51
|
Luo Y, Yang Y, Wang Y, Wu Z, Russell TP, Shi S. Reconfigurable Liquids Constructed by Pillar[6]arene‐based Nanoparticle Surfactants. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yuzheng Luo
- Beijing University of Chemical Technology Beijing Advanced Innovation Center for Soft Matter Science and Engineering CHINA
| | - Yang Yang
- Beijing University of Chemical Technology Beijing Advanced Innovation Center for Soft Matter Science and Engineering CHINA
| | - Yongkang Wang
- Beijing University of Chemical Technology Beijing Advanced Innovation Center for Soft Matter Science and Engineering CHINA
| | - Zhanpeng Wu
- Beijing University of Chemical Technology State Key Laboratory of Organic–Inorganic Composites CHINA
| | - Thomas P. Russell
- University of Massachusetts Amherst Department of Polymer Science and Engineering UNITED STATES
| | - Shaowei Shi
- Beijing University of Chemical Technology College of Materials Science and Engineering Beijing city Chaoyang District North Third Ring Road 15 100029 Beijing CHINA
| |
Collapse
|
52
|
Li Z, Yang Z, Zhang Y, Yang B, Yang YW. Synthesis of an Acidochromic and Nitroaromatic Responsive Hydrazone‐Linked Pillararene Framework by a Macrocycle‐To‐Framework Strategy. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Zheng Li
- Jilin University College of Chemistry CHINA
| | | | | | - Bing Yang
- Jilin University College of Chemistry CHINA
| | - Ying-Wei Yang
- Jilin University College of Chemistry 2699 Qianjin Street 130012 Changchun CHINA
| |
Collapse
|
53
|
Reversing neuromuscular blocking agent decamethonium by carboxylatopillar[6]arene based on host-guest encapsulation. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.11.087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
54
|
Liu Z, Zhou L, Zhang H, Han J. Cyclodextrin-pillar[ n]arene hybridized macrocyclic systems. Org Biomol Chem 2022; 20:4278-4288. [PMID: 35552579 DOI: 10.1039/d2ob00671e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cyclodextrin (CD) and pillar[n]arene are significant macrocyclic host molecules in supramolecular chemistry, and have either similar or contrasting physicochemical properties, for example, both can provide capable cavities available for recognizing various favorite guest molecules, while they usually possess different solubility in aqueous solutions, and exhibit diverse chiral characteristics. To balance their similarity and differences inherited from each chemical structure and incorporate both advantages, the CD-pillar[n]arene hybrid macrocyclic system was recently developed. In this review, we will focus on the preparation and application of CD-pillar[n]arene hybrid macrocyclic systems. Both noncovalent interactions and covalent bonds were employed in the synthesis strategies of building the hybrid macrocyclic system, which was in the form of host-guest inclusion, self-assembly, conjugated molecules, and polymeric structures. Furthermore, the CD-pillar[n]arene hybrid macrocyclic system has been primarily applied for the removal of organic pollutants from water, induced chirality, as well as photocatalysis due to the integration of both cavities from CD and pillar[n]arene as hybrid hosts and chiral characteristics inherited from their chemical structures.
Collapse
Affiliation(s)
- Zhaona Liu
- Medical School, Xi'an Peihua University, Xi'an 710125, Shaanxi, China.
| | - Le Zhou
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.
| | - Huacheng Zhang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.
| | - Jie Han
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, China.
| |
Collapse
|
55
|
Lim YJ, Goh K, Wang R. The coming of age of water channels for separation membranes: from biological to biomimetic to synthetic. Chem Soc Rev 2022; 51:4537-4582. [PMID: 35575174 DOI: 10.1039/d1cs01061a] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Water channels are one of the key pillars driving the development of next-generation desalination and water treatment membranes. Over the past two decades, the rise of nanotechnology has brought together an abundance of multifunctional nanochannels that are poised to reinvent separation membranes with performances exceeding those of state-of-the-art polymeric membranes within the water-energy nexus. Today, these water nanochannels can be broadly categorized into biological, biomimetic and synthetic, owing to their different natures, physicochemical properties and methods for membrane nanoarchitectonics. Furthermore, against the backdrop of different separation mechanisms, different types of nanochannel exhibit unique merits and limitations, which determine their usability and suitability for different membrane designs. Herein, this review outlines the progress of a comprehensive amount of nanochannels, which include aquaporins, pillar[5]arenes, I-quartets, different types of nanotubes and their porins, graphene-based materials, metal- and covalent-organic frameworks, porous organic cages, MoS2, and MXenes, offering a comparative glimpse into where their potential lies. First, we map out the background by looking into the evolution of nanochannels over the years, before discussing their latest developments by focusing on the key physicochemical and intrinsic transport properties of these channels from the chemistry standpoint. Next, we put into perspective the fabrication methods that can nanoarchitecture water channels into high-performance nanochannel-enabled membranes, focusing especially on the distinct differences of each type of nanochannel and how they can be leveraged to unlock the as-promised high water transport potential in current mainstream membrane designs. Lastly, we critically evaluate recent findings to provide a holistic qualitative assessment of the nanochannels with respect to the attributes that are most strongly valued in membrane engineering, before discussing upcoming challenges to share our perspectives with researchers for pathing future directions in this coming of age of water channels.
Collapse
Affiliation(s)
- Yu Jie Lim
- Singapore Membrane Technology Center, Nanyang Environment and Water Research Institute, Nanyang Technological University, 637141, Singapore. .,School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore.,Interdisciplinary Graduate Programme, Graduate College, Nanyang Technological University, 637553, Singapore
| | - Kunli Goh
- Singapore Membrane Technology Center, Nanyang Environment and Water Research Institute, Nanyang Technological University, 637141, Singapore.
| | - Rong Wang
- Singapore Membrane Technology Center, Nanyang Environment and Water Research Institute, Nanyang Technological University, 637141, Singapore. .,School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore
| |
Collapse
|
56
|
Zhao L, Chen J, Tian L, Zhang Y, Chen L, Du X, Ma M, Li J, Meng Q, Li C. Supramolecular Detoxification of Macromolecular Biotoxin through the Complexation by a Large-Sized Macrocycle. Adv Healthc Mater 2022; 11:e2200270. [PMID: 35543330 DOI: 10.1002/adhm.202200270] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/19/2022] [Indexed: 11/10/2022]
Abstract
Biotoxins are diverse, complex, and hypertoxic, ultimately serving as grave and lasting menaces to humanity. Here, it is aimed to introduce a new detoxification methodology for macromolecular biotoxin through complexation by a very large macrocycle. A 25-mer peptide isolated from Lycosa erythrognatha spider venom (LyeTxI) is selected as the model macromolecular biotoxin. Quaterphen[4]arene, with a side length of ≈1.6 nm, has a sufficient cavity to bind LyeTxI. Hence, the water-soluble derivative of Quaterphen[4]arene (H) is designed and synthesized. H exhibits an overall host-guest complexation toward LyeTxI, resulting in a considerably high association constant of (7.01 ± 0.18) × 107 m-1 . This encapsulation of peptide is interesting as traditional macrocycles can only engulf the amino acid residues of peptides due to their limited cavity size. In vitro assay verifies that complexation by H inhibits the interactions of LyeTxI with cell membranes, thereby reducing its cytotoxicity, suppressing hemolysis, and decreasing the release of lactate dehydrogenase. Notably, the intravenous administration of H has a significant therapeutic effect on LyeTxI-poisoned mice, alleviating inflammation and tissue damage, and markedly improving the survival rate from 10% to 80%. An efficient and potentially versatile approach is provided to detoxify macromolecular biotoxins, with giant macrocycle serving as an antidote.
