51
|
Li M, Wu J, Shen G. Bifunctional PDDA-stabilized β-Fe 2O 3 nanoclusters for improved photoelectrocatalytic and magnetic field enhanced photocatalytic applications. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00099g] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Bifunctional β-Fe2O3@PDDA nanoclusters applied for the efficient photoelectrocatalytic oxygen evolution reaction and magnetic field enhanced photocatalytic degradation of pollutants.
Collapse
Affiliation(s)
- Maoqi Li
- School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang 111003, P. R. China
- Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Jian Wu
- Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Guoliang Shen
- School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang 111003, P. R. China
| |
Collapse
|
52
|
Ding B, Li H, Wang R, Dong B, Cao L. Vertically Aligned Nanorods Fe 2TiO 5 and Coupling of NiMoO 4/CoMoO 4 as A Hole-Transfer Cocatalyst for Enhancing Photoelectrochemical Water Oxidation Performance. Catal Sci Technol 2022. [DOI: 10.1039/d2cy01253g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fe2TiO5, a promising photoanode material for photoelectrochemical (PEC) splitting water, was limited by its poor conductivity and short carrier diffusion length. Herein, a novel Fe2TiO5 nanorods with the new cocatalyst...
Collapse
|
53
|
Yan S, Zhong M, Zhu W, Li W, Chen X, Li M, Wang C, Lu X. Controllable fabrication of a nickel–iridium alloy network by galvanic replacement engineering for high-efficiency electrocatalytic water splitting. Inorg Chem Front 2022. [DOI: 10.1039/d2qi01494g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
A Ni–Ir alloy network electrocatalyst, which is prepared via a galvanic replacement engineering route, presents remarkable electrocatalytic properties for both the HER and the OER due to its porous architecture and synergistic effect between Ni and Ir.
Collapse
Affiliation(s)
- Su Yan
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, Changchun 130012, P.R. China
| | - Mengxiao Zhong
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, Changchun 130012, P.R. China
| | - Wendong Zhu
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, Changchun 130012, P.R. China
| | - Weimo Li
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, Changchun 130012, P.R. China
| | - Xiaojie Chen
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, Changchun 130012, P.R. China
| | - Meixuan Li
- Key Laboratory of Automobile Materials of Ministry of Education & School of Materials Science and Engineering, Nanling Campus, Jilin University, No. 5988 Renmin Street, Changchun 130025, P.R. China
| | - Ce Wang
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, Changchun 130012, P.R. China
| | - Xiaofeng Lu
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, Changchun 130012, P.R. China
| |
Collapse
|
54
|
Zhou C, Zhang L, Tong X, Liu M. Temperature Effect on Photoelectrochemical Water Splitting: A Model Study Based on BiVO 4 Photoanodes. ACS APPLIED MATERIALS & INTERFACES 2021; 13:61227-61236. [PMID: 34914379 DOI: 10.1021/acsami.1c19623] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Photoelectrochemical (PEC) water splitting is typically studied at room temperature. In this work, the temperature effect on PEC water splitting is studied using crystalline BiVO4 thin film photoanode as a model system. Systematic temperature-dependent electrochemical study demonstrates that the PEC activity is boosted at elevated electrolyte temperatures and indicates that thermal energy plays a main role in improving charge carrier transport in the bulk of BiVO4. Irreversible surface reconstruction is observed after PEC reactions at elevated temperature in the presence of hole scavengers, with regularly spaced stripes emerging on BiVO4 grains. The surface-reconstructed photoanode exhibits up to 40% improvement in photocurrent densities and ∼ 0.25 V shift of photocurrent onset to favorable direction. Detailed investigation shows the formation of an amorphous layer without stoichiometric change at the reconstructed surface. This work provides insights of the temperature effect on the photoelectrode in solar water splitting and reveals the non-negligible effect of hole scavengers in photoelectrochemical measurement.
Collapse
Affiliation(s)
- Chenyu Zhou
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Lihua Zhang
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Xiao Tong
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Mingzhao Liu
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| |
Collapse
|
55
|
Sun H, Hua W, Liang S, Li Y, Wang JG. Boosting photoelectrochemical activity of bismuth vanadate by implanting oxygen-vacancy-rich cobalt (oxy)hydroxide. J Colloid Interface Sci 2021; 611:278-286. [PMID: 34953460 DOI: 10.1016/j.jcis.2021.12.086] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/06/2021] [Accepted: 12/14/2021] [Indexed: 01/12/2023]
Abstract
Surface charge recombination is regarded as a detrimental factor that severely downgrades the photoelectrochemical (PEC) performance of bismuth vanadate (BiVO4). In this work, we demonstrate defect-rich cobalt (oxy)hydroxides (Co(O)OH) as an excellent cocatalyst nanolayer sheathed on BiVO4 to substantially improve the PEC water oxidation activity. The self-transformation of metal-organic framework produces an ultrathin Co(O)OH layer rich in oxygen vacancies, which could serve as a powerful hole extraction engine to promote the charge transfer/separation efficiency as well as an excellent oxygen evolution reaction catalyst to accelerate the surface water oxidation kinetics. As a result, the BiVO4/Co(O)OH hybrid photoanode achieves remarkably inhibited surface charge recombination and presents a prominent photocurrent density of 4.2 mA cm-2 at 1.23 V vs. RHE, which is around 2.6-fold higher than that of the pristine BiVO4. Moreover, the Co(O)OH cocatalyst nanolayer significantly reduces the onset potential of BiVO4 photoanodes by 200 mV. This work provides a versatile strategy for rationally preparing oxygen-vacancy-rich cocatalysts on various photoanodes toward high-efficient PEC water oxidation.
Collapse
Affiliation(s)
- Huanhuan Sun
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Lab of Graphene (NPU), No. 127, Youyi West Road, Xi'an 710072, China
| | - Wei Hua
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Lab of Graphene (NPU), No. 127, Youyi West Road, Xi'an 710072, China
| | - Shiyu Liang
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Lab of Graphene (NPU), No. 127, Youyi West Road, Xi'an 710072, China
| | - Yueying Li
- New Energy (Photovoltaic) Industry Research Center, Qinghai University, No. 251, Daning Road, Xining 810016, China
| | - Jian-Gan Wang
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Lab of Graphene (NPU), No. 127, Youyi West Road, Xi'an 710072, China.
| |
Collapse
|
56
|
Zhang X, Zhai P, Zhang Y, Wu Y, Wang C, Ran L, Gao J, Li Z, Zhang B, Fan Z, Sun L, Hou J. Engineering Single-Atomic Ni-N 4-O Sites on Semiconductor Photoanodes for High-Performance Photoelectrochemical Water Splitting. J Am Chem Soc 2021; 143:20657-20669. [PMID: 34783534 DOI: 10.1021/jacs.1c07391] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Direct photoelectrochemical (PEC) water splitting is a promising solution for solar energy conversion; however, there is a pressing bottleneck to address the intrinsic charge transport for the enhancement of PEC performance. Herein, a versatile coupling strategy was developed to engineer atomically dispersed Ni-N4 sites coordinated with an axial direction oxygen atom (Ni-N4-O) incorporated between oxygen evolution cocatalyst (OEC) and semiconductor photoanode, boosting the photogenerated electron-hole separation and thus improving PEC activity. This state-of-the-art OEC/Ni-N4-O/BiVO4 photoanode exhibits a record high photocurrent density of 6.0 mA cm-2 at 1.23 V versus reversible hydrogen electrode (vs RHE), over approximately 3.97 times larger than that of BiVO4, achieving outstanding long-term photostability. From X-ray absorption fine structure analysis and density functional theory calculations, the enhanced PEC performance is attributed to the construction of single-atomic Ni-N4-O moiety in OEC/BiVO4, facilitating the holes transfer, decreasing the free energy barriers, and accelerating the reaction kinetics. This work enables us to develop an effective pathway to design and fabricate efficient and stable photoanodes for feasible PEC water splitting application.
Collapse
Affiliation(s)
- Xiaomeng Zhang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Panlong Zhai
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Yanxue Zhang
- Laboratory of Materials Modification by Laser, Ion and Electron Beams, Dalian University of Technology, Ministry of Education, Dalian 116024, P. R. China
| | - Yunzhen Wu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Chen Wang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Lei Ran
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Junfeng Gao
- Laboratory of Materials Modification by Laser, Ion and Electron Beams, Dalian University of Technology, Ministry of Education, Dalian 116024, P. R. China
| | - Zhuwei Li
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Bo Zhang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Zhaozhong Fan
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Licheng Sun
- Center of Artificial Photosynthesis for Solar Fuels, School of Science, Westlake University, Hangzhou 310024, P. R. China.,Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 10044 Stockholm, Sweden
| | - Jungang Hou
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| |
Collapse
|
57
|
Duan L, Wang C, Zhang W, Ma B, Deng Y, Li W, Zhao D. Interfacial Assembly and Applications of Functional Mesoporous Materials. Chem Rev 2021; 121:14349-14429. [PMID: 34609850 DOI: 10.1021/acs.chemrev.1c00236] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Functional mesoporous materials have gained tremendous attention due to their distinctive properties and potential applications. In recent decades, the self-assembly of micelles and framework precursors into mesostructures on the liquid-solid, liquid-liquid, and gas-liquid interface has been explored in the construction of functional mesoporous materials with diverse compositions, morphologies, mesostructures, and pore sizes. Compared with the one-phase solution synthetic approach, the introduction of a two-phase interface in the synthetic system changes self-assembly behaviors between micelles and framework species, leading to the possibility for the on-demand fabrication of unique mesoporous architectures. In addition, controlling the interfacial tension is critical to manipulate the self-assembly process for precise synthesis. In particular, recent breakthroughs based on the concept of the "monomicelles" assembly mechanism are very promising and interesting for the synthesis of functional mesoporous materials with the precise control. In this review, we highlight the synthetic strategies, principles, and interface engineering at the macroscale, microscale, and nanoscale for oriented interfacial assembly of functional mesoporous materials over the past 10 years. The potential applications in various fields, including adsorption, separation, sensors, catalysis, energy storage, solar cells, and biomedicine, are discussed. Finally, we also propose the remaining challenges, possible directions, and opportunities in this field for the future outlook.
