51
|
Dash M, Palaniyandi K, Ramalingam S, Sahabudeen S, Raja NS. Exosomes isolated from two different cell lines using three different isolation techniques show variation in physical and molecular characteristics. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1863:183490. [PMID: 33212036 DOI: 10.1016/j.bbamem.2020.183490] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 09/13/2020] [Accepted: 10/06/2020] [Indexed: 02/07/2023]
Abstract
Exosomes are the nanoscopic lipid bi-layered extracellular vesicles with the potential to be utilized as targeted therapeutics. In our investigation, we compared three major exosome isolation techniques that were Total Exosome Isolation reagent (TEI), Protein organic solvent precipitation (PROSPR) and differential ultracentrifugation (UC) based on the biophysical and physicochemical characteristics of exosomes isolated from COLO 205 and MCF-7 cancer cell's conditioned media with an aim to select a suitable method for translational studies. 3D image analysis and particle size distribution of exosomes from their HRTEM images depicted the morphological differences. Molecular and analytical characterization of exosomes using western blotting, Raman and ATR-FTIR spectroscopy and the multivariate analysis on the spectral data obtained, assessed for better molecular specifications and purity of particle. TEI method isolated exosomes with higher exosomal yield, purity, and recovery directly translatable into drug delivery and targeted therapeutics whereas ultracentrifuge had good recovery of particle morphology but showed particle aggregation and yielded exosomes with smaller mean size. PROSPR technique isolated a mixture of EVs, showed lower protein recovery in PAGE and western blotting but higher spectroscopic protein to lipid ratio and distinguishable EV population in multivariate analysis compared to exosomes isolated by TEI and UC. This comparative study should help in choosing a specific exosome isolation technique required for the objective of downstream applications.
Collapse
Affiliation(s)
- Manish Dash
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603203, Tamil Nadu, India
| | - Kanagaraj Palaniyandi
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603203, Tamil Nadu, India
| | - Satish Ramalingam
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603203, Tamil Nadu, India
| | - S Sahabudeen
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603203, Tamil Nadu, India
| | - N S Raja
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603203, Tamil Nadu, India.
| |
Collapse
|
52
|
Recent advances in nanomaterial-based biosensors for the detection of exosomes. Anal Bioanal Chem 2020; 413:83-102. [PMID: 33164151 DOI: 10.1007/s00216-020-03000-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 10/04/2020] [Accepted: 10/09/2020] [Indexed: 12/24/2022]
Abstract
Exosomes are a type of extracellular vesicle actively secreted by almost all eukaryotic cells. They are ideal candidates for reliable next-generation biomarkers in the early diagnosis and therapeutic response evaluation of cancer. Thus, the quantification of exosomes is crucial in facilitating clinical research and application. Compared with traditional materials, nanomaterials have better optical, magnetic, electrical, and catalytic properties due to their small size, high specific surface area, and variable structure. The incorporation of nanomaterials into sensing systems is an attractive approach towards improving sensitivity and can provide improved sensor selectivity and stability. In this paper, we summarize the progress in nanomaterial-based exosome detection methods, including electrochemical biosensors, photoelectrochemical biosensors, colorimetric biosensors, fluorescence biosensors, chemiluminescence biosensors, electrochemiluminescence biosensors, surface plasmon resonance biosensors, and surface-enhanced Raman spectroscopy biosensors. Moreover, future research directions and challenges in exosome detection methods are discussed. We hope that this article will offer an overview of nanomaterial-based exosome detection techniques and open new avenues in disease research.Graphical abstract.
