microscopy, and energy-dispersive spectroscopy and were supported by % gel content, pHPZC, and % graft ratio. The ionic/covalent-bonding, monodentate, bidentate bridging, and bidentate chelating coordination between GGAMSAASPs and Hg(II), and MV+-Hg(II) bonding were rationalized by FTIR, UV-vis, fitment of kinetics data to the pseudo-second-order model, and thermodynamic parameters. The maximum adsorption capacities of 49.12 and 53.28 mg g-1 were determined for Hg(II) and MV, respectively, under optimized conditions.
Collapse
Affiliation(s)
- Nayan Ranjan Singha
- Advanced
Polymer Laboratory, Department of Polymer Science and Technology, and Department of
Leather Technology, Government College of
Engineering and Leather Technology (Post-Graduate), Maulana
Abul Kalam Azad University of Technology, Salt Lake, Kolkata 700106, West Bengal, India
| | - Arnab Dutta
- Advanced
Polymer Laboratory, Department of Polymer Science and Technology, and Department of
Leather Technology, Government College of
Engineering and Leather Technology (Post-Graduate), Maulana
Abul Kalam Azad University of Technology, Salt Lake, Kolkata 700106, West Bengal, India
| | - Manas Mahapatra
- Advanced
Polymer Laboratory, Department of Polymer Science and Technology, and Department of
Leather Technology, Government College of
Engineering and Leather Technology (Post-Graduate), Maulana
Abul Kalam Azad University of Technology, Salt Lake, Kolkata 700106, West Bengal, India
| | - Mrinmoy Karmakar
- Advanced
Polymer Laboratory, Department of Polymer Science and Technology, and Department of
Leather Technology, Government College of
Engineering and Leather Technology (Post-Graduate), Maulana
Abul Kalam Azad University of Technology, Salt Lake, Kolkata 700106, West Bengal, India
| | - Himarati Mondal
- Advanced
Polymer Laboratory, Department of Polymer Science and Technology, and Department of
Leather Technology, Government College of
Engineering and Leather Technology (Post-Graduate), Maulana
Abul Kalam Azad University of Technology, Salt Lake, Kolkata 700106, West Bengal, India
| | - Pijush Kanti Chattopadhyay
- Advanced
Polymer Laboratory, Department of Polymer Science and Technology, and Department of
Leather Technology, Government College of
Engineering and Leather Technology (Post-Graduate), Maulana
Abul Kalam Azad University of Technology, Salt Lake, Kolkata 700106, West Bengal, India
| | - Dilip K. Maiti
- Department
of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata 700009, India
| |
Collapse
|
60
|
Maity J, Ray SK. Chitosan based nano composite adsorbent-Synthesis, characterization and application for adsorption of binary mixtures of Pb(II) and Cd(II) from water. Carbohydr Polym 2017; 182:159-171. [PMID: 29279111 DOI: 10.1016/j.carbpol.2017.10.086] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 10/18/2017] [Accepted: 10/24/2017] [Indexed: 11/27/2022]
Abstract
Composite type adsorbent was prepared by integrating chitosan (Cs) with crosslinked polymethacrylic acid (PMA) and nano sized halloysite nanotube (HNT). The structure of the resulting Cs-PMA/HNT adsorbents was characterized by FTIR, NMR, XRD, TGA, SEM/EDX and rheological properties. These functional adsorbents were used for removal of Pb(II) and Cd(II) as single and binary competitive mixtures from water. There was a significant improvement in adsorption properties of crosslinked PMA in the presence of Cs and HNT. The effect of synthesis parameters such as wt.% of Cs and HNT on swelling and process parameters such as solution pH, adsorbent dosage, contact time and feed concentration on adsorption of metal ions from water were studied in batch experiments. For a feed concentration of 100mg/L of metal ion, an adsorbent dose of 0.25g/L and a solution pH of 6, the Cs-PMA/HNT composite adsorbent containing 4wt% Cs and 3wt% HNT showed an adsorption capacity (mg/g)/removal% of 357.4/89.4 and 341.6/85.4 for single Pb(II) and Cd(II), respectively which reduced to 313.7/78.4 and 303.6/77.3 for the same metal ions in their binary mixtures in water.