Collapse
Affiliation(s)
- Linlin Duan
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, P.R. China
| | - Changyao Wang
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, P.R. China
| | - Wei Zhang
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, P.R. China
| | - Bing Ma
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, P.R. China
| | - Yonghui Deng
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, P.R. China
| | - Wei Li
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, P.R. China
| | - Dongyuan Zhao
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, P.R. China
| |
Collapse
|
58
|
Wang S, Wang X, Liu B, Guo Z, Ostrikov KK, Wang L, Huang W. Vacancy defect engineering of BiVO 4 photoanodes for photoelectrochemical water splitting. NANOSCALE 2021; 13:17989-18009. [PMID: 34726221 DOI: 10.1039/d1nr05691c] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Photoelectrochemical (PEC) water splitting has been regarded as a promising technology for sustainable hydrogen production. The development of efficient photoelectrode materials is the key to improve the solar-to-hydrogen (STH) conversion efficiency towards practical application. Bismuth vanadate (BiVO4) is one of the most promising photoanode materials with the advantages of visible light absorption, good chemical stability, nontoxic feature, and low cost. However, the PEC performance of BiVO4 photoanodes is limited by the relatively short hole diffusion length and poor electron transport properties. The recent rapid development of vacancy defect engineering has significantly improved the PEC performance of BiVO4. In this review article, the fundamental properties of BiVO4 are presented, followed by an overview of the methods for creating different kinds of vacancy defects in BiVO4 photoanodes. Then, the roles of vacancy defects in tuning the electronic structure, promoting charge separation, and increasing surface photoreaction kinetics of BiVO4 photoanodes are critically discussed. Finally, the major challenges and some encouraging perspectives for future research on vacancy defect engineering of BiVO4 photoanodes are presented, providing guidelines for the design of efficient BiVO4 photoanodes for solar fuel production.
Collapse
Affiliation(s)
- Songcan Wang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China.
| | - Xin Wang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China.
| | - Boyan Liu
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China.
| | - Zhaochen Guo
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China.
| | - Kostya Ken Ostrikov
- School of Chemistry and Physics and Centre for Materials Science Queensland University of Technology Brisbane, QLD 4000, Australia
| | - Lianzhou Wang
- Nanomaterials Centre, Australian Institute for Bioengineering and Nanotechnology and School of Chemical Engineering, The University of Queensland, Brisbane, Queensland 4072, Australia.
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China.
| |
Collapse
|
59
|
Metastable-phase β-Fe2O3 photoanodes for solar water splitting with durability exceeding 100 h. CHINESE JOURNAL OF CATALYSIS 2021. [DOI: 10.1016/s1872-2067(21)63822-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
60
|
Yang ZZ, Zhang C, Zeng GM, Tan XF, Huang DL, Zhou JW, Fang QZ, Yang KH, Wang H, Wei J, Nie K. State-of-the-art progress in the rational design of layered double hydroxide based photocatalysts for photocatalytic and photoelectrochemical H2/O2 production. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214103] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
61
|
Cai M, Li X, Zhao H, Liu C, You Y, Lin F, Tong X, Wang ZM. Decoration of BiVO 4 Photoanodes with Near-Infrared Quantum Dots for Boosted Photoelectrochemical Water Oxidation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:50046-50056. [PMID: 34637273 DOI: 10.1021/acsami.1c15973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Broadening light absorption and improving charge carrier separation are very critical to boost the water splitting efficiency in photoelectrochemical (PEC) systems. We herein reported a heterostructured photoanode consisting of BiVO4 and eco-friendly, near-infrared (NIR) CuInSeS@ZnS core-shell quantum dots (QDs) for PEC water oxidation. The decoration of core-shell QDs concurrently extends the absorption range of BiVO4 from the ultraviolet-visible to NIR region and promotes the effective separation and transfer of photo-excited electrons and holes. Without any sacrificial agents and co-catalysts, the as-fabricated NIR core-shell QDs/BiVO4 heterostructured photoanodes exhibit an approximately fourfold higher photocurrent density than that of the bare BiVO4, up to 3.17 mA cm-2 at 1.23 V versus the reversible hydrogen electrode. It is revealed that both a suitable band alignment and an intimate interfacial junction between QDs and BiVO4 are the main factors that result in enhanced charge separation and transfer efficiencies. We also highlight that the NIR CISeS QDs passivated with a ZnS shell can suppress the non-radiative recombination and enhance the stability of the QD photoanodes for optimized PEC performance. This work provides a facile and effective approach to boost the water oxidation efficiency of semiconductor photoanodes via utilizing NIR core-shell QDs as a light sensitizer and charge carrier separator.
Collapse
Affiliation(s)
- Mengke Cai
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, P. R. China
| | - Xin Li
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| | - Hongyang Zhao
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| | - Cheng Liu
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| | - Yimin You
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| | - Feng Lin
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| | - Xin Tong
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, P. R. China
| | - Zhiming M Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, P. R. China
- Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| |
Collapse
|
62
|
Wang W, Radmilovic A, Choi KS, Galli G. Integrating Computation and Experiment to Investigate Photoelectrodes for Solar Water Splitting at the Microscopic Scale. Acc Chem Res 2021; 54:3863-3872. [PMID: 34619961 PMCID: PMC8529704 DOI: 10.1021/acs.accounts.1c00418] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
ConspectusPhotoelectrochemical water-splitting is a promising and sustainable way to store the energy of the sun in chemical bonds and use it to produce hydrogen gas, a clean fuel. The key components in photoelectrochemical cells (PECs) are photoelectrodes, including a photocathode that reduces water to hydrogen gas and a photoanode that oxidizes water to oxygen gas. Materials used in photoelectrodes for PECs must effectively absorb sunlight, yield photogenerated carriers, and exhibit electronic properties that enable the efficient shuttling of carriers to the surface to participate in relevant water-splitting reactions. Discovering and understanding the key characteristics of optimal photoelectrode materials is paramount to the realization of PEC technologies.Oxide-based photoelectrodes can satisfy many of these materials requirements, including stability in aqueous environments, band edges with reasonable alignment with the redox potentials for water splitting, and ease of synthesis. However, oxide photoelectrodes generally suffer from poor charge transport properties and considerable bulk electron-hole separation, and they have relatively large band gaps. Numerous strategies have been proposed to improve these aspects and understand how these improvements are reflected in the photoelectrochemical performance. Unfortunately, the structural and compositional complexity of multinary oxides accompanied by the inherent complexity of photoelectrochemical processes makes it challenging to understand the individual effects of composition, structure, and defects in the bulk and on the surface on a material's photoelectrochemical properties. The integration of experiment and theory has great potential to increase our atomic-level understanding of structure-composition-property relationships in oxide photoelectrodes.In this Account, we describe how integrating experiment and theory is beneficial for achieving scientific insights at the microscopic scale. We highlight studies focused on understanding the role of (i) bulk composition via solid-state solutions, intercalation, and comparison with isoelectronic compounds, (ii) dopants for both the anion and cation and their interactions with oxygen vacancies, and (iii) surface/interface structure in the photocurrent generation and photoelectrochemical performance in oxide photoelectrodes. In each instance, we outline strategies and considerations for integrating experiment and theory and describe how this integration led to valuable insights and new directions in uncovering structure-composition-property relationships. Our aim is to demonstrate the unique value of combining experiment and theory in studying photoelectrodes and to encourage the continued effort to bring experiment and theory in closer step with each other.
Collapse
Affiliation(s)
- Wennie Wang
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Andjela Radmilovic
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Kyoung-Shin Choi
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Giulia Galli
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
- Department of Chemistry, University of Chicago, Chicago, Illinois 60615, United States
- Materials Science Division and Center for Molecular Engineering, Argonne National Laboratory, Lemont, Illinois 60439, United States
| |
Collapse
|
63
|
Facile Surfactant-Assisted Synthesis of BiVO4 Nanoparticulate Films for Solar Water Splitting. Catalysts 2021. [DOI: 10.3390/catal11101244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Bismuth vanadate (BiVO4), which has attractive applicability as a photoactive material, presents applications that range from catalysis to water treatment upon visible light irradiation. In this study, we develop a simple synthesis of < 200 nm monoclinic BiVO4 nanoparticles, which were further deposited on transparent conductive substrates by spin coating and calcination, obtaining nanostructured films. The obtained nanostructured BiVO4 photoanodes were tested for water oxidation, leading to promising photocurrents exhibiting competitive onset potentials (~0.3 V vs. RHE). These nanoparticulate BiVO4 photoanodes represent a novel class of highly potential materials for the design of efficient photoelectrochemical devices.
Collapse
|
64
|
Li K, Gong K, Liu J, Yang Y, Nabi I, Bacha AUR, Cheng H, Han J, Zhang L. New insights into the role of sulfite in BiOX photocatalytic pollutants elimination: In-operando generation of plasmonic Bi metal and oxygen vacancies. JOURNAL OF HAZARDOUS MATERIALS 2021; 418:126207. [PMID: 34102353 DOI: 10.1016/j.jhazmat.2021.126207] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/10/2021] [Accepted: 05/21/2021] [Indexed: 06/12/2023]
Abstract
Photocatalysis has been regarded as a sustainable strategy for wastewaters remediation, and sulfite addition could significantly accelerate the photocatalytic performances. However, the related mechanisms are still not well understood. Here, we for the first time found that plasmonic Bi and oxygen vacancies were in-operando generated on BiOX (X = Cl, Br, I) in the presence of sulfite under light irradiation. The oxidative degradation rate constants of 4-nitrophenol, bisphenol A, and phenol were improved by about 11.5, 4.7, and 12.2 times on BiOBr and 9.1, 1.6, and 3.1 times on BiOCl with addition of 5 mM sulfite, while the photocatalytic reduction rate of 4-nitrophenol to 4-aminophenol was promoted by approximate 31.7 times on BiOI. The results indicated that sulfite could improve the photooxidation ability of BiOBr and BiOCl and the photoreduction performance of BiOI, resulted from the improved light absorption and separation of photogenerated charge carriers. This work can provide exploratory platforms for understanding and maximizing the sulfite-assisted BiOX photocatalysis.