Collapse
Affiliation(s)
- Liang Zhao
- Center for Supramolecular Chemistry and Catalysis Department of Chemistry Shanghai University Shanghai 200444 P. R. China
- State Key Laboratory of Toxicology and Medical Countermeasures Beijing Institute of Pharmacology and Toxicology Beijing 100850 P. R. China
| | - Junyi Chen
- State Key Laboratory of Toxicology and Medical Countermeasures Beijing Institute of Pharmacology and Toxicology Beijing 100850 P. R. China
- Key Laboratory of Inorganic‐Organic Hybrid Functional Material Chemistry Ministry of Education Tianjin Key Laboratory of Structure and Performance for Functional Molecules College of Chemistry Tianjin Normal University Tianjin 300387 P. R. China
| | - Long Tian
- State Key Laboratory of Toxicology and Medical Countermeasures Beijing Institute of Pharmacology and Toxicology Beijing 100850 P. R. China
| | - Yahan Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures Beijing Institute of Pharmacology and Toxicology Beijing 100850 P. R. China
| | - Longming Chen
- State Key Laboratory of Toxicology and Medical Countermeasures Beijing Institute of Pharmacology and Toxicology Beijing 100850 P. R. China
| | - Xinbei Du
- Center for Supramolecular Chemistry and Catalysis Department of Chemistry Shanghai University Shanghai 200444 P. R. China
- State Key Laboratory of Toxicology and Medical Countermeasures Beijing Institute of Pharmacology and Toxicology Beijing 100850 P. R. China
| | - Mengke Ma
- State Key Laboratory of Toxicology and Medical Countermeasures Beijing Institute of Pharmacology and Toxicology Beijing 100850 P. R. China
| | - Jian Li
- Center for Supramolecular Chemistry and Catalysis Department of Chemistry Shanghai University Shanghai 200444 P. R. China
- School of Chemistry and Chemical Engineering Henan Normal University Xinxiang Henan 453007 P. R. China
| | - Qingbin Meng
- State Key Laboratory of Toxicology and Medical Countermeasures Beijing Institute of Pharmacology and Toxicology Beijing 100850 P. R. China
| | - Chunju Li
- Key Laboratory of Inorganic‐Organic Hybrid Functional Material Chemistry Ministry of Education Tianjin Key Laboratory of Structure and Performance for Functional Molecules College of Chemistry Tianjin Normal University Tianjin 300387 P. R. China
| |
Collapse
|
57
|
Icing on the cake: combining a dual PEG-functionalized pillararene and an A-D-A small molecule photosensitizer for multimodal phototherapy. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1232-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
58
|
Liu Z, Li Z, Li B, Zhou L, Zhang H, Han J. Hybrid Macrocyclic Polymers: Self-Assembly Containing Cucurbit[m]uril-pillar[n]arene. Polymers (Basel) 2022; 14:1777. [PMID: 35566949 PMCID: PMC9106019 DOI: 10.3390/polym14091777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 04/23/2022] [Accepted: 04/26/2022] [Indexed: 02/01/2023] Open
Abstract
Supramolecular self-assembly by hybrid macrocycles containing both cucurbit[m]uril (CB[m]) and pillar[n]arene was discussed and summarized in this review. Due to different solubility, diverse-sized cavities, and various driving forces in recognizing guests, the role of CB[m] and pillar[n]arene in such hybrid macrocyclic systems could switch between competitor in capturing specialized guests, and cooperator for building advanced hybridized macrocycles, by controlling their characteristics in host-guest inclusions. Furthermore, both CB[m] and pillar[n]arene were employed for fabricating advanced supramolecular self-assemblies such as mechanically interlocked molecules and supramolecular polymers. In those self-assemblies, CB[m] and pillar[n]arene played significant roles in, e.g., microreactor for catalyzing particular reactions to bridge different small pieces together, molecular "joint" to connect different monomers into larger assemblies, and "stabilizer" in accommodating the guest molecules to adopt a favorite structure geometry ready for assembling.
Collapse
Affiliation(s)
- Zhaona Liu
- Medical School, Xi’an Peihua University, Xi’an 710125, China;
| | - Zhizheng Li
- School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (Z.L.); (B.L.); (L.Z.)
| | - Bing Li
- School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (Z.L.); (B.L.); (L.Z.)
| | - Le Zhou
- School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (Z.L.); (B.L.); (L.Z.)
| | - Huacheng Zhang
- School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (Z.L.); (B.L.); (L.Z.)
| | - Jie Han
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
59
|
Qian W, Zuo M, Niu P, Hu XY, Wang L. The construction of aggregation-induced charge transfer emission systems in aqueous solution directed by supramolecular strategy. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.09.070] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
60
|
Chen L, Meng Z, Tian L, Zhang Y, Zhao L, Du X, Ma M, Zhang H, Chen J, Meng Q. Complexation of specific residues by carboxylatopillar[6]arene for improving the zymolytic stability of arginine-containing peptides. Org Biomol Chem 2022; 20:2222-2226. [PMID: 35234795 DOI: 10.1039/d2ob00017b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
A general strategy for improving the zymolytic stability against proteases is reported. Carboxylatopillar[6]arene (CP6A) could effectively bind arginine and arginine-containing peptides, thereby improving the stability of angiotensin peptides in the presence of trypsin by the complexation of the side chain of the arginine residue.
Collapse
Affiliation(s)
- Longming Chen
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, PR China.
| | - Zhao Meng
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, PR China.
| | - Long Tian
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, PR China.
| | - Yahan Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, PR China.
| | - Liang Zhao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, PR China.
| | - Xinbei Du
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, PR China.
| | - Mengke Ma
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, PR China.
| | - Han Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, PR China.
| | - Junyi Chen
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, PR China.
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, PR China.
| | - Qingbin Meng
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, PR China.
| |
Collapse
|
61
|
Fabricating a novel supramolecular light-activated platform based on internal-driven forces induced by the UV-light. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.03.081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
62
|
Kiruthika J, Boominathan M, Srividhya S, Ajitha V, Arunachalam M. Pillar[4]arene[1]quinone-based pseudo[3]rotaxanes by cooperative Host-Guest binding. Supramol Chem 2022. [DOI: 10.1080/10610278.2021.2025241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Jeyavelraman Kiruthika
- Department of Chemistry, The Gandhigram Rural Institute (Deemed to Be University), Dindigul, India
| | - Muniyappan Boominathan
- Department of Chemistry, The Gandhigram Rural Institute (Deemed to Be University), Dindigul, India
| | - Sankar Srividhya
- Department of Chemistry, The Gandhigram Rural Institute (Deemed to Be University), Dindigul, India
| | - Veeramani Ajitha
- Department of Chemistry, The Gandhigram Rural Institute (Deemed to Be University), Dindigul, India
| | - Murugan Arunachalam
- Department of Chemistry, The Gandhigram Rural Institute (Deemed to Be University), Dindigul, India
| |
Collapse
|
63
|
Hou X, Chang Y, Yue Y, Wang Z, Ding F, Li Z, Li H, Xu Y, Kong X, Huang F, Guo D, Liu J. Supramolecular Radiosensitizer Based on Hypoxia-Responsive Macrocycle. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104349. [PMID: 34994113 PMCID: PMC8867162 DOI: 10.1002/advs.202104349] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/06/2021] [Indexed: 05/15/2023]
Abstract
Radiotherapy (RT) has been viewed as one of the most effective and extensively applied curatives in clinical cancer therapy. However, the radioresistance of tumor severely discounts the radiotherapy outcomes. Here, an innovative supramolecular radiotherapy strategy, based on the complexation of a hypoxia-responsive macrocycle with small-molecule radiosensitizer, is reported. To exemplify this tactic, a carboxylated azocalix[4]arene (CAC4A) is devised as molecular container to quantitatively package tumor sensitizer banoxantrone dihydrochloride (AQ4N) through reversible host-guest interaction. Benefited from the selective reduction of azo functional groups under hypoxic microenvironment, the supramolecular prodrug CAC4A•AQ4N exhibits high tumor accumulation and efficient cellular internalization, thereby significantly amplifying radiation-mediated tumor destruction without appreciable systemic toxicity. More importantly, this supramolecular radiotherapy strategy achieves an ultrahigh sensitizer enhancement ratio (SER) value of 2.349, which is the supreme among currently reported noncovalent-based radiosensitization approach. Further development by applying different radiosensitizing drugs can make this supramolecular strategy become a general platform for boosting therapeutic effect in cancer radiotherapies, tremendously promising for clinical translation.