Collapse
|
53
|
Han BH, Kim S, Seo G, Heo Y, Chung S, Kang JY. Isolation of extracellular vesicles from small volumes of plasma using a microfluidic aqueous two-phase system. LAB ON A CHIP 2020; 20:3552-3559. [PMID: 32808641 DOI: 10.1039/d0lc00345j] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
As conventional bulky methods for extracellular vesicle (EV) separation are unsuitable for small volumes of samples, microfluidic devices are thought to offer a solution for the integrated and automatic processing of EV separation. This study demonstrates a simple microfluidic aqueous two-phase system (ATPS) for EV separation with high recovery efficiency to overcome the limitation of previous devices, which require complex external equipment or high cost manufacturing. With polyethylene glycol and dextran in the microfluidic channel, the isolation mechanism of the microfluidic ATPS was analyzed by comparison between two-phase and one-phase systems. Our device could facilitate continuous EV isolation with 83.4% recovery efficiency and remove 65.4% of the proteins from the EV-protein mixture. EVs were also successfully isolated from human plasma at high recovery efficiency.
Collapse
Affiliation(s)
- Bo Hoon Han
- Center for BioMicrosystems, Korea Institute of Science and Technology, Seoul, Republic of Korea. and School of Mechanical Engineering, Korea University, Seoul, Korea
| | - Sumi Kim
- Center for BioMicrosystems, Korea Institute of Science and Technology, Seoul, Republic of Korea.
| | - Geeyoon Seo
- Center for BioMicrosystems, Korea Institute of Science and Technology, Seoul, Republic of Korea.
| | - Youhee Heo
- Center for BioMicrosystems, Korea Institute of Science and Technology, Seoul, Republic of Korea. and Department of Biomedical Engineering, Sogang University, Seoul, Korea
| | - Seok Chung
- School of Mechanical Engineering, Korea University, Seoul, Korea and KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Korea
| | - Ji Yoon Kang
- Center for BioMicrosystems, Korea Institute of Science and Technology, Seoul, Republic of Korea. and Division of Bio-Medical Science & Technology (UST), Korea Institute of Science and Technology School, Seoul, Korea
| |
Collapse
|
54
|
Cabeza L, Perazzoli G, Peña M, Cepero A, Luque C, Melguizo C, Prados J. Cancer therapy based on extracellular vesicles as drug delivery vehicles. J Control Release 2020; 327:296-315. [PMID: 32814093 DOI: 10.1016/j.jconrel.2020.08.018] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/11/2020] [Accepted: 08/14/2020] [Indexed: 02/07/2023]
Abstract
Extracellular vesicles (EVs) are lipid bilayer vesicles of nanometric size secreted by cells to communicate with other cells, either nearby or remotely. Their physicochemical properties make them a promising nanomedicine for drug transport and release in cancer therapy. In this review, we present the different types and biogenesis of EVs and highlight the importance of adequately selecting the cell of origin in cancer therapy. Furthermore, the main methodologies followed for the isolation of EVs and drug loading, as well as the modification and functionalization of these vesicles to generate EV-based nanocarriers are discussed. Finally, we review some of the main studies using drug-loaded exosomes in tumor therapy both in in vitro and in vivo models (even in resistant tumors). These investigations show promising results, achieving significant improvement in the antitumor effect of drugs in most cases. However, the number of clinical trials and patents based on these nanoformulations is still low, thus further research is still warranted in this area.
Collapse
Affiliation(s)
- Laura Cabeza
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain; Biosanitary Research Institute ibs.GRANADA, 18012 Granada, Spain; Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
| | - Gloria Perazzoli
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain; Biosanitary Research Institute ibs.GRANADA, 18012 Granada, Spain
| | - Mercedes Peña
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
| | - Ana Cepero
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
| | - Cristina Luque
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
| | - Consolacion Melguizo
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain; Biosanitary Research Institute ibs.GRANADA, 18012 Granada, Spain; Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain.