Collapse
Affiliation(s)
- Kejian Li
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, People's Republic of China
| | - Kedong Gong
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, People's Republic of China
| | - Juan Liu
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, People's Republic of China
| | - Yang Yang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, People's Republic of China
| | - Iqra Nabi
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, People's Republic of China
| | - Aziz-Ur-Rahim Bacha
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, People's Republic of China
| | - Hanyun Cheng
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, People's Republic of China
| | - Jin Han
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, People's Republic of China
| | - Liwu Zhang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, People's Republic of China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, People's Republic of China.
| |
Collapse
|
65
|
Tsao CW, Fang MJ, Hsu YJ. Modulation of interfacial charge dynamics of semiconductor heterostructures for advanced photocatalytic applications. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213876] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
66
|
Kalanur SS, Lee YJ, Seo H. Exploring the Synthesis, Band Edge Insights, and Photoelectrochemical Water Splitting Properties of Lead Vanadates. ACS APPLIED MATERIALS & INTERFACES 2021; 13:25906-25917. [PMID: 34043320 DOI: 10.1021/acsami.1c03109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Exploring the ideal and stable semiconductor material for the efficient photoelectrochemical (PEC) overall water splitting reaction has remained a major challenge. Herein, we develop a facile hydrothermal method for the fabrication of monoclinic Pb3[VO4]2 and orthorhombic PbV2O6 thin films for the efficient and stable PEC overall water splitting applications. Detailed characterization was performed to study the crystal structure and optical, electrical, and electrochemical properties. The band edge positions of Pb3[VO4]2 and PbV2O6 are determined using spectroscopic data, revealing the conduction band edge positioned near the water reduction potential [∼0 V vs reversible hydrogen electrode (RHE)] and the valence band edge positioned well above the water oxidation potential, indicating the possible utilization of photogenerated electrons and holes for efficient water reduction and oxidation, respectively. With the optimized PbV2O6 thin films, a maximum photocurrent of 0.35 mA cm-2 was obtained at 1.23 V versus RHE and the stable production of both O2 and H2 is observed with >90% Faradaic efficiency. Importantly, this work demonstrates the possibility of utilizing lead vanadate materials for PEC water splitting applications.
Collapse
Affiliation(s)
- Shankara S Kalanur
- Department of Materials Science and Engineering, Ajou University, Suwon 443-739, Republic of Korea
| | - Young Jae Lee
- Department of Energy Systems Research, Ajou University, Suwon 443-739, Republic of Korea
| | - Hyungtak Seo
- Department of Materials Science and Engineering, Ajou University, Suwon 443-739, Republic of Korea
- Department of Energy Systems Research, Ajou University, Suwon 443-739, Republic of Korea
| |
Collapse
|
67
|
Ran L, Qiu S, Zhai P, Li Z, Gao J, Zhang X, Zhang B, Wang C, Sun L, Hou J. Conformal Macroporous Inverse Opal Oxynitride-Based Photoanode for Robust Photoelectrochemical Water Splitting. J Am Chem Soc 2021; 143:7402-7413. [PMID: 33961743 DOI: 10.1021/jacs.1c00946] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Direct photoelectrochemical (PEC) water splitting is of prime importance in sustainable energy conversion systems; however, it is a big challenge to simultaneously control light harvesting and charge transport for the improvement of PEC performance. Herein, we report a three-dimensional ordered macroporous (3DOM) CsTaWO6-xNx inverse opal array as a promising candidate for the first time. To address the critical challenge, an ultrathin carbon-nitride-based layer-intercalated 3DOM CsTaWO6-xNx architecture as a conformal heterojunction photoanode was assembled. This state-of-the-art conformal heterojunction photoanode with carrier-separation efficiency up to 88% achieves a high current density of 4.59 mA cm-2 at 1.6 V versus a reversible hydrogen electrode (vs RHE) under simulated AM 1.5G illumination, which is approximately 3.4 and 17 times larger than that of pristine CsTaWO6-xNx inverse opals and powers photoelectrodes in alkaline media, corresponding to an incident photon-to-current efficiency of 32% at 400 nm and outstanding stability for PEC water splitting. Density functional theory calculations propose that the intimate interface of a conformal photoanode optimizes the charge separation and transfer, thus enhancing the intrinsic water oxidation performance. This work enables us to elucidate the pivotal importance of 3DOM architectures and conformal heterostructures and the promising contributions to excellent PEC water-splitting applications.
Collapse
Affiliation(s)
- Lei Ran
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Shi Qiu
- Laboratory of Materials Modification by Laser, Ion and Electron Beams, Dalian University of Technology, Ministry of Education, Dalian 116024, P. R. China
| | - Panlong Zhai
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Zhuwei Li
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Junfeng Gao
- Laboratory of Materials Modification by Laser, Ion and Electron Beams, Dalian University of Technology, Ministry of Education, Dalian 116024, P. R. China
| | - Xiaomeng Zhang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Bo Zhang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Chen Wang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Licheng Sun
- Center of Artificial Photosynthesis for Solar Fuels, School of Science, Westlake University, Hangzhou 310024, P. R. China.,Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 10044 Stockholm, Sweden
| | - Jungang Hou
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| |
Collapse
|
68
|
Ju S, Kang H, Jun J, Son S, Park J, Kim W, Lee H. Periodic Micropillar-Patterned FTO/BiVO 4 with Superior Light Absorption and Separation Efficiency for Efficient PEC Performance. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006558. [PMID: 33864345 DOI: 10.1002/smll.202006558] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 03/05/2021] [Indexed: 06/12/2023]
Abstract
In this study, a high-performance photoanode based on 3D periodic, micropillar-structured fluorine-doped tin oxide (FTO-MP) deposited with BiVO4 is fabricated using the patterned FTO by direct printing and spray pyrolysis, followed by the deposition of BiVO4 by sputtering and V ion heat-treatment on the patterned FTO. The FTO-MP enables light scattering owing to its 3D periodic structure and increases the light absorption efficiency. In addition, the high electron mobility of FTO and enlarged surface area of FTO-MP enhance the separation efficiency. Due to the combination of these enhancing strategies, the photocurrent density of micropillar-patterned BiVO4 at 1.23 VRHE reached 2.97 mA cm-2 , which is 67.8% higher than that of flat BiVO4 . The results suggest that the efficiency can increase significantly using the patterned FTO fabricated by an inexpensive and simple process (i.e., direct printing and spray pyrolysis), thereby indicating a new strategy for the enhancement of efficiency in various energy fields.
Collapse
Affiliation(s)
- Sucheol Ju
- Anam-ro 145, Sungbuk-Gu, Seoul, 136-701, Republic of Korea
| | - Hojung Kang
- Anam-ro 145, Sungbuk-Gu, Seoul, 136-701, Republic of Korea
| | - Junho Jun
- Anam-ro 145, Sungbuk-Gu, Seoul, 136-701, Republic of Korea
| | - Soomin Son
- Anam-ro 145, Sungbuk-Gu, Seoul, 136-701, Republic of Korea
| | - Jaemin Park
- Anam-ro 145, Sungbuk-Gu, Seoul, 136-701, Republic of Korea
| | - Wonjoong Kim
- Anam-ro 145, Sungbuk-Gu, Seoul, 136-701, Republic of Korea
| | - Heon Lee
- Anam-ro 145, Sungbuk-Gu, Seoul, 136-701, Republic of Korea
| |
Collapse
|
69
|
Li Y, Zhang C, Zhuang TT, Lin Y, Tian J, Qi XY, Li X, Wang R, Wu L, Liu GQ, Ma T, He Z, Sun HB, Fan F, Zhu H, Yu SH. One-Dimensional Superlattice Heterostructure Library. J Am Chem Soc 2021; 143:7013-7020. [PMID: 33929193 DOI: 10.1021/jacs.1c01514] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Axially, epitaxially organizing nano-objects of distinct compositions and structures into superlattice nanowires enables full utilization of sunlight, readily engineered band structures, and tunable geometric parameters to fit carrier transport, thus holding great promise for optoelectronics and solar-to-fuel conversion. To maximize their efficiency, the general and high-precision synthesis of colloidal axial superlattice nanowires (ASLNWs) with programmable compositions and structures is the prerequisite; however, it remains challenging. Here, we report an axial encoding methodology toward the ASLNW library with precise control over their compositions, dimensions, crystal phases, interfaces, and periodicity. Using a predesigned, editable nanoparticle framework that offers the synthetic selectivity, we are able to chemically decouple adjacent sub-objects in ASLNWs and thus craft them in a controlled approach, yielding a library of distinct ASLNWs. We integrate therein plasmonic, metallic, or near-infrared-active chalcogenides, which hold great potential in solar energy conversion. Such synthetic capability enables a performance boost in target applications, as we report order-of-magnitude enhanced photocatalytic hydrogen production rates using optimized ASLNWs compared to corresponding solo objects. Furthermore, it is expected that such unique superlattice nanowires could bring out new phenomena.