Collapse
Affiliation(s)
- Xiaoxue Hou
- CAMS Key Laboratory of Radiopharmacokinetics for Innovative DrugsInstitute of Radiation MedicineChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjin300192P. R. China
| | - Yu‐Xuan Chang
- College of ChemistryKey Laboratory of Functional Polymer Materials (Ministry of Education)State Key Laboratory of Elemento‐Organic ChemistryNational Demonstration Center for Experimental Chemistry EducationNankai UniversityTianjin300071P. R. China
| | - Yu‐Xin Yue
- College of ChemistryKey Laboratory of Functional Polymer Materials (Ministry of Education)State Key Laboratory of Elemento‐Organic ChemistryNational Demonstration Center for Experimental Chemistry EducationNankai UniversityTianjin300071P. R. China
| | - Ze‐Han Wang
- College of ChemistryKey Laboratory of Functional Polymer Materials (Ministry of Education)State Key Laboratory of Elemento‐Organic ChemistryNational Demonstration Center for Experimental Chemistry EducationNankai UniversityTianjin300071P. R. China
| | - Fei Ding
- College of ChemistryKey Laboratory of Functional Polymer Materials (Ministry of Education)State Key Laboratory of Elemento‐Organic ChemistryNational Demonstration Center for Experimental Chemistry EducationNankai UniversityTianjin300071P. R. China
| | - Zhi‐Hao Li
- College of ChemistryKey Laboratory of Functional Polymer Materials (Ministry of Education)State Key Laboratory of Elemento‐Organic ChemistryNational Demonstration Center for Experimental Chemistry EducationNankai UniversityTianjin300071P. R. China
| | - Hua‐Bin Li
- College of ChemistryKey Laboratory of Functional Polymer Materials (Ministry of Education)State Key Laboratory of Elemento‐Organic ChemistryNational Demonstration Center for Experimental Chemistry EducationNankai UniversityTianjin300071P. R. China
| | - Yicheng Xu
- College of ChemistryKey Laboratory of Functional Polymer Materials (Ministry of Education)State Key Laboratory of Elemento‐Organic ChemistryNational Demonstration Center for Experimental Chemistry EducationNankai UniversityTianjin300071P. R. China
| | - Xianglei Kong
- College of ChemistryKey Laboratory of Functional Polymer Materials (Ministry of Education)State Key Laboratory of Elemento‐Organic ChemistryNational Demonstration Center for Experimental Chemistry EducationNankai UniversityTianjin300071P. R. China
| | - Fan Huang
- CAMS Key Laboratory of Radiopharmacokinetics for Innovative DrugsInstitute of Radiation MedicineChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjin300192P. R. China
| | - Dong‐Sheng Guo
- College of ChemistryKey Laboratory of Functional Polymer Materials (Ministry of Education)State Key Laboratory of Elemento‐Organic ChemistryNational Demonstration Center for Experimental Chemistry EducationNankai UniversityTianjin300071P. R. China
| | - Jianfeng Liu
- CAMS Key Laboratory of Radiopharmacokinetics for Innovative DrugsInstitute of Radiation MedicineChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjin300192P. R. China
| |
Collapse
|
64
|
Wang J, Wang D, Cen M, Jing D, Bei J, Huang Y, Zhang J, Lu B, Wang Y, Yao Y. GOx-assisted synthesis of pillar[5]arene based supramolecular polymeric nanoparticles for targeted/synergistic chemo-chemodynamic cancer therapy. J Nanobiotechnology 2022; 20:33. [PMID: 35016673 PMCID: PMC8753913 DOI: 10.1186/s12951-021-01237-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 12/30/2021] [Indexed: 12/31/2022] Open
Abstract
Background Cancer is the most serious world's health problems on the global level and various strategies have been developed for cancer therapy. Pillar[5]arene-based supramolecular therapeutic nano-platform (SP/GOx NPs) was constructed successfully via orthogonal dynamic covalent bonds and intermolecular H-bonds with the assistance of glucose oxidase (GOx) and exhibited efficient targeted/synergistic chemo-chemodynamic cancer therapy. Methods The morphology of SP/GOx NPs was characterized by DLS, TEM, SEM and EDS mapping. The cancer therapy efficinecy was investigated both in vivo and in vitro. Results SP/GOx NPs can load drug molecules (Dox) and modify target molecule (FA-Py) on its surface conveniently. When the resultant FA-Py/SP/GOx/Dox NPs enters blood circulation, FA-Py will target it to cancer cells efficiently, where GOx can catalyst the overexpressed glucose to generate H2O2. Subsequently, the generated H2O2 in cancer cells catalyzed by ferrocene unit to form •OH, which can kill cancer cells. Furthermore, the loaded Dox molecules released under acid microenvironment, which can further achieve chemo-therapy. Conclusion All the experiments showed that the excellent antitumor performance of FA-Py/SP/GOx/Dox NPs, which provided an new method for pillar[5]arene-based supramolecular polymer for biomedical applications. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-021-01237-0.
Collapse
Affiliation(s)
- Jin Wang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 22 6019, People's Republic of China
| | - Di Wang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 22 6019, People's Republic of China
| | - Moupan Cen
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 22 6019, People's Republic of China
| | - Danni Jing
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 22 6019, People's Republic of China
| | - Jiali Bei
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 22 6019, People's Republic of China
| | - Youyou Huang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 22 6019, People's Republic of China
| | - Jiannan Zhang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 22 6019, People's Republic of China
| | - Bing Lu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 22 6019, People's Republic of China
| | - Yang Wang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 22 6019, People's Republic of China.
| | - Yong Yao
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 22 6019, People's Republic of China.
| |
Collapse
|
65
|
Smart supramolecular vesicles based on glutathione-reactive pillar[6]arene and acid-labile prodrug: Dual drug loading and sequential release. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.07.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
66
|
Liu C, Zhou L, Cao S, Zhang H, Han J, Liu Z. Supramolecular systems prepared using terpyridine-containing pillararene. Polym Chem 2022. [DOI: 10.1039/d1py01397a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Recent progresses about the preparation of terpyridine-containing pillararene, as well as the utilization of those building blocks for making external stimulud-responsive supramolecular systems were summarized in this review.
Collapse
Affiliation(s)
- Chang Liu
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Le Zhou
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Shuai Cao
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Huacheng Zhang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Jie Han
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Energy), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zhaona Liu
- Medical School, Xi'an Peihua University, Xi'an 710125, Shaanxi, China
| |
Collapse
|
67
|
Wang K, Tian X, Jordan JH, Velmurugan K, Wang L, Hu XY. The emerging applications of pillararene architectures in supramolecular catalysis. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.06.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
68
|
Yang F, Li Y, Li R, Wang X, Cui X, Wei W, Xu Y. Fine-Tuning Macrocycle Cavity to Selectively Bind Guests in Water for Near-Infrared Photothermal Conversion. Org Chem Front 2022. [DOI: 10.1039/d2qo00443g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The rational and specific synthesis of the required organic macrocycles to bind the size-matched targeted guests without undesired macrocyclic byproducts remains a great challenge. Herein, based on a new naphthalimide...
Collapse
|
69
|
Molecular Recognition by Pillar[5]arenes: Evidence for Simultaneous Electrostatic and Hydrophobic Interactions. Pharmaceutics 2021; 14:pharmaceutics14010060. [PMID: 35056956 PMCID: PMC8777861 DOI: 10.3390/pharmaceutics14010060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/17/2021] [Accepted: 12/22/2021] [Indexed: 11/21/2022] Open
Abstract
The formation of inclusion complexes between alkylsulfonate guests and a cationic pillar[5]arene receptor in water was investigated by NMR and ITC techniques. The results show the formation of host-guest complexes stabilized by electrostatic interactions and hydrophobic effects with binding constants of up to 107 M−1 for the guest with higher hydrophobic character. Structurally, the alkyl chain of the guest is included in the hydrophobic aromatic cavity of the macrocycle while the sulfonate groups are held in the multicationic portal by ionic interactions.
Collapse
|
70
|
Li R, Gong ZL, Zhu Q, Sun MJ, Che Y, Yao J, Zhong YW. A pre-organized monomer-reservoir strategy to prepare multidimensional phosphorescent organoplatinum nanocrystals and suprastructures. Sci China Chem 2021. [DOI: 10.1007/s11426-021-1129-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
71
|
Ye Z, Yan ZJ, Zhang C, Hou JL, Yue S, Xiao L. Charged Tubular Supramolecule Boosting Multivalent Interactions for the Drastic Suppression of Aβ Fibrillation. NANO LETTERS 2021; 21:10494-10500. [PMID: 34855401 DOI: 10.1021/acs.nanolett.1c04007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Anti-Aβ therapy has dominated clinical trials for the prevention and treatment of Alzheimer's disease (AD). However, suppressing Aβ aggregation and disintegrating mature fibrils simultaneously remains a great challenge. In this work, we developed a new strategy using a charged tubular supramolecule (CTS) with pillar[5]arene as the backbone and modifying amino and carboxyl groups at the tubular terminals (noted as CTS-A, CTS-A/C, and CTS-C, respectively) to suppress Aβ fibrillation for the first time. According to the spectroscopic and microscopic characterizations, Aβ40 fibrillation can be efficiently suppressed by CTS-A in a very low inhibitor:peptide (I:P) molar ratio (1:10). A greatly alleviated cytotoxic effect of Aβ peptides after the inhibition or disaggregation process is further disclosed. The well-organized supramolecular structure drives multivalent interaction and gains enhanced efficiency on amyloid fibrillar modulation. These results open a new path for the design of supramolecules in the application of AD treatment.
Collapse
Affiliation(s)
- Zhongju Ye
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zhao-Jun Yan
- Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Chenhong Zhang
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Jun-Li Hou
- Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Shijing Yue
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Lehui Xiao
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
72
|
Liu H, Yang J, Yan X, Li C, Elsabahy M, Chen L, Yang YW, Gao H. A dendritic polyamidoamine supramolecular system composed of pillar[5]arene and azobenzene for targeting drug-resistant colon cancer. J Mater Chem B 2021; 9:9594-9605. [PMID: 34783814 DOI: 10.1039/d1tb02134f] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Fusobacterium nucleatum caused drug-resistant around tumor sites often leads to the failure of chemotherapy during colorectal cancer (CRC) treatment. Multifunctional cationic quaternary ammonium materials have been widely used as broad-spectrum antibacterial agents in antibacterial and anticancer fields. Herein, we design a smart supramolecular quaternary ammonium nanoparticle, namely quaternary ammonium PAMAM-AZO@CP[5]A (Q-P-A@CP[5]A), consisting of azobenzene (AZO)-conjugated dendritic cationic quaternary ammonium polyamidoamine (PAMAM) as the core and carboxylatopillar[5]arene (CP[5]A)-based switch, for antibacterial and anti-CRC therapies. The quaternary ammonium-PAMAM-AZO (Q-P-A) core endows the supramolecular system with enhanced antibacterial and anticancer properties. -N+CH3 groups on the surface of Q-P-A are accommodated in the CP[5]A cavity under normal conditions, which significantly improves the biocompatibility of Q-P-A@CP[5]A. Meanwhile, the CP[5]A host can be detached from -N+CH3 groups under pathological conditions, achieving efficient antibacterial and antitumor therapies. Furthermore, azoreductase in the tumor site can break the -NN- bonds of AZO in Q-P-A@CP[5]A, leading to the morphology recovery of supramolecular nanoparticles and CRC therapy through inducing cell membrane rupture. Both in vitro and in vivo experiments demonstrate that Q-P-A@CP[5]A possesses good biocompatibility, excellent antibacterial effect, and CRC treatment capability with negligible side effects. This supramolecular quaternary ammonium system provides an effective treatment method to overcome chemotherapy-resistant cancer caused by bacteria.