| | - Jose Prados
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain; Biosanitary Research Institute ibs.GRANADA, 18012 Granada, Spain; Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
| |
Collapse
|
55
|
Serrano-Pertierra E, Oliveira-Rodríguez M, Matos M, Gutiérrez G, Moyano A, Salvador M, Rivas M, Blanco-López MC. Extracellular Vesicles: Current Analytical Techniques for Detection and Quantification. Biomolecules 2020; 10:E824. [PMID: 32481493 PMCID: PMC7357140 DOI: 10.3390/biom10060824] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/24/2020] [Accepted: 05/25/2020] [Indexed: 02/06/2023] Open
Abstract
Since their first observation, understanding the biology of extracellular vesicles (EV) has been an important and challenging field of study. They play a key role in the intercellular communication and are involved in important physiological and pathological functions. Therefore, EV are considered as potential biomarkers for diagnosis, prognosis, and monitoring the response to treatment in some diseases. In addition, due to their properties, EV may be used for therapeutic purposes. In the study of EV, three major points have to be addressed: 1. How to isolate EV from cell culture supernatant/biological fluids, 2. how to detect them, and 3. how to characterize and quantify. In this review, we focus on the last two questions and provide the main analytical techniques up-to-date for detection and profiling of EV. We critically analyze the advantages and disadvantages of each one, aimed to be of relevance for all researchers working on EV biology and their potential applications.
Collapse
Affiliation(s)
- Esther Serrano-Pertierra
- Department of Physical and Analytical Chemistry, University of Oviedo, 33006 Oviedo, Spain; (E.S.-P.); (M.O.-R.); (A.M.)
- Instituto Universitario de Biotecnología de Asturias, University of Oviedo, 33006 Oviedo, Spain; (M.M.); (G.G.)
| | - Myriam Oliveira-Rodríguez
- Department of Physical and Analytical Chemistry, University of Oviedo, 33006 Oviedo, Spain; (E.S.-P.); (M.O.-R.); (A.M.)
| | - María Matos
- Instituto Universitario de Biotecnología de Asturias, University of Oviedo, 33006 Oviedo, Spain; (M.M.); (G.G.)
- Department of Chemical and Enviromental Engineering, University of Oviedo, 33006 Oviedo, Spain
| | - Gemma Gutiérrez
- Instituto Universitario de Biotecnología de Asturias, University of Oviedo, 33006 Oviedo, Spain; (M.M.); (G.G.)
- Department of Chemical and Enviromental Engineering, University of Oviedo, 33006 Oviedo, Spain
| | - Amanda Moyano
- Department of Physical and Analytical Chemistry, University of Oviedo, 33006 Oviedo, Spain; (E.S.-P.); (M.O.-R.); (A.M.)
- Instituto Universitario de Biotecnología de Asturias, University of Oviedo, 33006 Oviedo, Spain; (M.M.); (G.G.)
| | - María Salvador
- Department of Physics & IUTA, University of Oviedo, Campus de Viesques, 33204 Gijón, Spain; (M.S.); (M.R.)
| | - Montserrat Rivas
- Department of Physics & IUTA, University of Oviedo, Campus de Viesques, 33204 Gijón, Spain; (M.S.); (M.R.)
| | - María Carmen Blanco-López
- Department of Physical and Analytical Chemistry, University of Oviedo, 33006 Oviedo, Spain; (E.S.-P.); (M.O.-R.); (A.M.)
- Instituto Universitario de Biotecnología de Asturias, University of Oviedo, 33006 Oviedo, Spain; (M.M.); (G.G.)