Collapse
Affiliation(s)
- Yi Li
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, Institute of Biomimetic Materials and Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Chong Zhang
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, Institute of Biomimetic Materials and Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Tao-Tao Zhuang
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, Institute of Biomimetic Materials and Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yue Lin
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, Institute of Biomimetic Materials and Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jie Tian
- Engineering and Materials Science Experiment Center, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xing-Yu Qi
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, Institute of Biomimetic Materials and Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xufeng Li
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Rui Wang
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, Institute of Biomimetic Materials and Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Liang Wu
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, Institute of Biomimetic Materials and Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Guo-Qiang Liu
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, Institute of Biomimetic Materials and Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Tao Ma
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, Institute of Biomimetic Materials and Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zhen He
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, Institute of Biomimetic Materials and Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Hao-Bo Sun
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, Institute of Biomimetic Materials and Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Fengjia Fan
- CAS Key Laboratory of Microscale Magnetic Resonance and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China.,Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Haiming Zhu
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Shu-Hong Yu
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, Institute of Biomimetic Materials and Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
70
|
Francàs L, Selim S, Corby S, Lee D, Mesa CA, Pastor E, Choi KS, Durrant JR. Water oxidation kinetics of nanoporous BiVO 4 photoanodes functionalised with nickel/iron oxyhydroxide electrocatalysts. Chem Sci 2021; 12:7442-7452. [PMID: 34163834 PMCID: PMC8171343 DOI: 10.1039/d0sc06429g] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In this work, spectroelectrochemical techniques are employed to analyse the catalytic water oxidation performance of a series of three nickel/iron oxyhydroxide electrocatalysts deposited on FTO and BiVO4, at neutral pH. Similar electrochemical water oxidation performance is observed for each of the FeOOH, Ni(Fe)OOH and FeOOHNiOOH electrocatalysts studied, which is found to result from a balance between degree of charge accumulation and rate of water oxidation. Once added onto BiVO4 photoanodes, a large enhancement in the water oxidation photoelectrochemical performance is observed in comparison to the un-modified BiVO4. To understand the origin of this enhancement, the films were evaluated through time-resolved optical spectroscopic techniques, allowing comparisons between electrochemical and photoelectrochemical water oxidation. For all three catalysts, fast hole transfer from BiVO4 to the catalyst is observed in the transient absorption data. Using operando photoinduced absorption measurements, we find that water oxidation is driven by oxidised states within the catalyst layer, following hole transfer from BiVO4. This charge transfer is correlated with a suppression of recombination losses which result in remarkably enhanced water oxidation performance relative to un-modified BiVO4. Moreover, despite similar electrocatalytic behaviour of all three electrocatalysts, we show that variations in water oxidation performance observed among the BiVO4/MOOH photoanodes stem from differences in photoelectrochemical and electrochemical charge accumulation in the catalyst layers. Under illumination, the amount of accumulated charge in the catalyst is driven by the injection of photogenerated holes from BiVO4, which is further affected by the recombination loss at the BiVO4/MOOH interface, and thus leads to deviations from their behaviour as standalone electrocatalysts. Elucidating the role of charge accumulation and reaction kinetics in governing the performance of Ni/Fe oxyhydroxides as electrocatalysts and as co-catalysts on BiVO4 photoanodes water oxidation.![]()
Collapse
Affiliation(s)
- Laia Francàs
- Department of Chemistry, Centre for Processable Electronics, Imperial College London, White City Campus London W12 0BZ UK
| | - Shababa Selim
- Department of Chemistry, Centre for Processable Electronics, Imperial College London, White City Campus London W12 0BZ UK
| | - Sacha Corby
- Department of Chemistry, Centre for Processable Electronics, Imperial College London, White City Campus London W12 0BZ UK
| | - Dongho Lee
- Department of Chemistry, University of Wisconsin-Madison Madison Wisconsin 53706 USA
| | - Camilo A Mesa
- Department of Chemistry, Centre for Processable Electronics, Imperial College London, White City Campus London W12 0BZ UK
| | - Ernest Pastor
- Department of Chemistry, Centre for Processable Electronics, Imperial College London, White City Campus London W12 0BZ UK
| | - Kyoung-Shin Choi
- Department of Chemistry, University of Wisconsin-Madison Madison Wisconsin 53706 USA
| | - James R Durrant
- Department of Chemistry, Centre for Processable Electronics, Imperial College London, White City Campus London W12 0BZ UK
| |
Collapse
|
71
|
Bold S, Massin J, Giannoudis E, Koepf M, Artero V, Dietzek B, Chavarot-Kerlidou M. Spectroscopic Investigations Provide a Rationale for the Hydrogen-Evolving Activity of Dye-Sensitized Photocathodes Based on a Cobalt Tetraazamacrocyclic Catalyst. ACS Catal 2021. [DOI: 10.1021/acscatal.0c05033] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Sebastian Bold
- Laboratoire de Chimie et Biologie des Métaux, Univ.́ Grenoble Alpes, CNRS, CEA, IRIG, 17 rue des Martyrs, F-38000 Grenoble, France
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
- Department Functional Interfaces, Leibniz Institute of Photonic Technology Jena (Leibniz-IPHT), Albert-Einstein-Straße 9, 07745 Jena, Germany
| | - Julien Massin
- Laboratoire de Chimie et Biologie des Métaux, Univ.́ Grenoble Alpes, CNRS, CEA, IRIG, 17 rue des Martyrs, F-38000 Grenoble, France
| | - Emmanouil Giannoudis
- Laboratoire de Chimie et Biologie des Métaux, Univ.́ Grenoble Alpes, CNRS, CEA, IRIG, 17 rue des Martyrs, F-38000 Grenoble, France
| | - Matthieu Koepf
- Laboratoire de Chimie et Biologie des Métaux, Univ.́ Grenoble Alpes, CNRS, CEA, IRIG, 17 rue des Martyrs, F-38000 Grenoble, France
| | - Vincent Artero
- Laboratoire de Chimie et Biologie des Métaux, Univ.́ Grenoble Alpes, CNRS, CEA, IRIG, 17 rue des Martyrs, F-38000 Grenoble, France
| | - Benjamin Dietzek
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
- Department Functional Interfaces, Leibniz Institute of Photonic Technology Jena (Leibniz-IPHT), Albert-Einstein-Straße 9, 07745 Jena, Germany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena), Friedrich Schiller University Jena, Philosophenweg 8, 07743 Jena, Germany
| | - Murielle Chavarot-Kerlidou
- Laboratoire de Chimie et Biologie des Métaux, Univ.́ Grenoble Alpes, CNRS, CEA, IRIG, 17 rue des Martyrs, F-38000 Grenoble, France
| |
Collapse
|
72
|
Song H, Wu M, Tang Z, Tse JS, Yang B, Lu S. Single Atom Ruthenium‐Doped CoP/CDs Nanosheets via Splicing of Carbon‐Dots for Robust Hydrogen Production. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202017102] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Haoqiang Song
- Green Catalysis Center, and College of Chemistry Zhengzhou University Zhengzhou 450000 China
| | - Min Wu
- College of Materials Science and Engineering Zhejiang University of Technology Hangzhou 310014 China
| | - Zhiyong Tang
- Green Catalysis Center, and College of Chemistry Zhengzhou University Zhengzhou 450000 China
- Henan Institute of Advanced Technology Zhengzhou University Zhengzhou 450000 China
| | - John S. Tse
- Department of Physics and Engineering Physics University of Saskatchewan Saskatoon S7N5E2 Canada
| | - Bai Yang
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Changchun 130012 China
| | - Siyu Lu
- Green Catalysis Center, and College of Chemistry Zhengzhou University Zhengzhou 450000 China
| |
Collapse
|
73
|
Song H, Wu M, Tang Z, Tse JS, Yang B, Lu S. Single Atom Ruthenium‐Doped CoP/CDs Nanosheets via Splicing of Carbon‐Dots for Robust Hydrogen Production. Angew Chem Int Ed Engl 2021; 60:7234-7244. [DOI: 10.1002/anie.202017102] [Citation(s) in RCA: 139] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Indexed: 11/12/2022]
Affiliation(s)
- Haoqiang Song
- Green Catalysis Center, and College of Chemistry Zhengzhou University Zhengzhou 450000 China
| | - Min Wu
- College of Materials Science and Engineering Zhejiang University of Technology Hangzhou 310014 China
| | - Zhiyong Tang
- Green Catalysis Center, and College of Chemistry Zhengzhou University Zhengzhou 450000 China
- Henan Institute of Advanced Technology Zhengzhou University Zhengzhou 450000 China
| | - John S. Tse
- Department of Physics and Engineering Physics University of Saskatchewan Saskatoon S7N5E2 Canada
| | - Bai Yang
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Changchun 130012 China
| | - Siyu Lu
- Green Catalysis Center, and College of Chemistry Zhengzhou University Zhengzhou 450000 China
| |
Collapse
|
74
|
Guo Z, Liu Z. Synthesis and control strategies of nanomaterials for photoelectrochemical water splitting. Dalton Trans 2021; 50:1983-1989. [PMID: 33475651 DOI: 10.1039/d0dt04129g] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photoelectrochemical water splitting to produce hydrogen using solar energy can capture and directly convert solar energy into chemical energy, which is an effective way to deal with the current energy and environmental problems. The conversion efficiency of solar energy depends on the performance of semiconductor photoelectrodes in photoelectrochemical water splitting. This article presents our recent advances in the design and performance control of high-efficiency photoelectrocatalytic materials, followed by the discussion of the strategies employed for improving the performances of photoelectrodes in terms of photon absorption, charge separation and migration, as well as surface chemical reactions.
Collapse
Affiliation(s)
- Zhengang Guo
- School of Materials Science and Engineering, Tianjin Chengjian University, Tianjin 300384, China. and Tianjin Key Laboratory of Building Green Functional Materials, Tianjin 300384, China
| | - Zhifeng Liu
- School of Materials Science and Engineering, Tianjin Chengjian University, Tianjin 300384, China. and Tianjin Key Laboratory of Building Green Functional Materials, Tianjin 300384, China
| |
Collapse
|
75
|
Zhao L, Liu Z, Chen D, Liu F, Yang Z, Li X, Yu H, Liu H, Zhou W. Laser Synthesis and Microfabrication of Micro/Nanostructured Materials Toward Energy Conversion and Storage. NANO-MICRO LETTERS 2021; 13:49. [PMID: 34138243 PMCID: PMC8187667 DOI: 10.1007/s40820-020-00577-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/19/2020] [Indexed: 05/27/2023]
Abstract
Nanomaterials are known to exhibit a number of interesting physical and chemical properties for various applications, including energy conversion and storage, nanoscale electronics, sensors and actuators, photonics devices and even for biomedical purposes. In the past decade, laser as a synthetic technique and laser as a microfabrication technique facilitated nanomaterial preparation and nanostructure construction, including the laser processing-induced carbon and non-carbon nanomaterials, hierarchical structure construction, patterning, heteroatom doping, sputtering etching, and so on. The laser-induced nanomaterials and nanostructures have extended broad applications in electronic devices, such as light-thermal conversion, batteries, supercapacitors, sensor devices, actuators and electrocatalytic electrodes. Here, the recent developments in the laser synthesis of carbon-based and non-carbon-based nanomaterials are comprehensively summarized. An extensive overview on laser-enabled electronic devices for various applications is depicted. With the rapid progress made in the research on nanomaterial preparation through laser synthesis and laser microfabrication technologies, laser synthesis and microfabrication toward energy conversion and storage will undergo fast development.
Collapse
Affiliation(s)
- Lili Zhao
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, People's Republic of China
| | - Zhen Liu
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, People's Republic of China
| | - Duo Chen
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, People's Republic of China
| | - Fan Liu
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, People's Republic of China
| | - Zhiyuan Yang
- School of Information Science and Engineering, Shandong University, 72 Binhai Road, Qingdao, 266237, People's Republic of China
| | - Xiao Li
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, People's Republic of China
| | - Haohai Yu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, People's Republic of China
| | - Hong Liu
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, People's Republic of China.
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, People's Republic of China.
| | - Weijia Zhou
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, People's Republic of China.
| |
Collapse
|
76
|
Han J, Xing H, Song Q, Yan H, Kang J, Guo Y, Liu Z. A ZnO@CuO core–shell heterojunction photoanode modified with ZnFe-LDH for efficient and stable photoelectrochemical performance. Dalton Trans 2021; 50:4593-4603. [DOI: 10.1039/d1dt00336d] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A highly efficient ZnO@CuO core–shell heterojunction photoanode modified with cocatalyst ZnFe-layered double hydroxides was designed and synthesized in this work.