Collapse
Affiliation(s)
- Jayabrata Maity
- Department of Polymer Science and Technology, University of Calcutta, 92, A.P.C. Road, Kolkata 700009, India
| | - Samit Kumar Ray
- Department of Polymer Science and Technology, University of Calcutta, 92, A.P.C. Road, Kolkata 700009, India.
| |
Collapse
|
61
|
Bhuyan MM, Okabe H, Hidaka Y, Hara K. Pectin-[(3-acrylamidopropyl) trimethylammonium chloride-co
-acrylic acid] hydrogel prepared by gamma radiation and selectively silver (Ag) metal adsorption. J Appl Polym Sci 2017. [DOI: 10.1002/app.45906] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Md Murshed Bhuyan
- Faculty of Engineering; , Research Institute of Environment for Sustainability,Kyushu University; Nishi-ku Fukuoka 819-0395 Japan
| | - Hirotaka Okabe
- Faculty of Engineering; , Research Institute of Environment for Sustainability,Kyushu University; Nishi-ku Fukuoka 819-0395 Japan
| | - Yoshiki Hidaka
- Faculty of Engineering; , Research Institute of Environment for Sustainability,Kyushu University; Nishi-ku Fukuoka 819-0395 Japan
| | - Kazuhiro Hara
- Faculty of Engineering; , Research Institute of Environment for Sustainability,Kyushu University; Nishi-ku Fukuoka 819-0395 Japan
| |
Collapse
|
62
|
Roy S, Singha NR. Polymeric Nanocomposite Membranes for Next Generation Pervaporation Process: Strategies, Challenges and Future Prospects. MEMBRANES 2017; 7:membranes7030053. [PMID: 28885591 PMCID: PMC5618138 DOI: 10.3390/membranes7030053] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 08/30/2017] [Accepted: 08/31/2017] [Indexed: 11/17/2022]
Abstract
Pervaporation (PV) has been considered as one of the most active and promising areas in membrane technologies in separating close boiling or azeotropic liquid mixtures, heat sensitive biomaterials, water or organics from its mixtures that are indispensable constituents for various important chemical and bio-separations. In the PV process, the membrane plays the most pivotal role and is of paramount importance in governing the overall efficiency. This article evaluates and collaborates the current research towards the development of next generation nanomaterials (NMs) and embedded polymeric membranes with regard to its synthesis, fabrication and application strategies, challenges and future prospects.
Collapse
Affiliation(s)
- Sagar Roy
- Department of Chemistry & Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, USA.
| | - Nayan Ranjan Singha
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post-Graduate), Kolkata-700106, West Bengal, India.
| |
Collapse
|
63
|
Singha NR, Mahapatra M, Karmakar M, Dutta A, Mondal H, Chattopadhyay PK. Synthesis of guar gum-g-(acrylic acid-co-acrylamide-co-3-acrylamido propanoic acid) IPN via in situ attachment of acrylamido propanoic acid for analyzing superadsorption mechanism of Pb(ii)/Cd(ii)/Cu(ii)/MB/MV. Polym Chem 2017. [DOI: 10.1039/c7py01564j] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
GG-g-(AA-co-AM-co-APA) IPN superadsorbent, characterization of loaded microstructures and individual/synergistic adsorption mechanism of MB/SF/Pb(ii)/Cd(ii)/Cu(ii) are reported.
Collapse
Affiliation(s)
- Nayan Ranjan Singha
- Advanced Polymer Laboratory
- Department of Polymer Science and Technology
- Government College of Engineering and Leather Technology (Post Graduate)
- Maulana Abul Kalam Azad University of Technology
- Kolkata – 700106
| | - Manas Mahapatra
- Advanced Polymer Laboratory
- Department of Polymer Science and Technology
- Government College of Engineering and Leather Technology (Post Graduate)
- Maulana Abul Kalam Azad University of Technology
- Kolkata – 700106
| | - Mrinmoy Karmakar
- Advanced Polymer Laboratory
- Department of Polymer Science and Technology
- Government College of Engineering and Leather Technology (Post Graduate)
- Maulana Abul Kalam Azad University of Technology
- Kolkata – 700106
| | - Arnab Dutta
- Advanced Polymer Laboratory
- Department of Polymer Science and Technology
- Government College of Engineering and Leather Technology (Post Graduate)
- Maulana Abul Kalam Azad University of Technology
- Kolkata – 700106
| | - Himarati Mondal
- Advanced Polymer Laboratory
- Department of Polymer Science and Technology
- Government College of Engineering and Leather Technology (Post Graduate)
- Maulana Abul Kalam Azad University of Technology
- Kolkata – 700106
| | - Pijush Kanti Chattopadhyay
- Department of Leather Technology
- Government College of Engineering and Leather Technology (Post Graduate)
- Maulana Abul Kalam Azad University of Technology
- Kolkata – 700106
- India
| |
Collapse
|