Collapse
Affiliation(s)
- Hongyu Liu
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, P. R. China. .,Tianjin Key Laboratory of Drug Targeting and Bioimaging, Tianjin Enterprise Key Laboratory for Application Research of Hyaluronic Acid, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Jie Yang
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.
| | - Xiangjie Yan
- Tianjin Key Laboratory of Drug Targeting and Bioimaging, Tianjin Enterprise Key Laboratory for Application Research of Hyaluronic Acid, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Chaoqi Li
- Tianjin Key Laboratory of Drug Targeting and Bioimaging, Tianjin Enterprise Key Laboratory for Application Research of Hyaluronic Acid, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Mahmoud Elsabahy
- Science Academy, School of Biotechnology, Badr University in Cairo, Badr City, Cairo 11829, Egypt
| | - Li Chen
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, P. R. China.
| | - Ying-Wei Yang
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.
| | - Hui Gao
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, P. R. China. .,Tianjin Key Laboratory of Drug Targeting and Bioimaging, Tianjin Enterprise Key Laboratory for Application Research of Hyaluronic Acid, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China
| |
Collapse
|
73
|
Cao S, Liu C, Zhou L, Zhang H, Zhao Y, Liu Z. Bioapplication of cyclodextrin-containing montmorillonite. J Mater Chem B 2021; 9:9241-9261. [PMID: 34698331 DOI: 10.1039/d1tb01719e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Recent progresses in the integration of CDs and montmorillonite, as well as applications of CD-containing montmorillonite hybrid host systems are summarized in this review. Several efficient synthesis strategies, such as ion exchange, metal coordination, supramolecular strategies, polymerizations and organic synthesis methods, have been discussed during the preparation of CDs/montmorillonite hybrid composites. In particular, diverse instrumental techniques were highly recommended for characterizing the as-obtained hybrid systems, including their chemical composition and structures, crystallinity, surface/self-assembled morphologies, as well as other particular physiochemical properties, providing a direct guide for promoting the desired structures and exploring various applications. It should be noted that the introduction of functional groups, as well as the integration of CDs and montmorillonite granted the thus obtained CD-containing montmorillonite hybrid host systems a lot of unique features, providing great opportunities for expanding the practical applications to a series of biological and environmental areas, such as biosensors, sorption and decontamination of bio/environmental hazardous materials, biostudies about aqueous dispersity, stability and biocompatibility, drug loading and target delivery, controlled and sustained drug release, as well as antibacterial.
Collapse
Affiliation(s)
- Shuai Cao
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.
| | - Chang Liu
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.
| | - Le Zhou
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.
| | - Huacheng Zhang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.
| | - Yuxin Zhao
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.
| | - Zhaona Liu
- Medical School, Xi'an Peihua University, Xi'an 710125, Shaanxi, China.
| |
Collapse
|
74
|
Liu X, Liu J, Meng C, Zhu P, Liu X, Qian J, Ling S, Zhang Y, Ling Y. Pillar[6]arene-Based Supramolecular Nanocatalysts for Synergistically Enhanced Chemodynamic Therapy by the Intracellular Cascade Reaction. ACS APPLIED MATERIALS & INTERFACES 2021; 13:53574-53585. [PMID: 34729975 DOI: 10.1021/acsami.1c15203] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Chemodynamic therapy (CDT) based on the intracellular Fenton reaction has become increasingly explored in cancer treatment. However, the mildly acidic tumor microenvironment and the limited amount of intracellular hydrogen peroxide (H2O2) will create issues for CDT to perform a sustained and high-efficiency treatment. Therefore, how to selectively reduce the pH value and augment the amount of H2O2 in tumor tissues has become the key factor for realizing excellent CDT. Besides, the majority of the reported CDT systems have been constructed from iron-based inorganic or metal-organic framework nanomaterials due to the decisive role of metals in CDT, which restricts the development of CDT. In this study, inspired by the host-guest interactions between pillar[6]arene and ferrocene, a ternary pillar[6]arene-based supramolecular nanocatalyst (GOx@T-NPs) for CDT is reported for the first time. GOx@T-NPs not only exhibited a high-efficiency catalytic ability to convert glucose into hydroxyl radicals (•OH) and to reduce the pH value inside cancer cells for significant enhancement of the CDT effect, but they also showed sensitive glutathione-induced camptothecin (CPT) prodrug release capacity for further improving the efficiency of CDT. Hence, GOx@NPs possessed excellent ability to synergistically enhance the CDT. Additionally, an antitumor mechanism study showed that the prominent tumor inhibition capacity of GOx@T-NPs was derived from trimodal synergistic interactions of CDT, starvation therapy, and chemotherapy. Moreover, GOx@T-NPs manifested good biocompatibility and tumor selectivity with few side effects in major organs. This work broadens the range of materials available for CDT and demonstrates new developments in pillar[n]arene-based multimodal synergistic treatment systems.
Collapse
Affiliation(s)
- Xin Liu
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, PR China
| | - Ji Liu
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, PR China
| | - Chi Meng
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, PR China
| | - Peng Zhu
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, PR China
| | - Xiao Liu
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, PR China
| | - Jianqiang Qian
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, PR China
| | - Shijia Ling
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, PR China
| | - Yanan Zhang
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, PR China
| | - Yong Ling
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, PR China
| |
Collapse
|
75
|
Chen J, Zhang Y, Zhao L, Zhang Y, Chen L, Ma M, Du X, Meng Z, Li C, Meng Q. Supramolecular Drug Delivery System from Macrocycle-Based Self-Assembled Amphiphiles for Effective Tumor Therapy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:53564-53573. [PMID: 34726381 DOI: 10.1021/acsami.1c14385] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Intelligent drug delivery systems (DDSs) that can improve therapeutic outcomes of antitumor agents and decrease their side effects are urgently needed to satisfy special requirements of treatment of malignant tumors in clinics. Here, the fabrication of supramolecular self-assembled amphiphiles based on the host-guest recognition between a cationic water-soluble pillar[6]arene (WP6A) host and a sodium decanesulfonate guest (G) is reported. The chemotherapeutic agent doxorubicin hydrochloride (DOX) can be encapsulated into the formed vesicle (G/WP6A) to construct supramolecular DDS (DOX@G/WP6A). WP6A affords strong affinities to G to avoid undesirable off-target leakage during delivery. Nanoscaled DOX@G/WP6A is capable of preferentially accumulating in tumor tissue via enhanced permeability and retention (EPR) effect. After internalization by tumor cells, the abundant adenosine triphosphate (ATP) binds competitively with WP6A to trigger the disintegration of self-assembled vesicles with the ensuing release of DOX. In vitro and in vivo research confirmed that DOX@G/WP6A is not only able to promote antitumor efficacy but also reduce DOX-related systemic toxicity. The above favorable findings are ascribed to the formation of ternary self-assembly, which profits from the combination of the factors of the EPR effect and the ATP-triggered release.
Collapse
Affiliation(s)
- Junyi Chen
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, P. R. China
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China
| | - Yadan Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, P. R. China
| | - Liang Zhao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, P. R. China
| | - Yahan Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, P. R. China
| | - Longming Chen
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, P. R. China
| | - Mengke Ma
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, P. R. China
| | - Xinbei Du
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, P. R. China
| | - Zhao Meng
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, P. R. China
| | - Chunju Li
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China
| | - Qingbin Meng
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, P. R. China
| |
Collapse
|
76
|
Li D, Han Y, Sun J, Liu WL, Yan CG. Convenient construction of unique bis-[1]rotaxanes based on azobenzene-bridged dipillar[5]arenes. J INCL PHENOM MACRO 2021. [DOI: 10.1007/s10847-021-01115-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
77
|
Chao S, Shen Z, Pei Y, Pei Z. Covalently bridged pillararene-based oligomers: from construction to applications. Chem Commun (Camb) 2021; 57:10983-10997. [PMID: 34604891 DOI: 10.1039/d1cc04547d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Covalently bridged pillararene-based oligomers (CBPOs) are formed by covalent bonding of pillararene monomers, and they play a critical role in expanding the multi-disciplinary application of pillararenes due to their excellent molecular complexing ability, specially designed geometry and multifunctional linking groups. This article provides a comprehensive review of the synthesis and applications of CBPOs. The design and synthetic strategies of a series of CBPOs (dimers, trimers, tetramers and others) are first introduced. Many CBPOs with multi-cavities and unique geometry are very attractive and efficient building blocks for constructing novel smart supramolecular polymers (SPs) with different topological structures through host-guest interactions. We describe the methods of constructing various SPs based on CBPOs in detail. Furthermore, the extensive applications of CBPOs and CBPO-based SPs in recognition and detection of ions and organic small molecules, selective adsorption and separation, artificial light-harvesting systems, catalysis, drug delivery systems, and others are systematically introduced. Finally, the future challenges and perspectives for CBPOs are also highlighted.