Collapse
Affiliation(s)
- Jianhua Han
- College of Science
- Civil Aviation University of China
- Tianjin
- China
| | - Haiyang Xing
- School of Materials Science and Engineering & Tianjin Key Laboratory of Building Green Functional Materials
- Tianjin Chengjian University
- Tianjin
- China
| | - Qinggong Song
- College of Science
- Civil Aviation University of China
- Tianjin
- China
| | - Huiyu Yan
- College of Science
- Civil Aviation University of China
- Tianjin
- China
| | - Jianhai Kang
- College of Science
- Civil Aviation University of China
- Tianjin
- China
| | - Yanrui Guo
- College of Science
- Civil Aviation University of China
- Tianjin
- China
| | - Zhifeng Liu
- College of Science
- Civil Aviation University of China
- Tianjin
- China
- School of Materials Science and Engineering & Tianjin Key Laboratory of Building Green Functional Materials
| |
Collapse
|
77
|
Gao B, Wang T, Xue H, Jiang C, Sheng L, Huang X, He J. A nano-surface monocrystalline BiVO 4 nanoplate photoanode for enhanced photoelectrochemical performance. NEW J CHEM 2021. [DOI: 10.1039/d1nj00658d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A nano-surface monocrystalline BiVO4 photoanode with a large surface area is prepared by a low-cost and simple etching process.
Collapse
Affiliation(s)
- Bin Gao
- College of Materials Science and Technology
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies
- Nanjing University of Aeronautics and Astronautics
- Nanjing
- P. R. China
| | - Tao Wang
- College of Materials Science and Technology
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies
- Nanjing University of Aeronautics and Astronautics
- Nanjing
- P. R. China
| | - Hairong Xue
- College of Materials Science and Technology
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies
- Nanjing University of Aeronautics and Astronautics
- Nanjing
- P. R. China
| | - Cheng Jiang
- College of Materials Science and Technology
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies
- Nanjing University of Aeronautics and Astronautics
- Nanjing
- P. R. China
| | - Lei Sheng
- College of Materials Science and Technology
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies
- Nanjing University of Aeronautics and Astronautics
- Nanjing
- P. R. China
| | - Xianli Huang
- College of Materials Science and Technology
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies
- Nanjing University of Aeronautics and Astronautics
- Nanjing
- P. R. China
| | - Jianping He
- College of Materials Science and Technology
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies
- Nanjing University of Aeronautics and Astronautics
- Nanjing
- P. R. China
| |
Collapse
|
78
|
Zha R, Shi T, Li C, Liu H, Zhang M. Oxygen vacancy-engineered surfaces of ZnO-decorated porous BiOI microspheres for strongly enhanced visible-light NO oxidation. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00040c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Oxygen vacancy-engineered Surfaces of ZnO-decorated porous BiOI microspheres for strongly enhanced visible-light NO oxidation.
Collapse
Affiliation(s)
- Ruhua Zha
- College of Chemistry and Chemical Engineering
- Henan Province Key Laboratory of Utilization of Non-Metallic Mineral
- Xinyang Normal University
- Xinyang 464000
- P. R. China
| | - Tuo Shi
- Key Laboratory of Microelectronic Devices and Integrated Technology
- Institute of Microelectronics, Chinese Academy of Sciences
- Beijing 100029
- P. R. China
| | - Chao Li
- College of Chemistry and Chemical Engineering
- Henan Province Key Laboratory of Utilization of Non-Metallic Mineral
- Xinyang Normal University
- Xinyang 464000
- P. R. China
| | - He Liu
- Department of Medicinal Chemistry
- Virginia Commonwealth University
- Richmond
- USA
| | - Min Zhang
- College of Chemistry and Chemical Engineering
- Henan Province Key Laboratory of Utilization of Non-Metallic Mineral
- Xinyang Normal University
- Xinyang 464000
- P. R. China
| |
Collapse
|
79
|
Pan J, Wang B, Wang J, Ding H, Zhou W, Liu X, Zhang J, Shen S, Guo J, Chen L, Au C, Jiang L, Yin S. Activity and Stability Boosting of an Oxygen‐Vacancy‐Rich BiVO
4
Photoanode by NiFe‐MOFs Thin Layer for Water Oxidation. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202012550] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jin‐Bo Pan
- College of Chemistry and Chemical Engineering State Key Laboratory of Chemo/Biosensing and Chemometrics Advanced Catalytic Engineering Research Center of the Ministry of Education Hunan University Changsha 410082 P. R. China
| | - Bing‐Hao Wang
- College of Chemistry and Chemical Engineering State Key Laboratory of Chemo/Biosensing and Chemometrics Advanced Catalytic Engineering Research Center of the Ministry of Education Hunan University Changsha 410082 P. R. China
| | - Jin‐Bo Wang
- College of Chemistry and Chemical Engineering State Key Laboratory of Chemo/Biosensing and Chemometrics Advanced Catalytic Engineering Research Center of the Ministry of Education Hunan University Changsha 410082 P. R. China
| | - Hong‐Zhi Ding
- College of Chemistry and Chemical Engineering State Key Laboratory of Chemo/Biosensing and Chemometrics Advanced Catalytic Engineering Research Center of the Ministry of Education Hunan University Changsha 410082 P. R. China
| | - Wei Zhou
- College of Chemistry and Chemical Engineering State Key Laboratory of Chemo/Biosensing and Chemometrics Advanced Catalytic Engineering Research Center of the Ministry of Education Hunan University Changsha 410082 P. R. China
| | - Xuan Liu
- College of Chemistry and Chemical Engineering State Key Laboratory of Chemo/Biosensing and Chemometrics Advanced Catalytic Engineering Research Center of the Ministry of Education Hunan University Changsha 410082 P. R. China
| | - Jin‐Rong Zhang
- College of Chemistry and Chemical Engineering State Key Laboratory of Chemo/Biosensing and Chemometrics Advanced Catalytic Engineering Research Center of the Ministry of Education Hunan University Changsha 410082 P. R. China
| | - Sheng Shen
- College of Chemistry and Chemical Engineering State Key Laboratory of Chemo/Biosensing and Chemometrics Advanced Catalytic Engineering Research Center of the Ministry of Education Hunan University Changsha 410082 P. R. China
| | - Jun‐Kang Guo
- College of Chemistry and Chemical Engineering State Key Laboratory of Chemo/Biosensing and Chemometrics Advanced Catalytic Engineering Research Center of the Ministry of Education Hunan University Changsha 410082 P. R. China
| | - Lang Chen
- College of Chemistry and Chemical Engineering State Key Laboratory of Chemo/Biosensing and Chemometrics Advanced Catalytic Engineering Research Center of the Ministry of Education Hunan University Changsha 410082 P. R. China
| | - Chak‐Tong Au
- College of Chemical Engineering Fuzhou University Fuzhou 350002 P. R. China
| | - Li‐Long Jiang
- College of Chemical Engineering Fuzhou University Fuzhou 350002 P. R. China
| | - Shuang‐Feng Yin
- College of Chemistry and Chemical Engineering State Key Laboratory of Chemo/Biosensing and Chemometrics Advanced Catalytic Engineering Research Center of the Ministry of Education Hunan University Changsha 410082 P. R. China
| |
Collapse
|
80
|
Pan J, Wang B, Wang J, Ding H, Zhou W, Liu X, Zhang J, Shen S, Guo J, Chen L, Au C, Jiang L, Yin S. Activity and Stability Boosting of an Oxygen‐Vacancy‐Rich BiVO
4
Photoanode by NiFe‐MOFs Thin Layer for Water Oxidation. Angew Chem Int Ed Engl 2020; 60:1433-1440. [DOI: 10.1002/anie.202012550] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Indexed: 11/10/2022]
Affiliation(s)
- Jin‐Bo Pan
- College of Chemistry and Chemical Engineering State Key Laboratory of Chemo/Biosensing and Chemometrics Advanced Catalytic Engineering Research Center of the Ministry of Education Hunan University Changsha 410082 P. R. China
| | - Bing‐Hao Wang
- College of Chemistry and Chemical Engineering State Key Laboratory of Chemo/Biosensing and Chemometrics Advanced Catalytic Engineering Research Center of the Ministry of Education Hunan University Changsha 410082 P. R. China
| | - Jin‐Bo Wang
- College of Chemistry and Chemical Engineering State Key Laboratory of Chemo/Biosensing and Chemometrics Advanced Catalytic Engineering Research Center of the Ministry of Education Hunan University Changsha 410082 P. R. China
| | - Hong‐Zhi Ding
- College of Chemistry and Chemical Engineering State Key Laboratory of Chemo/Biosensing and Chemometrics Advanced Catalytic Engineering Research Center of the Ministry of Education Hunan University Changsha 410082 P. R. China
| | - Wei Zhou
- College of Chemistry and Chemical Engineering State Key Laboratory of Chemo/Biosensing and Chemometrics Advanced Catalytic Engineering Research Center of the Ministry of Education Hunan University Changsha 410082 P. R. China
| | - Xuan Liu
- College of Chemistry and Chemical Engineering State Key Laboratory of Chemo/Biosensing and Chemometrics Advanced Catalytic Engineering Research Center of the Ministry of Education Hunan University Changsha 410082 P. R. China
| | - Jin‐Rong Zhang
- College of Chemistry and Chemical Engineering State Key Laboratory of Chemo/Biosensing and Chemometrics Advanced Catalytic Engineering Research Center of the Ministry of Education Hunan University Changsha 410082 P. R. China
| | - Sheng Shen
- College of Chemistry and Chemical Engineering State Key Laboratory of Chemo/Biosensing and Chemometrics Advanced Catalytic Engineering Research Center of the Ministry of Education Hunan University Changsha 410082 P. R. China
| | - Jun‐Kang Guo
- College of Chemistry and Chemical Engineering State Key Laboratory of Chemo/Biosensing and Chemometrics Advanced Catalytic Engineering Research Center of the Ministry of Education Hunan University Changsha 410082 P. R. China
| | - Lang Chen
- College of Chemistry and Chemical Engineering State Key Laboratory of Chemo/Biosensing and Chemometrics Advanced Catalytic Engineering Research Center of the Ministry of Education Hunan University Changsha 410082 P. R. China
| | - Chak‐Tong Au
- College of Chemical Engineering Fuzhou University Fuzhou 350002 P. R. China
| | - Li‐Long Jiang
- College of Chemical Engineering Fuzhou University Fuzhou 350002 P. R. China
| | - Shuang‐Feng Yin
- College of Chemistry and Chemical Engineering State Key Laboratory of Chemo/Biosensing and Chemometrics Advanced Catalytic Engineering Research Center of the Ministry of Education Hunan University Changsha 410082 P. R. China
| |
Collapse
|
81
|
Shadabipour P, Raithel AL, Hamann TW. Charge-Carrier Dynamics at the CuWO 4/Electrocatalyst Interface for Photoelectrochemical Water Oxidation. ACS APPLIED MATERIALS & INTERFACES 2020; 12:50592-50599. [PMID: 33119249 DOI: 10.1021/acsami.0c14705] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Unraveling the charge-carrier dynamics at electrocatalyst/electrode interfaces is critical for the development of efficient photoelectrochemical (PEC) water oxidation. Unlike the majority of photoanodes investigated for PEC water oxidation, the integration of electrocatalysts with CuWO4 electrodes generally results in comparable or worse performance compared to the bare electrode. This is despite the fact that the surface state recombination limits the water oxidation efficiency with CuWO4 electrodes, and an electrocatalyst ought to bypass this reaction and improve performance. Here, we present results that deepen the understanding of the energetics and electron-transfer processes at the CuWO4/electrocatalyst interface, which controls the performance of such systems. Ni0.75Fe0.25Oy (denoted as Ni75) was chosen as a model electrocatalyst, and through dual-working electrode experiments, we have been able to provide significant insight into the role of the electrocatalyst on the charge-transfer process at the CuWO4/Ni75 interface. We have shown a lack of performance improvement for CuWO4/Ni75 relative to the bare electrode to water oxidation. We attribute this surprising result to water oxidation on the CuWO4 surface kinetically outcompeting hole transfer to the Ni75 electrocatalyst interface.