| |
Collapse
|
56
|
Xia Y, He XT, Xu XY, Tian BM, An Y, Chen FM. Exosomes derived from M0, M1 and M2 macrophages exert distinct influences on the proliferation and differentiation of mesenchymal stem cells. PeerJ 2020; 8:e8970. [PMID: 32355576 PMCID: PMC7185029 DOI: 10.7717/peerj.8970] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 03/24/2020] [Indexed: 12/11/2022] Open
Abstract
Background Different phenotypes of macrophages (M0, M1 and M2 Mφs) have been demonstrated to play distinct roles in regulating mesenchymal stem cells in various in vitro and in vivo systems. Our previous study also found that cell-conditioned medium (CM) derived from M1 Mφs supported the proliferation and adipogenic differentiation of bone marrow mesenchymal stem cells (BMMSCs), whereas CM derived from either M0 or M2 Mφs showed an enhanced effect on cell osteogenic differentiation. However, the underlying mechanism remains incompletely elucidated. Exosomes, as key components of Mφ-derived CM, have received increasing attention. Therefore, it is possible that exosomes may modulate the effect of Mφ-derived CM on the property of BMMSCs. This hypothesis was tested in the present study. Methods In this study, RAW264.7 cells were induced toward M1 or M2 polarization with different cytokines, and exosomes were isolated from the unpolarized (M0) and polarized (M1 and M2) Mφs. Mouse BMMSCs were then cultured with normal complete medium or inductive medium supplemented with M0-Exos, M1-Exos or M2-Exos. Finally, the proliferation ability and the osteogenic, adipogenic and chondrogenic differentiation capacity of the BMMSCs were measured and analyzed. Results We found that only the medium containing M1-Exos, rather than M0-Exos or M2-Exos, supported cell proliferation and osteogenic and adipogenic differentiation. This was inconsistent with CM-based incubation. In addition, all three types of exosomes had a suppressive effect on chondrogenic differentiation. Conclusion Although our data demonstrated that exosomes and CM derived from the same phenotype of Mφs didn’t exert exactly the same cellular influences on the cocultured stem cells, it still confirmed the hypothesis that exosomes are key regulators during the modulation effect of Mφ-derived CM on BMMSC property.
Collapse
Affiliation(s)
- Yu Xia
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, P. R. China
| | - Xiao-Tao He
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, P. R. China
| | - Xin-Yue Xu
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, P. R. China
| | - Bei-Min Tian
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, P. R. China
| | - Ying An
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, P. R. China
| | - Fa-Ming Chen
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, P. R. China
| |
Collapse
|
57
|
Zhao X, Luo C, Mei Q, Zhang H, Zhang W, Su D, Fu W, Luo Y. Aptamer-Cholesterol-Mediated Proximity Ligation Assay for Accurate Identification of Exosomes. Anal Chem 2020; 92:5411-5418. [PMID: 32207293 DOI: 10.1021/acs.analchem.0c00141] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Accurate identification of exosomes plays an essential role in facilitating disease diagnosis and therapies. Herein, we proposed an Aptamer-cholesterol-mediated Proximity Ligation Assay (AcmPLA) for accurate identification of exosomes in a dual-probe strategy, one aptamer probe for recognition of exosomal innate surface protein CD63 and another cholesterol probe for biolipid layer targeting. By integrating a proximity ligation of probes bound with exosomal biomarkers for specific recognition and a rolling circle amplification (RCA) strategy for signal amplification, we have successfully developed an exosomes-surface approach that can perform "AND" logic analysis of dual biomarkers, which not only could be used for exosomes quantification, but also for exosomes tracing. Besides RCA-initiated signal amplification, CD9 antibody-labeled magnetic beads were used to capture exosomes for isolation and secondary signal enrichment. Our approach can achieve specific exosomes isolation and accurate identification and thus could be exploited for broad applications in biological science, biomedical engineering, and personalized medicine.
Collapse
Affiliation(s)
- Xianxian Zhao
- Department of Clinical Laboratory, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.,Center for Smart Laboratory and Molecular Medicine, Medical School of Chongqing University, Chongqing, 400044, China
| | - Canjun Luo
- Department of General Surgery, The 906th Hospital of PLA, Ningbo, 325099, China
| | - Qiang Mei
- Department of Clinical Laboratory, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Hongmin Zhang
- The First People's Hospital of Chongqing Liang Jiang New Area, Chongqing, 401121, China
| | - Wenqing Zhang
- Department of Clinical Laboratory, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Dongwei Su
- Department of General Surgery, Changhai Hospital, The Second Military Medical University, Shanghai, 200433, China
| | - Weiling Fu
- Department of Clinical Laboratory, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yang Luo
- Center for Smart Laboratory and Molecular Medicine, Medical School of Chongqing University, Chongqing, 400044, China.,Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Department of Nuclear Medicine, the Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China
| |
Collapse
|