Collapse
Affiliation(s)
- Shuang Chao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, P. R. China.
| | - Ziyan Shen
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, P. R. China.
| | - Yuxin Pei
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, P. R. China.
| | - Zhichao Pei
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, P. R. China.
| |
Collapse
|
78
|
Yang J, Dai D, Cai Z, Liu YQ, Qin JC, Wang Y, Yang YW. MOF-based multi-stimuli-responsive supramolecular nanoplatform equipped with macrocycle nanovalves for plant growth regulation. Acta Biomater 2021; 134:664-673. [PMID: 34329784 DOI: 10.1016/j.actbio.2021.07.050] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 12/14/2022]
Abstract
Controllable and on-demand delivery of agrochemicals such as plant hormones is conducive to improving agrochemicals utilization, tackling water and environmental pollution, reducing soil acidification, and realizing the goals of precision agriculture. Herein, a smart plant hormone delivery system based on metal-organic frameworks (MOFs) and supramolecular nanovalves, namely gibberellin (GA)-loaded CLT6@PCN-Q, is constructed through supramolecular host-guest interaction to regulate the growth of dicotyledonous Chinese cabbage and monocotyledonous wheat. The porous nanoscale MOF (NMOF) with a uniform diameter of 97 nm modified by quaternary ammonium (Q) stalks is served as a cargo reservoir, followed by the decoration of carboxylated leaning tower[6]arene (CLT6) based nanovalves on NMOF surfaces through host-guest interactions to fabricate CLT6@PCN-Q with a diameter of ∼101 nm and a zeta potential value of -13.2 mV. Interestingly, the as-fabricated supramolecular nanoplatform exhibits efficient cargo loading and multi-stimuli-responsive release under various external stimuli including pH, temperature, and competitive agent spermine (SPM), which can realize the on-demand release of cargo. In addition, GA-loaded CLT6@PCN-Q is capable of effectively promoting the seeds germination of wheat and stem growth of dicotyledonous Chinese cabbage and monocotyledonous wheat (1.86 and 1.30 times of control groups, respectively). The smart supramolecular nanoplatform based on MOFs and supramolecular nanovalves paves a way for the controlled delivery of plant hormones and other agrochemicals for promoting plant growth, offering new insights and methods to realize precision agriculture. STATEMENT OF SIGNIFICANCE: To achieve controllable and sustainable release of cargos such as agrochemicals, a smart MOF-based multi-stimuli-responsive supramolecular nanoplatform equipped with supramolecular nanovalves was fabricated via the host-guest interaction between quaternary ammonium stalks-functionalized nanoMOFs and water-soluble leaning tower[6]arene. The as-prepared supramolecular nanoplatform with uniform diameter distribution demonstrated good cargo release in response to various external stimuli. The installation of synthetic macrocycles could effectively reduce cargo loss in the pre-treatment process. This type of supramolecular nanoplatform exhibited good promoting effect on seed germination and plant growth dicotyledonous Chinese cabbage and monocotyledonous wheat. As an eco-friendly, controlled, and efficient cargo delivery system, this supramolecular nanoplatform will be a promising candidate in precision agriculture and controlled drug release to attract the broad readership.
Collapse
Affiliation(s)
- Jie Yang
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China; School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, PR China
| | - Dihua Dai
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China
| | - Zhi Cai
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China
| | - Yu-Qing Liu
- College of Plant Science, Jilin University, Changchun 130012, PR China
| | - Jian-Chun Qin
- College of Plant Science, Jilin University, Changchun 130012, PR China
| | - Yan Wang
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China
| | - Ying-Wei Yang
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China.
| |
Collapse
|
79
|
Chen Y, Sun B, Wang R, Shi C, Cheng M, Jiang J, Lin C, Wang L. Redox-Driven Chiral Inversion of Water-Soluble Pillar[5]arene with l-Cystine Derivative in the Aqueous Medium. Org Lett 2021; 23:7423-7427. [PMID: 34523339 DOI: 10.1021/acs.orglett.1c02620] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In the aqueous solution, l-CySS-OMe induced pS-WP5 from racemic WP5. Upon the addition of dithiothreitol as a reducing reagent to the above system, pS-WP5 was then converted to pR-WP5 for the reason that l-CySS-OMe was reduced to l-Cys-OMe. Followed by the addition of H2O2 as an oxidation reagent, pR-WP5 was converted back to pS-WP5. The chiral conformational transferring process between pR-WP5 and pS-WP5 can be easily and visually observed by reading the CD signal.
Collapse
Affiliation(s)
- Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Baobao Sun
- State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Ranran Wang
- State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Conghao Shi
- State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Ming Cheng
- State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Juli Jiang
- State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Chen Lin
- State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Leyong Wang
- State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
80
|
Yang L, Nie CY, Han Y, Sun J, Yan CG. Self-assembly of bis-[1]rotaxanes based on diverse thiourea-bridged mono-functionalized dipillar[5]arenes. J INCL PHENOM MACRO 2021. [DOI: 10.1007/s10847-021-01103-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
81
|
Jin J, Miao J, Cheng C. Mono-mercapto-functionalized pillar[5]arene: a host-guest complexation accelerated reversible redox dimerization. Chem Commun (Camb) 2021; 57:7950-7953. [PMID: 34286743 DOI: 10.1039/d1cc03010h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A mono-mercapto-functionalized pillar[5]arene and its dimer, capable of being reversibly interconverted, were successfully synthesized. Fascinatingly, a faster reversible redox conversion involving a dynamic disulfide bond was observed between their host-guest complexes compared with the hosts themselves.
Collapse
Affiliation(s)
- Jianbing Jin
- College of Chemistry, Sichuan University, Chengdu, 610064, China.
| | - Jiarong Miao
- College of Chemistry, Sichuan University, Chengdu, 610064, China.
| | - Chuyang Cheng
- College of Chemistry, Sichuan University, Chengdu, 610064, China.
| |
Collapse
|
82
|
Liu Y, Tan Y, Liu Z, Che G. Construction of a hydroxide responsive C3-symmetric supramolecular gel for controlled release of small molecules. SOFT MATTER 2021; 17:7227-7235. [PMID: 34286804 DOI: 10.1039/d1sm00799h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A C3-symmetric acylhydrazone-based low molecular weight gelator (BHTP) bearing three pyridine units was synthesized and it was found to form a stable supramolecular gel in the mixture solvent of DMSO-H2O. The morphology of the gel as observed by FE-SEM showed a dense sheet structure. Hydrogen bonding and π-π stacking between the gelators were determined as the non-covalent interactions for the gelation, which were investigated thoroughly using XRD, UV-Vis, 1H NMR and FT-IR instruments. BHTP could form pH tolerant supramolecular gels in the widest range of pH values from 1 to 11. The DMSO-H2O (v : v = 1 : 1) gel exhibited selective response to OH- over a series of other anions through the color change from a white gel to a yellow solution, and the OH- response mechanism was proved by 1H NMR experiments. In solution, the lowest detection limit of BHTP for OH- was calculated to be as low as 1.62 × 10-7 M via UV-Vis titration experiments. Finally, encapsulation and controlled release of small molecules such as rhodamine B, crystal violet and methyl orange have been successfully carried out, demonstrating the potential for drug delivery application of this C3-symmetric supramolecular gel. This work opens a novel avenue for the preparation of supramolecular gel-based multiple functional smart materials.
Collapse
Affiliation(s)
- Yucun Liu
- Key Laboratory of Preparation and Application of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun, 130103, China. and College of Chemistry, Jilin Normal University, Siping, 136000, China
| | - Yuanyuan Tan
- College of Chemistry, Jilin Normal University, Siping, 136000, China
| | - Zhixue Liu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Guangbo Che
- Key Laboratory of Preparation and Application of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun, 130103, China.
| |
Collapse
|
83
|
Khalil-Cruz LE, Liu P, Huang F, Khashab NM. Multifunctional Pillar[ n]arene-Based Smart Nanomaterials. ACS APPLIED MATERIALS & INTERFACES 2021; 13:31337-31354. [PMID: 34184874 DOI: 10.1021/acsami.1c05798] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The construction of smart nanomaterials from host macrocycles that are responsive to specific stimuli has gained significant attention in recent years. The application of pillar[n]arenes has been of particular interest given their ease of functionalization and tunability of the intrinsic cavity electronic properties that allows them to encapsulate a great variety of guests and complex with metal ions with high selectivity via noncovalent interactions, endowing them with captivating properties and functions. Herein, we present the most recent advances in the design and functionalization of pillar[n]arene-based smart nanomaterials, and their applications for sensing, catalysis, drug delivery, and artificial transmembrane channels.