Collapse
Affiliation(s)
- Parisa Shadabipour
- Department of Chemistry, Michigan State University, 578 South Shaw Lane, East Lansing, Michigan 48824-1322, United States
| | - Austin L Raithel
- Department of Chemistry, Michigan State University, 578 South Shaw Lane, East Lansing, Michigan 48824-1322, United States
| | - Thomas W Hamann
- Department of Chemistry, Michigan State University, 578 South Shaw Lane, East Lansing, Michigan 48824-1322, United States
| |
Collapse
|
82
|
|
83
|
Hong DH, Reddy DA, Reddy KAJ, Gopannagari M, Kumar DP, Kim TK. Synergetic catalytic behavior of dual metal-organic framework coated hematite photoanode for photoelectrochemical water splitting performance. J Catal 2020. [DOI: 10.1016/j.jcat.2020.09.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
84
|
Zhang S, Ahmet I, Kim SH, Kasian O, Mingers AM, Schnell P, Kölbach M, Lim J, Fischer A, Mayrhofer KJJ, Cherevko S, Gault B, van de Krol R, Scheu C. Different Photostability of BiVO 4 in Near-pH-Neutral Electrolytes. ACS APPLIED ENERGY MATERIALS 2020; 3:9523-9527. [PMID: 33134878 PMCID: PMC7592387 DOI: 10.1021/acsaem.0c01904] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/02/2020] [Indexed: 05/09/2023]
Abstract
Photoelectrochemical water splitting is a promising route to produce hydrogen from solar energy. However, corrosion of photoelectrodes remains a fundamental challenge for their implementation. Here, we reveal different dissolution behaviors of BiVO4 photoanode in pH-buffered borate, phosphate, and citrate (hole-scavenger) electrolytes, studied in operando employing an illuminated scanning flow cell. We demonstrate that decrease in photocurrents alone does not reflect the degradation of photoelectrodes. Changes in dissolution rates correlate to the evolution of surface chemistry and morphology. The correlative measurements on both sides of the liquid-semiconductor junction provide quantitative comparison and mechanistic insights into the degradation processes.
Collapse
Affiliation(s)
- Siyuan Zhang
- Max-Planck-Institut
für Eisenforschung GmbH, 40237 Düsseldorf, Germany
| | - Ibbi Ahmet
- Institute
for Solar Fuels, Helmholtz-Zentrum Berlin
für Materialien und Energie GmbH, 14109 Berlin, Germany
| | - Se-Ho Kim
- Max-Planck-Institut
für Eisenforschung GmbH, 40237 Düsseldorf, Germany
| | - Olga Kasian
- Max-Planck-Institut
für Eisenforschung GmbH, 40237 Düsseldorf, Germany
- Helmholtz-Zentrum
Berlin GmbH, Helmholtz Institut Erlangen-Nürnberg, 14109 Berlin, Germany
| | - Andrea M. Mingers
- Max-Planck-Institut
für Eisenforschung GmbH, 40237 Düsseldorf, Germany
| | - Patrick Schnell
- Institute
for Solar Fuels, Helmholtz-Zentrum Berlin
für Materialien und Energie GmbH, 14109 Berlin, Germany
| | - Moritz Kölbach
- Max-Planck-Institut
für Eisenforschung GmbH, 40237 Düsseldorf, Germany
| | - Joohyun Lim
- Max-Planck-Institut
für Eisenforschung GmbH, 40237 Düsseldorf, Germany
- Department
of Chemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Anna Fischer
- Institute
of Inorganic and Analytical Chemistry, University
of Freiburg, 79104 Freiburg, Germany
| | - Karl J. J. Mayrhofer
- Helmholtz
Institut Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich, 91058 Erlangen, Germany
| | - Serhiy Cherevko
- Helmholtz
Institut Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich, 91058 Erlangen, Germany
| | - Baptiste Gault
- Max-Planck-Institut
für Eisenforschung GmbH, 40237 Düsseldorf, Germany
- Department
of Materials, Royal School of Mines, Imperial
College London, London, SW7 2AZ, United Kingdom
| | - Roel van de Krol
- Institute
for Solar Fuels, Helmholtz-Zentrum Berlin
für Materialien und Energie GmbH, 14109 Berlin, Germany
| | - Christina Scheu
- Max-Planck-Institut
für Eisenforschung GmbH, 40237 Düsseldorf, Germany
| |
Collapse
|
85
|
Wang L, Su J, Guo L. Self‐assembly synthesis of monodisperse BiVO
4
nanosphere via a hybrid strategy for photoelectrochemical water splitting. ChemCatChem 2020. [DOI: 10.1002/cctc.202000975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Lu Wang
- International Research Center for Renewable Energy State Key Laboratory of Multiphase Flow in Power Engineering Xi'an Jiaotong University Xi'an 710049 P. R. China
| | - Jinzhan Su
- International Research Center for Renewable Energy State Key Laboratory of Multiphase Flow in Power Engineering Xi'an Jiaotong University Xi'an 710049 P. R. China
| | - Liejin Guo
- International Research Center for Renewable Energy State Key Laboratory of Multiphase Flow in Power Engineering Xi'an Jiaotong University Xi'an 710049 P. R. China
| |
Collapse
|
86
|
Jung HJ, Lim Y, Choi BU, Bae HB, Jung W, Ryu S, Oh J, Chung SY. Direct Identification of Antisite Cation Intermixing and Correlation with Electronic Conduction in CuBi 2O 4 for Photocathodes. ACS APPLIED MATERIALS & INTERFACES 2020; 12:43720-43727. [PMID: 32877165 DOI: 10.1021/acsami.0c12491] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Cu-based p-type semiconducting oxides have been sought for water-reduction photocathodes to enhance the energy-conversion efficiency in photoelectrochemical cells. CuBi2O4 has recently attracted notable attention as a new family of p-type oxides, based on its adequate band gap. Although the identification of a major defect structure should be the first step toward understanding the electronic conduction behavior, no direct experimental analysis has been carried out yet. Using atomic-scale scanning transmission electron microscopy together with chemical probing, we identify a substantial amount of BiCu-CuBi antisite intermixing as a major point-defect type. Our density functional theory calculations also show that antisite BiCu can seriously hinder the hole-polaron hopping between Cu, in agreement with lower conductivity and a larger thermal activation barrier under a higher degree of intermixing. These findings highlight the value of the direct identification of point defects for a better understanding of electronic properties in complex oxides.
Collapse
Affiliation(s)
- Hyun Joon Jung
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
- Graduate School of EEWS, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Younghwan Lim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Byeong-Uk Choi
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Hyung Bin Bae
- KAIST Analysis Center, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - WooChul Jung
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Sangwoo Ryu
- Department of Advanced Materials Engineering, Kyonggi University, Suwon, Gyeonggi-do16227, Korea
| | - Jihun Oh
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Sung-Yoon Chung
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| |
Collapse
|
87
|
Chen Z, Corkett AJ, de Bruin-Dickason C, Chen J, Rokicińska A, Kuśtrowski P, Dronskowski R, Slabon A. Tailoring the Surface Properties of Bi 2O 2NCN by in Situ Activation for Augmented Photoelectrochemical Water Oxidation on WO 3 and CuWO 4 Heterojunction Photoanodes. Inorg Chem 2020; 59:13589-13597. [PMID: 32886498 PMCID: PMC7509841 DOI: 10.1021/acs.inorgchem.0c01947] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Bismuth(III) oxide-carbodiimide
(Bi2O2NCN)
has been recently discovered as a novel mixed-anion semiconductor,
which is structurally related to bismuth oxides and oxysulfides. Given
the structural versatility of these layered structures, we investigated
the unexplored photochemical properties of the target compound for
photoelectrochemical (PEC) water oxidation. Although Bi2O2NCN does not generate a noticeable photocurrent as a
single photoabsorber, the fabrication of heterojunctions with the
WO3 thin film electrode shows an upsurge of current density
from 0.9 to 1.1 mA cm–2 at 1.23 V vs reversible
hydrogen electrode (RHE) under 1 sun (AM 1.5G) illumination in phosphate
electrolyte (pH 7.0). Mechanistic analysis and structural analysis
using powder X-ray diffraction (XRD), scanning electron microscopy
(SEM), X-ray photoelectron spectroscopy (XPS), and scanning transmission
electron microscopy energy-dispersive X-ray spectroscopy (STEM EDX)
indicate that Bi2O2NCN transforms during operating
conditions in situ to a core–shell structure
Bi2O2NCN/BiPO4. When compared to
WO3/BiPO4, the in situ electrolyte-activated
WO3/Bi2O2NCN photoanode shows a higher
photocurrent density due to superior charge separation across the
oxide/oxide-carbodiimide interface layer. Changing the electrolyte
from phosphate to sulfate results in a lower photocurrent and shows
that the electrolyte determines the surface chemistry and mediates
the PEC activity of the metal oxide-carbodiimide. A similar trend
could be observed for CuWO4 thin film photoanodes. These
results show the potential of metal oxide-carbodiimides as relatively
novel representatives of mixed-anion compounds and shed light on the
importance of the control over the surface chemistry to enable the in situ activation. Phosphate electrolyte
activates the metal oxide−Bi2O2NCN heterojunction.