Collapse
Affiliation(s)
- Laila E Khalil-Cruz
- Smart Hybrid Materials Laboratory (SHMs), Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Peiren Liu
- Smart Hybrid Materials Laboratory (SHMs), Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Feihe Huang
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High- Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Niveen M Khashab
- Smart Hybrid Materials Laboratory (SHMs), Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
84
|
Nazarova A, Khannanov A, Boldyrev A, Yakimova L, Stoikov I. Self-Assembling Systems Based on Pillar[5]arenes and Surfactants for Encapsulation of Diagnostic Dye DAPI. Int J Mol Sci 2021; 22:6038. [PMID: 34204914 PMCID: PMC8199762 DOI: 10.3390/ijms22116038] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 05/31/2021] [Accepted: 05/31/2021] [Indexed: 12/12/2022] Open
Abstract
In this paper, we report the development of the novel self-assembling systems based on oppositely charged Pillar[5]arenes and surfactants for encapsulation of diagnostic dye DAPI. For this purpose, the aggregation behavior of synthesized macrocycles and surfactants in the presence of Pillar[5]arenes functionalized by carboxy and ammonium terminal groups was studied. It has been demonstrated that by varying the molar ratio in Pillar[5]arene-surfactant systems, it is possible to obtain various types of supramolecular systems: host-guest complexes at equimolar ratio of Pillar[5]arene-surfactant and interpolyelectrolyte complexes (IPECs) are self-assembled materials formed in aqueous medium by two oppositely charged polyelectrolytes (macrocycle and surfactant micelles). It has been suggested that interaction of Pillar[5]arenes with surfactants is predominantly driven by cooperative electrostatic interactions. Synthesized stoichiometric and non-stoichiometric IPECs specifically interact with DAPI. UV-vis, luminescent spectroscopy and molecular docking data show the structural feature of dye-loaded IPEC and key role of the electrostatic, π-π-stacking, cation-π interactions in their formation. Such a strategy for the design of supramolecular Pillar[5]arene-surfactant systems will lead to a synergistic interaction of the two components and will allow specific interaction with the third component (drug or fluorescent tag), which will certainly be in demand in pharmaceuticals and biomedical diagnostics.
Collapse
Affiliation(s)
| | | | | | - Luidmila Yakimova
- A.M. Butlerov’ Chemistry Institute of Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia; (A.N.); (A.K.); (A.B.)
| | - Ivan Stoikov
- A.M. Butlerov’ Chemistry Institute of Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia; (A.N.); (A.K.); (A.B.)
| |
Collapse
|
85
|
Brady KG, Liu B, Li X, Isaacs L. Self Assembled Cages with Mechanically Interlocked Cucurbiturils. Supramol Chem 2021; 33:8-32. [PMID: 34366642 PMCID: PMC8340875 DOI: 10.1080/10610278.2021.1908546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/22/2021] [Indexed: 10/21/2022]
Abstract
We report preparation of (bis)aniline ligand 4 which contains a central viologen binding domain and its subcomponent self-assembly with aldehyde 5 and Fe(OTf)2 in CH3CN to yield tetrahedral assembly 6. Complexation of ligand 4 with CB[7] in the form of CB[7]•4•2PF6 allows the preparation of assembly 7 which contains an average of 1.95 (range 1-3) mechanically interlocked CB[7] units. Assemblies 6 and 7 are hydrolytically unstable in water due to their imine linkages. Redesign of our system with water stable 2,2'-bipyridine end groups was realized in the form of ligands 11 and 16 which also contain a central viologen binding domain. Self-assembly of 11 with Fe(NTf2)2 gave tetrahedral MOP 12 as evidenced by 1H NMR, DOSY, and mass spectrometric analysis. In contrast, isomeric ligand 16 underwent self-assembly with Fe(OTf)2 to give cubic assembly 17. Precomplexation of ligands 11 and 16 with CB[7] gave the acetonitrile soluble CB[7]•11•2PF6 and CB[7]•16•2PF6 complexes. Self-assembly of CB[7]•11•2PF6 with Fe(OTf)2 gave tetrahedron 13 which contains on average 1.8 mechanically interlocked CB[7] units as determined by 1H NMR, DOSY, and ESI-MS analysis. Self-assembly of CB[7]•16•2PF6 with Fe(OTf)2 gave cube 13 which contains 6.59 mechanically interlocked CB[7] units as determined by 1H NMR and DOSY measurements.
Collapse
Affiliation(s)
- Kimberly G. Brady
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Bingqing Liu
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Xiaopeng Li
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Lyle Isaacs
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
86
|
Shang J, Gong H, Zhang Q, Cui Z, Li S, Lv P, Pan T, Ge Y, Qi Z. The dynamic covalent reaction based on diselenide-containing crown ether irradiated by visible light. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.11.043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
87
|
Chen J, Meng Q, Zhang Y, Dong M, Zhao L, Zhang Y, Chen L, Chai Y, Meng Z, Wang C, Jia X, Li C. Complexation of an Antimicrobial Peptide by Large-Sized Macrocycles for Decreasing Hemolysis and Improving Stability. Angew Chem Int Ed Engl 2021; 60:11288-11293. [PMID: 33709627 DOI: 10.1002/anie.202102706] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Indexed: 01/06/2025]
Abstract
Traditional macrocyclic hosts have finite cavity sizes, generally 5-10 Å, which are commonly adaptive to recognize small guests rather than biological macromolecules. Here two water-soluble large-sized quaterphen[n]arenes (WQPns, n=3, 4) were designed and synthesized. These two hosts present significantly distinct recognition abilities. Specifically, they could strongly complex an antimicrobial peptide, pexiganan (PXG) with the association constants (Ka ) of (4.20±0.23)×104 M-1 for PXG/WQP3 and (2.46±0.44)×105 M-1 for PXG/WQP4. Complexation of PXG by WQP3 and WQP4 served to decrease the hemolysis of PXG in rabbit red blood cells in a statistically significant way. Furthermore, host-guest complexation was shown to substantially enhance metabolic stability of PXG in presence of proteinase K, rat plasma and liver or kidney homogenates.
Collapse
Affiliation(s)
- Junyi Chen
- College of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, P. R. China
| | - Qingbin Meng
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, P. R. China
| | - Yadan Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, P. R. China
| | - Ming Dong
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin, 300387, China
| | - Liang Zhao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, P. R. China
| | - Yahan Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, P. R. China
| | - Longming Chen
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, P. R. China
| | - Yao Chai
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, P. R. China
| | - Zhao Meng
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, P. R. China
| | - Chenhong Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, P. R. China
| | - Xueshun Jia
- College of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Chunju Li
- College of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin, 300387, China
| |
Collapse
|
88
|
Affiliation(s)
- Roymon Joseph
- Department of Chemistry Sacred Heart College (Autonomous), Thevara Kochi Kerala India – 682013
- Department of Chemistry University of Calicut Malappuram Kerala India – 673635
| |
Collapse
|
89
|
Chen J, Meng Q, Zhang Y, Dong M, Zhao L, Zhang Y, Chen L, Chai Y, Meng Z, Wang C, Jia X, Li C. Complexation of an Antimicrobial Peptide by Large‐Sized Macrocycles for Decreasing Hemolysis and Improving Stability. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102706] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Junyi Chen
- College of Environmental and Chemical Engineering Shanghai University Shanghai 200444 P. R. China
- State Key Laboratory of Toxicology and Medical Countermeasures Beijing Institute of Pharmacology and Toxicology Beijing 100850 P. R. China
| | - Qingbin Meng
- State Key Laboratory of Toxicology and Medical Countermeasures Beijing Institute of Pharmacology and Toxicology Beijing 100850 P. R. China
| | - Yadan Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures Beijing Institute of Pharmacology and Toxicology Beijing 100850 P. R. China
| | - Ming Dong
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry Ministry of Education Tianjin Key Laboratory of Structure and Performance for Functional Molecules College of Chemistry Tianjin Normal University Tianjin 300387 China
| | - Liang Zhao
- State Key Laboratory of Toxicology and Medical Countermeasures Beijing Institute of Pharmacology and Toxicology Beijing 100850 P. R. China
| | - Yahan Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures Beijing Institute of Pharmacology and Toxicology Beijing 100850 P. R. China
| | - Longming Chen
- State Key Laboratory of Toxicology and Medical Countermeasures Beijing Institute of Pharmacology and Toxicology Beijing 100850 P. R. China
| | - Yao Chai
- State Key Laboratory of Toxicology and Medical Countermeasures Beijing Institute of Pharmacology and Toxicology Beijing 100850 P. R. China
| | - Zhao Meng
- State Key Laboratory of Toxicology and Medical Countermeasures Beijing Institute of Pharmacology and Toxicology Beijing 100850 P. R. China
| | - Chenhong Wang
- State Key Laboratory of Toxicology and Medical Countermeasures Beijing Institute of Pharmacology and Toxicology Beijing 100850 P. R. China
| | - Xueshun Jia
- College of Environmental and Chemical Engineering Shanghai University Shanghai 200444 P. R. China
| | - Chunju Li
- College of Environmental and Chemical Engineering Shanghai University Shanghai 200444 P. R. China
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry Ministry of Education Tianjin Key Laboratory of Structure and Performance for Functional Molecules College of Chemistry Tianjin Normal University Tianjin 300387 China
| |
Collapse
|
90
|
Shurpik DN, Makhmutova LI, Usachev KS, Islamov DR, Mostovaya OA, Nazarova AA, Kizhnyaev VN, Stoikov II. Towards Universal Stimuli-Responsive Drug Delivery Systems: Pillar[5]arenes Synthesis and Self-Assembly into Nanocontainers with Tetrazole Polymers. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:947. [PMID: 33917874 PMCID: PMC8068209 DOI: 10.3390/nano11040947] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 03/27/2021] [Accepted: 04/05/2021] [Indexed: 11/21/2022]
Abstract
In this work, we have proposed a novel universal stimulus-sensitive nanosized polymer system based on decasubstituted macrocyclic structures-pillar[5]arenes and tetrazole-containing polymers. Decasubstituted pillar[5]arenes containing a large, good leaving tosylate, and phthalimide groups were first synthesized and characterized. Pillar[5]arenes containing primary and tertiary amino groups, capable of interacting with tetrazole-containing polymers, were obtained with high yield by removing the tosylate and phthalimide protection. According to the fluorescence spectroscopy data, a dramatic fluorescence enhancement in the pillar[5]arene/fluorescein/polymer system was observed with decreasing pH from neutral (pH = 7) to acidic (pH = 5). This indicates the destruction of associates and the release of the dye at a pH close to 5. The presented results open a broad range of opportunities for the development of new universal stimulus-sensitive drug delivery systems containing macrocycles and nontoxic tetrazole-based polymers.