Collapse
Affiliation(s)
- Zheng Chen
- Solid-State and Quantum Chemistry, Institute of Inorganic Chemistry, RWTH Aachen University, 52056 Aachen, Germany
| | - Alex J Corkett
- Solid-State and Quantum Chemistry, Institute of Inorganic Chemistry, RWTH Aachen University, 52056 Aachen, Germany
| | - Caspar de Bruin-Dickason
- Department of Materials and Environmental Chemistry, Stockholm University, 10691 Stockholm, Sweden
| | - Jianhong Chen
- Department of Materials and Environmental Chemistry, Stockholm University, 10691 Stockholm, Sweden
| | - Anna Rokicińska
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Piotr Kuśtrowski
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Richard Dronskowski
- Solid-State and Quantum Chemistry, Institute of Inorganic Chemistry, RWTH Aachen University, 52056 Aachen, Germany.,Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, Liuxian Boulevard 7098, Shenzhen 518055, China
| | - Adam Slabon
- Department of Materials and Environmental Chemistry, Stockholm University, 10691 Stockholm, Sweden
| |
Collapse
|
88
|
Photoelectrochemical evaluation of SILAR-deposited nanoporous BiVO4 photoanodes for solar-driven water splitting. NANO MATERIALS SCIENCE 2020. [DOI: 10.1016/j.nanoms.2019.10.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
89
|
Gadiyar C, Loiudice A, D’Ambra F, Oveisi E, Stoian D, Iyengar P, Castilla-Amorós L, Mantella V, Buonsanti R. Nanocrystals as Precursors in Solid-State Reactions for Size- and Shape-Controlled Polyelemental Nanomaterials. J Am Chem Soc 2020; 142:15931-15940. [DOI: 10.1021/jacs.0c06556] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Chethana Gadiyar
- Laboratory of Nanochemistry for Energy (LNCE), Department of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Sion CH-1950, Switzerland
| | - Anna Loiudice
- Laboratory of Nanochemistry for Energy (LNCE), Department of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Sion CH-1950, Switzerland
| | - Florian D’Ambra
- Laboratory of Nanochemistry for Energy (LNCE), Department of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Sion CH-1950, Switzerland
| | - Emad Oveisi
- Interdisciplinary Centre for Electron Microscopy (CIME), École Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
| | - Dragos Stoian
- Laboratory of Nanochemistry for Energy (LNCE), Department of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Sion CH-1950, Switzerland
| | - Pranit Iyengar
- Laboratory of Nanochemistry for Energy (LNCE), Department of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Sion CH-1950, Switzerland
| | - Laia Castilla-Amorós
- Laboratory of Nanochemistry for Energy (LNCE), Department of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Sion CH-1950, Switzerland
| | - Valeria Mantella
- Laboratory of Nanochemistry for Energy (LNCE), Department of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Sion CH-1950, Switzerland
| | - Raffaella Buonsanti
- Laboratory of Nanochemistry for Energy (LNCE), Department of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Sion CH-1950, Switzerland
| |
Collapse
|
90
|
Noble Metal Modification of CdS-Covered CuInS2 Electrodes for Improved Photoelectrochemical Activity and Stability. Catalysts 2020. [DOI: 10.3390/catal10090949] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
In this paper, efficient and stable photoelectrochemical (PEC) hydrogen (H2) evolution using copper indium sulfide (CuInS2) thin film electrodes was studied. Modification with a cadmium sulfide (CdS) layer led to improved charge separation at the interface between CuInS2 and CdS; however, the photocorrosive nature of CdS induced poor stability of the photocathode. Further surface coating with an electrodeposited Pt layer over the CdS-covered CuInS2 photocathode prevented the CdS layer from making contact with the electrolyte solution, and enabled efficient PEC H2 evolution without appreciable degradation. This indicates that the Pt layer functioned not only as a reaction site for H2 evolution, but also as a protection layer. In addition, it was found that surface protection using a noble metal layer was also effective for stable PEC carbon dioxide (CO2) reduction when appropriate noble metal cocatalysts were selected. When Au or Ag was used, carbon monoxide was obtained as a product of PEC CO2 reduction.
Collapse
|
91
|
Polo A, Nomellini C, Grigioni I, Dozzi MV, Selli E. Effective Visible Light Exploitation by Copper Molybdo-tungstate Photoanodes. ACS APPLIED ENERGY MATERIALS 2020; 3:6956-6964. [PMID: 33829150 PMCID: PMC8016397 DOI: 10.1021/acsaem.0c01021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 06/08/2020] [Indexed: 06/02/2023]
Abstract
The need for stable oxide-based semiconductors with a narrow band gap, able to maximize the exploitation of the visible light portion of the solar spectrum, is a challenging issue for photoelectrocatalytic (PEC) applications. In the present work, CuW1-x Mo x O4 (E g = 2.0 eV for x = 0.5), which exhibits a significantly reduced optical band gap E g compared with isostructural CuWO4 (E g = 2.3 eV), was investigated as a photoactive material for the preparation of photoanodes. CuW0.5Mo0.5O4 electrodes with different thicknesses (80-530 nm), prepared by a simple solution-based process in the form of multilayer films, effectively exhibit visible light photoactivity up to 650 nm (i.e., extended compared with CuWO4 photoanodes prepared by the same way). Furthermore, the systematic investigation on the effects on photoactivity of the CuW0.5Mo0.5O4 layer thickness evidenced that long-wavelength photons can better be exploited by thicker electrodes. PEC measurements in the presence of NaNO2, acting as a suitable hole scavenger ensuring enhanced photocurrent generation compared with that of water oxidation while minimizing dark currents, allowed us to elucidate the role that molybdenum incorporation plays on the charge separation efficiency in the bulk and on the charge injection efficiency at the photoanode surface. The adopted Mo for W substitution increases the visible light photoactivity of copper tungstate toward improved exploitation and storage of visible light into chemical energy via photoelectrocatalysis.
Collapse
Affiliation(s)
- Annalisa Polo
- Dipartimento di Chimica, Università degli Studi di Milano, via Golgi 19, I-20133 Milano, Italy
| | - Chiara Nomellini
- Dipartimento di Chimica, Università degli Studi di Milano, via Golgi 19, I-20133 Milano, Italy
| | - Ivan Grigioni
- Dipartimento di Chimica, Università degli Studi di Milano, via Golgi 19, I-20133 Milano, Italy
| | - Maria Vittoria Dozzi
- Dipartimento di Chimica, Università degli Studi di Milano, via Golgi 19, I-20133 Milano, Italy
| | - Elena Selli
- Dipartimento di Chimica, Università degli Studi di Milano, via Golgi 19, I-20133 Milano, Italy
| |
Collapse
|
92
|
Lhermitte CR, Polo A, Yao L, Boudoire FA, Guijarro N, Sivula K. Generalized Synthesis to Produce Transparent Thin Films of Ternary Metal Oxide Photoelectrodes. CHEMSUSCHEM 2020; 13:3645-3653. [PMID: 32372487 DOI: 10.1002/cssc.202000926] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Indexed: 06/11/2023]
Abstract
Developing facile approaches to prepare non-light-scattering ternary oxide thin film photoelectrodes is an important goal for solar water splitting tandem cells. Herein, a novel synthesis route is reported that employs ethylenediaminetetraacetic acid (EDTA) to enable compatible water solubility of diverse metal cations, which affords transparent films by solution processing. By using BiVO4 as a model material, a remarkable improvement in transparency is demonstrated, quantified by the direct transmittance at 600 nm of >80 % versus the <10 % observed with state-of-the-art electrodeposited thin films while maintaining reasonable solar-driven oxidation photocurrents (1.75 mA cm-2 in the presence of a sulfite hole scavenger). Furthermore, it is demonstrated that the synthesis technique can be applied in a general fashion towards the synthesis of diverse n- and p-type metal oxide materials, such as ZnFe2 O4 and CuFeO2 .
Collapse
Affiliation(s)
- Charles R Lhermitte
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Station 6, 1015, Lausanne, Switzerland
| | - Annalisa Polo
- Dipartimento di Chimica, Università degli Studi di Milano, via Golgi 19, 20133, Milano, Italy
| | - Liang Yao
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Station 6, 1015, Lausanne, Switzerland
| | - Florent A Boudoire
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Station 6, 1015, Lausanne, Switzerland
| | - Nestor Guijarro
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Station 6, 1015, Lausanne, Switzerland
| | - Kevin Sivula
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Station 6, 1015, Lausanne, Switzerland
| |
Collapse
|
93
|
Sun X, Tiwari D, Fermin DJ. Promoting Active Electronic States in LaFeO 3 Thin-Films Photocathodes via Alkaline-Earth Metal Substitution. ACS APPLIED MATERIALS & INTERFACES 2020; 12:31486-31495. [PMID: 32539332 DOI: 10.1021/acsami.0c08174] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The effects of alkaline-earth metal cation (AMC; Mg2+, Ca2+, Sr2+, and Ba2+) substitution on the photoelectrochemical properties of phase-pure LaFeO3 (LFO) thin-films are elucidated by X-ray photoemission spectroscopy (XPS), X-ray diffraction (XRD), diffuse reflectance, and electrochemical impedance spectroscopy (EIS). XRD confirms the formation of single-phase cubic LFO thin films with a rather complex dependence on the nature of the AMC and extent of substitution. Interestingly, subtle trends in lattice constant variations observed in XRD are closely correlated with shifts in the binding energies of Fe 2p3/2 and O 1s orbitals associated with the perovskite lattice. We establish a scaling factor between these two photoemission peaks, unveiling key correlation between Fe oxidation state and Fe-O covalency. Diffuse reflectance shows that optical transitions are little affected by AMC substitution below 10%, which are dominated by a direct bandgap transition close to 2.72 eV. Differential capacitance data obtained from EIS confirm the p-type characteristic of pristine LFO thin-films, revealing the presence of sub-bandgap electronic state (A-states) close to the valence band edge. The density of A-states is decreased upon AMC substitution, while the overall capacitance increases (increase in dopant level) and the apparent flat-band potential shifts toward more positive potentials. This behavior is consistent with the change in the valence band photoemission edge. In addition, capacitance data of cation-substituted films show the emergence of deeper states centered around 0.6 eV above the valence band edge (B-states). Photoelectrochemical responses toward the hydrogen evolution and oxygen reduction reactions in alkaline solutions show a complex dependence on alkaline-earth metal incorporation, reaching incident-photon-to-current conversion efficiency close to 20% in oxygen saturated solutions. We rationalize the photoresponses of the LFO films in terms of the effect sub-bandgap states on majority carrier mobility, charge transfer, and recombination kinetics.
Collapse
Affiliation(s)
- Xin Sun
- School of Chemistry, University of Bristol, Cantocks Close, Bristol BS8 1TS, U.K
| | - Devendra Tiwari
- School of Chemistry, University of Bristol, Cantocks Close, Bristol BS8 1TS, U.K
| | - David J Fermin
- School of Chemistry, University of Bristol, Cantocks Close, Bristol BS8 1TS, U.K
| |
Collapse
|
94
|
Girardi L, Rizzi GA, Bigiani L, Barreca D, Maccato C, Marega C, Granozzi G. Copper Vanadate Nanobelts as Anodes for Photoelectrochemical Water Splitting: Influence of CoO x Overlayers on Functional Performances. ACS APPLIED MATERIALS & INTERFACES 2020; 12:31448-31458. [PMID: 32558537 DOI: 10.1021/acsami.0c06915] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The design and development of environmentally friendly and robust anodes for photoelectrochemical (PEC) water splitting plays a critical role for the efficient conversion of radiant energy into hydrogen fuel. In this regard, quasi-1D copper vanadates (CuV2O6) were grown on conductive substrates by a hydrothermal procedure and processed for use as anodes in PEC cells, with particular attention on the role exerted by cobalt oxide (CoOx) overlayers deposited by radio frequency (RF) sputtering. The target materials were characterized in detail by a multitechnique approach with the aim at elucidating the interplay between their structure, composition, morphology, and the resulting activity as photoanodes. Functional tests were performed by standard electrochemical techniques like linear sweep voltammetry, impedance spectroscopy, and by the less conventional intensity modulated photocurrent spectroscopy, yielding an important insight into the material PEC properties. The obtained results highlight that, despite the fact that the supposedly favorable band alignment between CuV2O6 and Co3O4 did not yield a net current density increase, cobalt oxide-functionalized anodes afforded a remarkable durability enhancement, an important prerequisite for their eventual real-world applications. The concurrent phenomena accounting for the observed behavior are presented and discussed in relation to material physico-chemical properties.
Collapse
Affiliation(s)
- Leonardo Girardi
- Department of Chemical Sciences, Padova University and INSTM, Padova 35131, Italy
| | - Gian Andrea Rizzi
- Department of Chemical Sciences, Padova University and INSTM, Padova 35131, Italy
| | - Lorenzo Bigiani
- Department of Chemical Sciences, Padova University and INSTM, Padova 35131, Italy
| | - Davide Barreca
- CNR-ICMATE and INSTM, Department of Chemical Sciences, Padova University, Padova 35131 Italy
| | - Chiara Maccato
- Department of Chemical Sciences, Padova University and INSTM, Padova 35131, Italy
| | | | - Gaetano Granozzi
- Department of Chemical Sciences, Padova University and INSTM, Padova 35131, Italy
| |
Collapse
|
95
|
Yang F, Ke Z, Li Z, Patrick M, Abboud Z, Yamamoto N, Xiao X, Gu J. Photo/Bio-Electrochemical Systems for Environmental Remediation and Energy Harvesting. CHEMSUSCHEM 2020; 13:3391-3403. [PMID: 32281306 DOI: 10.1002/cssc.202000203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/08/2020] [Indexed: 06/11/2023]
Abstract
Water and energy systems are interdependent: water is utilized in each stage of energy production, and energy is required to extract, treat, and deliver water for many uses. However, energy and water systems are usually developed and managed independently. In the quest to develop environmentally friendly and energy-efficient solutions for water and energy issues, photoelectrochemical (PEC) energy conversion and microbial electrochemical (MEC) systems show profound potential for addressing environmental remediation problems and harvesting energy simultaneously. Herein, PEC, MEC, and their variant hybrid systems toward energy conversion and environmental remediation are summarized and discussed.
Collapse
Affiliation(s)
- Fan Yang
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182-1030, USA
| | - Zunjian Ke
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182-1030, USA
- Department of Physics, Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan, 430072, P.R. China
| | - Zhida Li
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182-1030, USA
| | - Margaret Patrick
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182-1030, USA
| | - Zeinab Abboud
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182-1030, USA
| | - Nobuyuki Yamamoto
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182-1030, USA
| | - Xiangheng Xiao
- Department of Physics, Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan, 430072, P.R. China
| | - Jing Gu
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182-1030, USA
| |
Collapse
|
96
|
Lee D, Baltazar VU, Smart TJ, Ping Y, Choi KS. Electrochemical Oxidation of Metal-Catechol Complexes as a New Synthesis Route to the High-Quality Ternary Photoelectrodes: A Case Study of Fe 2TiO 5 Photoanodes. ACS APPLIED MATERIALS & INTERFACES 2020; 12:29275-29284. [PMID: 32551469 DOI: 10.1021/acsami.0c05359] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A new electrochemical, solution-based synthesis method to prepare uniform multinary oxide photoelectrodes was developed. This method involves solubilizing multiple metal ions as metal-catechol complexes in a pH condition where they are otherwise insoluble. When some of the catechol ligands are electrochemically oxidized, the remaining metal complexes become insoluble and are deposited as metal-catechol films on the working electrode. The resulting films are then annealed to form crystalline multinary oxide electrodes. Because catechol can serve as a complexing agent for a variety of metal ions, the newly developed method can be used to prepare a variety of multinary oxide films. In the present study, we used this method to prepare n-type Fe2TiO5 photoanodes and investigated their photoelectrochemical properties for use in a photoelectrochemical water-splitting cell. We also performed a computational investigation with two goals. The first goal was to investigate small electron polaron formation in Fe2TiO5. Charge transport in most oxide photoelectrodes involves small polaron hopping, but small polaron formation in Fe2TiO5 has not been examined prior to this work. The second goal was to investigate the effect of substitutional Sn doping at the Fe site on the electronic band structure and the carrier concentration of Fe2TiO5. The combined experimental and theoretical results presented in this study greatly improve our understanding of Fe2TiO5 for use as a photoanode.
Collapse
Affiliation(s)
- Dongho Lee
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Valentin Urena Baltazar
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, United States
| | - Tyler J Smart
- Department of Physics, University of California, Santa Cruz, California 95064, United States
| | - Yuan Ping
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, United States
| | - Kyoung-Shin Choi
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
97
|
Unique advantages of 2D inorganic nanosheets in exploring high-performance electrocatalysts: Synthesis, application, and perspective. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213280] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
98
|
N–S-codoped mesoporous carbons from melamine-2-thenaldehyde polymers on carbon nanotubes for oxygen reduction and Zn-air batteries. J SOLID STATE CHEM 2020. [DOI: 10.1016/j.jssc.2020.121348] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
99
|
Lu C, Ma Z, Jäger J, Budnyak TM, Dronskowski R, Rokicińska A, Kuśtrowski P, Pammer F, Slabon A. NiO/Poly(4-alkylthiazole) Hybrid Interface for Promoting Spatial Charge Separation in Photoelectrochemical Water Reduction. ACS APPLIED MATERIALS & INTERFACES 2020; 12:29173-29180. [PMID: 32491825 PMCID: PMC7467539 DOI: 10.1021/acsami.0c03975] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 06/03/2020] [Indexed: 05/26/2023]
Abstract
Conjugated polymers are emerging as alternatives to inorganic semiconductors for the photoelectrochemical water splitting. Herein, semi-transparent poly(4-alkylthiazole) layers with different trialkylsilyloxymethyl (R3SiOCH2-) side chains (PTzTNB, R = n-butyl; PTzTHX, R = n-hexyl) are applied to functionalize NiO thin films to build hybrid photocathodes. The hybrid interface allows for the effective spatial separation of the photoexcited carriers. Specifically, the PTzTHX-deposited composite photocathode increases the photocurrent density 6- and 2-fold at 0 V versus the reversible hydrogen electrode in comparison to the pristine NiO and PTzTHX photocathodes, respectively. This is also reflected in the substantial anodic shift of onset potential under simulated Air Mass 1.5 Global illumination, owing to the prolonged lifetime, augmented density, and alleviated recombination of photogenerated electrons. Additionally, coupling the inorganic and organic components also enhances the photoabsorption and amends the stability of the photocathode-driven system. This work demonstrates the feasibility of poly(4-alkylthiazole)s as an effective alternative to known inorganic semiconductor materials. We highlight the interface alignment for polymer-based photoelectrodes.
Collapse
Affiliation(s)
- Can Lu
- Institute of Inorganic
Chemistry, RWTH Aachen University, Landoltweg 1, D-52056 Aachen, Germany
| | - Zili Ma
- Institute of Inorganic
Chemistry, RWTH Aachen University, Landoltweg 1, D-52056 Aachen, Germany
| | - Jakob Jäger
- Institute of Organic Chemistry II and Advanced Materials, University of Ulm, Albert-Einstein-Allee 11, D-89081 Ulm, Germany
- Carl Zeiss Jena GmbH, Zeiss Group, Carl-Zeiss-Straße 22, D-73447 Oberkochen, Germany
| | - Tetyana M. Budnyak
- Department of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16C, 10691 Stockholm, Sweden
| | - Richard Dronskowski
- Institute of Inorganic
Chemistry, RWTH Aachen University, Landoltweg 1, D-52056 Aachen, Germany
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, Liuxian Boulevard 7098, Shenzhen, Guangdong 518055, People’s Republic of China
| | - Anna Rokicińska
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Piotr Kuśtrowski
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Frank Pammer
- Institute of Organic Chemistry II and Advanced Materials, University of Ulm, Albert-Einstein-Allee 11, D-89081 Ulm, Germany
| | - Adam Slabon
- Department of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16C, 10691 Stockholm, Sweden
| |
Collapse
|
100
|
Walton RI. Perovskite Oxides Prepared by Hydrothermal and Solvothermal Synthesis: A Review of Crystallisation, Chemistry, and Compositions. Chemistry 2020; 26:9041-9069. [PMID: 32267980 DOI: 10.1002/chem.202000707] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Indexed: 11/07/2022]
Abstract
Perovskite oxides with general composition ABO3 are a large group of inorganic materials that can contain a variety of cations from all parts of the Periodic Table and that have diverse properties of application in fields ranging from electronics, energy storage to photocatalysis. Solvothermal synthesis routes to these materials have become increasingly investigated in the past decade as a means of direct crystallisation of the solids from solution. These methods have significant advantages leading to adjustment of crystal form from the nanoscale to the micron-scale, the isolation of compositions not possible using conventional solid-state synthesis and in addition may lead to scalable processes for producing materials at moderate temperatures. These aspects are reviewed, with examples taken from the past decade's literature on the solvothermal synthesis of perovskites with a systematic survey of B-site cations, from transition metals in Groups 4-8 and main group elements in Groups 13, 14 and 15, to solid solutions and heterostructures. As well as hydrothermal reactions, the use of various solvents and solution additives are discussed and some trends identified, along with prospects for developing control and predictability in the crystallisation of complex oxide materials.
Collapse
Affiliation(s)
- Richard I Walton
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| |
Collapse
|