Collapse
Affiliation(s)
- Dmitriy N. Shurpik
- A. M. Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya, 18, 420008 Kazan, Russia; (D.N.S.); (L.I.M.); (O.A.M.); (A.A.N.)
| | - Lyaysan I. Makhmutova
- A. M. Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya, 18, 420008 Kazan, Russia; (D.N.S.); (L.I.M.); (O.A.M.); (A.A.N.)
| | - Konstantin S. Usachev
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kremlevskaya, 18, 420008 Kazan, Russia;
| | - Daut R. Islamov
- FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Institute of Organic and Physical Chemistry, Arbuzov St., 8, 420088 Kazan, Russia;
| | - Olga A. Mostovaya
- A. M. Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya, 18, 420008 Kazan, Russia; (D.N.S.); (L.I.M.); (O.A.M.); (A.A.N.)
| | - Anastasia A. Nazarova
- A. M. Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya, 18, 420008 Kazan, Russia; (D.N.S.); (L.I.M.); (O.A.M.); (A.A.N.)
| | - Valeriy N. Kizhnyaev
- Department of Theoretical and Applied Organic Chemistry and Polymerization Processes, Irkutsk State University, K. Marksa, 1, 664003 Irkutsk, Russia;
| | - Ivan I. Stoikov
- A. M. Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya, 18, 420008 Kazan, Russia; (D.N.S.); (L.I.M.); (O.A.M.); (A.A.N.)
| |
Collapse
|
91
|
|
92
|
|
93
|
Cao S, Zhou L, Liu C, Zhang H, Zhao Y, Zhao Y. Pillararene-based self-assemblies for electrochemical biosensors. Biosens Bioelectron 2021; 181:113164. [PMID: 33744670 DOI: 10.1016/j.bios.2021.113164] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/06/2021] [Accepted: 03/09/2021] [Indexed: 11/30/2022]
Abstract
The ingenious design and synthesis of novel macrocycles bring out renewed vigor of supramolecular chemistry in the past decade. As an intriguing class of macrocycles, pillararene and pillararene-based functional materials that are constructed through the noncovalent bond self-assembly approach have been undergoing a rapid growth, benefiting from their unique structures and physiochemical properties. This review elaborates recent significant advances of electrochemical studies based on pillararene systems. Fundamental electrochemical behavior of pillar[n]arene[m]quinone and pillararene-based self-assemblies as well as their applications in electrochemical biosensors are highlighted. In addition, the advantages and functions of pillararene self-assembly systems resulted from the unique molecular architectures are analyzed. Finally, current challenges and future development tendency in this burgeoning field are discussed from the viewpoint of both fundamental research and applications. Overall, this review not only manifests the main development vein of pillararene-based electrochemical systems, but also conquers a solid foundation for their further bioelectrochemical applications.
Collapse
Affiliation(s)
- Shuai Cao
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Le Zhou
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Chang Liu
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Huacheng Zhang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China.
| | - Yuxin Zhao
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China.
| | - Yanli Zhao
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore.
| |
Collapse
|
94
|
Li F, Zang M, Liu S, Li X, Jiang X, Tian R, Luo Q, Hou C, Xu J, Liu J. Difunctionalized pillar[5]arene-based polymer nanosheets for photodynamic therapy of Staphylococcus aureus infection. J Mater Chem B 2021; 9:2066-2072. [PMID: 33591296 DOI: 10.1039/d0tb02786c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bacterial infections pose severe threats to global public health security. Developing antibacterial agents with both high efficiency and safety to handle this problem has become a top priority. Here, highly stable and effective polymer nanosheets have been constructed by the covalent co-assembly of a pillar[5]arene derivative and metalloporphyrin for photodynamic antibacterial therapy (PDAT). The monolayer nanosheets are strongly positively charged and thus capable of binding with Staphylococcus aureus (SA) through electrostatic interactions. Additionally, the nanosheets can be activated to generate reactive oxygen species (ROS) under white-light irradiation, and exhibit satisfactory antibacterial performance towards SA. More importantly, cell viability assays demonstrate that the nanosheets show little to no cytotoxicity impact on mammalian cells even when the concentrations are much higher than those employed in the antibacterial studies. The above results suggest that the polymer nanosheets could be an effective antibacterial agent to overcome bacterial infections and hold a broad range of potential applications in real life.
Collapse
Affiliation(s)
- Fei Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China.
| | - Mingsong Zang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China.
| | - Shengda Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China. and College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, China
| | - Xiumei Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China.
| | - Xiaojia Jiang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China.
| | - Ruizhen Tian
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China.
| | - Quan Luo
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China.
| | - Chunxi Hou
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China.
| | - Jiayun Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China. and College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, China
| | - Junqiu Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China. and College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
95
|
Wang M, Li Q, Li E, Liu J, Zhou J, Huang F. Vapochromic Behaviors of A Solid‐State Supramolecular Polymer Based on Exo‐Wall Complexation of Perethylated Pillar[5]arene with 1,2,4,5‐Tetracyanobenzene. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202013701] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Mengbin Wang
- State Key Laboratory of Chemical Engineering Key Laboratory of Excited-State Materials of Zhejiang Province Department of Chemistry Zhejiang University Hangzhou 310027 P. R. China
| | - Qing Li
- State Key Laboratory of Chemical Engineering Key Laboratory of Excited-State Materials of Zhejiang Province Department of Chemistry Zhejiang University Hangzhou 310027 P. R. China
| | - Errui Li
- State Key Laboratory of Chemical Engineering Key Laboratory of Excited-State Materials of Zhejiang Province Department of Chemistry Zhejiang University Hangzhou 310027 P. R. China
| | - Jiyong Liu
- State Key Laboratory of Chemical Engineering Key Laboratory of Excited-State Materials of Zhejiang Province Department of Chemistry Zhejiang University Hangzhou 310027 P. R. China
| | - Jiong Zhou
- State Key Laboratory of Chemical Engineering Key Laboratory of Excited-State Materials of Zhejiang Province Department of Chemistry Zhejiang University Hangzhou 310027 P. R. China
| | - Feihe Huang
- State Key Laboratory of Chemical Engineering Key Laboratory of Excited-State Materials of Zhejiang Province Department of Chemistry Zhejiang University Hangzhou 310027 P. R. China
- Green Catalysis Center and College of Chemistry Zhengzhou University Zhengzhou 450001 P. R. China
| |
Collapse
|
96
|
Wang M, Li Q, Li E, Liu J, Zhou J, Huang F. Vapochromic Behaviors of A Solid‐State Supramolecular Polymer Based on Exo‐Wall Complexation of Perethylated Pillar[5]arene with 1,2,4,5‐Tetracyanobenzene. Angew Chem Int Ed Engl 2021; 60:8115-8120. [DOI: 10.1002/anie.202013701] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 01/12/2021] [Indexed: 11/06/2022]
Affiliation(s)
- Mengbin Wang
- State Key Laboratory of Chemical Engineering Key Laboratory of Excited-State Materials of Zhejiang Province Department of Chemistry Zhejiang University Hangzhou 310027 P. R. China
| | - Qing Li
- State Key Laboratory of Chemical Engineering Key Laboratory of Excited-State Materials of Zhejiang Province Department of Chemistry Zhejiang University Hangzhou 310027 P. R. China
| | - Errui Li
- State Key Laboratory of Chemical Engineering Key Laboratory of Excited-State Materials of Zhejiang Province Department of Chemistry Zhejiang University Hangzhou 310027 P. R. China
| | - Jiyong Liu
- State Key Laboratory of Chemical Engineering Key Laboratory of Excited-State Materials of Zhejiang Province Department of Chemistry Zhejiang University Hangzhou 310027 P. R. China
| | - Jiong Zhou
- State Key Laboratory of Chemical Engineering Key Laboratory of Excited-State Materials of Zhejiang Province Department of Chemistry Zhejiang University Hangzhou 310027 P. R. China
| | - Feihe Huang
- State Key Laboratory of Chemical Engineering Key Laboratory of Excited-State Materials of Zhejiang Province Department of Chemistry Zhejiang University Hangzhou 310027 P. R. China
- Green Catalysis Center and College of Chemistry Zhengzhou University Zhengzhou 450001 P. R. China
| |
Collapse
|
97
|
Chen J, Zhang Y, Chai Y, Meng Z, Zhang Y, Chen L, Quan D, Wang Y, Meng Q, Li C. Synergistic enhancement of the emergency treatment effect of organophosphate poisoning by a supramolecular strategy. Chem Sci 2021; 12:5202-5208. [PMID: 34163757 PMCID: PMC8179580 DOI: 10.1039/d1sc00426c] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 02/24/2021] [Indexed: 01/19/2023] Open
Abstract
Poisoning by organophosphorus agents (OPs) is a serious public health issue across the world. These compounds irreversibly inhibit acetylcholinesterase (AChE), resulting in the accumulation of acetylcholine (ACh) and overstimulation of ACh receptors. A supramolecular detoxification system (SDS) has been designed with a view to deliver pyridine-2-aldoxime methochloride (PAM) with a synergistic inhibition effect on the ACh-induced hyperstimulation through host-guest encapsulation. NMR and fluorescence titration served to confirm the complexation between carboxylatopillar[6]arene (CP6A) and PAM as well as ACh with robust affinities. Patch-clamp studies proved that CP6A could exert an inhibition effect on the ACh-induced hyperstimulation of ACh receptors. Support for the feasibility of this strategy came from fluorescence imaging results. In vivo studies revealed that complexation by CP6A serves to increase the AChE reactivation efficiency of PAM. The formation of the PAM/CP6A complex contributed to enhance in a statistically significant way the ability of PAM not only to relieve symptoms of seizures but also to improve the survival ratio in paraoxon-poisoned model rats. These favorable findings are attributed to synergistic effects that PAM reactivates AChE to hydrolyze ACh and excess ACh is encapsulated in the cavity of CP6A to relieve cholinergic crisis symptoms.
Collapse
Affiliation(s)
- Junyi Chen
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology Beijing 100850 P. R. China
- College of Environmental and Chemical Engineering, Shanghai University Shanghai 200444 P. R. China
| | - Yadan Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology Beijing 100850 P. R. China
| | - Yao Chai
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology Beijing 100850 P. R. China
| | - Zhao Meng
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology Beijing 100850 P. R. China
| | - Yahan Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology Beijing 100850 P. R. China
| | - Longming Chen
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology Beijing 100850 P. R. China
| | - Dongqin Quan
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology Beijing 100850 P. R. China
| | - Yongan Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology Beijing 100850 P. R. China
| | - Qingbin Meng
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology Beijing 100850 P. R. China
| | - Chunju Li
- College of Environmental and Chemical Engineering, Shanghai University Shanghai 200444 P. R. China
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University Tianjin 300387 P. R. China
| |
Collapse
|
98
|
Zhang Z, Yue YX, Xu L, Wang Y, Geng WC, Li JJ, Kong XL, Zhao X, Zheng Y, Zhao Y, Shi L, Guo DS, Liu Y. Macrocyclic-Amphiphile-Based Self-Assembled Nanoparticles for Ratiometric Delivery of Therapeutic Combinations to Tumors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007719. [PMID: 33598992 DOI: 10.1002/adma.202007719] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/11/2021] [Indexed: 06/12/2023]
Abstract
Combination chemotherapy refers to the use of multiple drugs to treat cancer. In this therapy, the optimal ratio of the drugs is essential to achieve drug synergism and the desired therapeutic effects. However, most delivery strategies are unable to precisely control the ratio of the drugs during the drug loading and delivery processes, resulting in inefficient synergy and unpredictable efficacy. Herein, a macrocyclic-amphiphile-based self-assembled nanoparticle (MASN) that achieves precise loading and ratiometric delivery of therapeutic combinations is presented. By integrating multiple macrocyclic cavities within a single nanoparticle, the MASN can load multiple drug molecules via the host-guest interaction, and the ratio of the drugs loaded can be predicted with their initial concentrations and characteristic binding affinity. Moreover, MASNs are readily degraded under a hypoxic microenvironment, allowing spontaneous release of the drugs upon reaching tumor tissues. With precise drug loading and controlled release mechanisms, MASNs achieve ratiometric delivery of multiple commercial drugs to tumors, thereby achieving optimal anti-tumor effects. Since the optimal drug ratio of a therapeutic combination can be quickly determined in vitro, MASNs can translate this optimal ratio to the therapeutic benefits in vivo, providing a potential platform for the rapid development of effective combination cancer therapies involving multiple drugs.
Collapse
Affiliation(s)
- Zhanzhan Zhang
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Yu-Xin Yue
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| | - Lina Xu
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Ying Wang
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Wen-Chao Geng
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| | - Juan-Juan Li
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| | - Xiang-Lei Kong
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| | - Xinzhi Zhao
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Yadan Zheng
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Yu Zhao
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Linqi Shi
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Dong-Sheng Guo
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| | - Yang Liu
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| |
Collapse
|
99
|
Zhu W, Li E, Huang F. Highly Selective Separation of Isopropylbenzene and α-Methylstyrene by Nonporous Adaptive Crystals of Perbromoethylated Pillararene via Vapor- and Liquid-Phase Adsorptions. ACS APPLIED MATERIALS & INTERFACES 2021; 13:7370-7376. [PMID: 33544580 DOI: 10.1021/acsami.0c23059] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Isopropylbenzene (IPB) and α-methylstyrene (AMS), two members of C9 aromatics, are important in both industrial production and laboratory research, but the separation of IPB/AMS mixtures is still a big challenge. Here, we provide a new strategy to separate IPB and AMS using nonporous adaptive crystals of four pillararenes, perethylated pillar[5]arene, perethylated pillar[6]arene, perbromoethylated pillar[5]arene, and perbromoethylated pillar[6]arene (BrP6). Among them, BrP6 selectively adsorbs IPB from an equal volume mixture of IPB and AMS with >95% purity for solid-vapor phase adsorption and >94% purity for solid-liquid phase adsorption, while the selectivities for the other three pillararenes are unsatisfactory. Single-crystal structural analyses combined with powder X-ray diffraction and differential scanning calorimetry experiments demonstrate that the selectivity arises from the different stabilities of guest-loaded BrP6 crystals. Moreover, the reversible transitions between guest-free and IPB-loaded structures indicate the preeminent recycling performance of BrP6 crystals.
Collapse
Affiliation(s)
- Weijie Zhu
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Errui Li
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Feihe Huang
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| |
Collapse
|
100
|
Yao J, Mizuno H, Xiao C, Wu W, Inoue Y, Yang C, Fukuhara G. Pressure-driven, solvation-directed planar chirality switching of cyclophano-pillar[5]arenes (molecular universal joints). Chem Sci 2021; 12:4361-4366. [PMID: 34168749 PMCID: PMC8179620 DOI: 10.1039/d0sc06988d] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/01/2021] [Indexed: 12/27/2022] Open
Abstract
Planar chiral cyclophanopillar[5]arenes with a fused oligo(oxyethylene) or polymethylene subring (MUJs), existing as an equilibrium mixture of subring-included (in) and -excluded (out) conformers, respond to hydrostatic pressure to exhibit dynamic chiroptical property changes, leading to an unprecedented pressure-driven chirality inversion and the largest ever-reported leap of anisotropy (g) factor for the MUJ with a dodecamethylene subring. The pressure susceptivity of MUJs, assessed by the change in g per unit pressure, is a critical function of the size and nature of the subring incorporated and the solvent employed. Mechanistic elucidations reveal that the in-out equilibrium, as the origin of the MUJ's chiroptical property changes, is on a delicate balance of the competitive inclusion of subrings versus solvent molecules as well as the solvation of the excluded subring. The present results further encourage our use of pressure as a unique tool for dynamically manipulating various supramolecular devices/machines.
Collapse
Affiliation(s)
- Jiabin Yao
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, State Key Laboratory of Biotherapy, Healthy Food Evaluation Research Center, Sichuan University Chengdu 610064 China
| | - Hiroaki Mizuno
- Department of Chemistry, Tokyo Institute of Technology 2-12-1 Ookayama, Meguro-ku Tokyo 152-8551 Japan
| | - Chao Xiao
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, State Key Laboratory of Biotherapy, Healthy Food Evaluation Research Center, Sichuan University Chengdu 610064 China
| | - Wanhua Wu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, State Key Laboratory of Biotherapy, Healthy Food Evaluation Research Center, Sichuan University Chengdu 610064 China
| | - Yoshihisa Inoue
- Department of Applied Chemistry, Osaka University Suita 565-0871 Japan
| | - Cheng Yang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, State Key Laboratory of Biotherapy, Healthy Food Evaluation Research Center, Sichuan University Chengdu 610064 China
| | - Gaku Fukuhara
- Department of Chemistry, Tokyo Institute of Technology 2-12-1 Ookayama, Meguro-ku Tokyo 152-8551 Japan
- JST, PRESTO 4-1-8 Honcho Kawaguchi Saitama 332-0012 Japan
| |
Collapse
|