51
|
Marchuk MV, Asanov IP, Panafidin MA, Vorotnikov YA, Shestopalov MA. Nano TiO 2 and Molybdenum/Tungsten Iodide Octahedral Clusters: Synergism in UV/Visible-Light Driven Degradation of Organic Pollutants. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4282. [PMID: 36500904 PMCID: PMC9736415 DOI: 10.3390/nano12234282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
Emissions of various organic pollutants in the environment becomes a more and more acute problem in the modern world as they can lead to an ecological disaster in foreseeable future. The current situation forces scientists to develop numerous methods for the treatment of polluted water. Among these methods, advanced photocatalytic oxidation is a promising approach for removing organic pollutants from wastewater. In this work, one of the most common photocatalysts-titanium dioxide-was obtained by direct aqueous hydrolysis of titanium (IV) isopropoxide and impregnated with aqueous solutions of octahedral cluster complexes [{M6I8}(DMSO)6](NO3)4 (M = Mo, W) to overcome visible light absorption issues and increase overall photocatalytic activity. XRPD analysis showed that the titania is formed as anatase-brookite mixed-phase nanoparticles and cluster impregnation does not affect the morphology of the particles. Complex deposition resulted in the expansion of the absorption up to ~500 nm and in the appearance of an additional cluster-related band gap value of 1.8 eV. Both types of materials showed high activity in the photocatalytic decomposition of RhB under UV- and sunlight irradiation with effective rate constants 4-5 times higher than those of pure TiO2. The stability of the catalysts is preserved for up to 5 cycles of photodegradation. Scavengers' experiments revealed high impact of all of the active species in photocatalytic process indicating the formation of an S-scheme heterojunction photocatalyst.
Collapse
Affiliation(s)
- Margarita V. Marchuk
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Academician Lavrentiev Avenue, 630090 Novosibirsk, Russia
| | - Igor P. Asanov
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Academician Lavrentiev Avenue, 630090 Novosibirsk, Russia
| | - Maxim A. Panafidin
- Boreskov Institute of Catalysis SB RAS, 5 Academician Lavrentiev Avenue, 630090 Novosibirsk, Russia
| | - Yuri A. Vorotnikov
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Academician Lavrentiev Avenue, 630090 Novosibirsk, Russia
| | - Michael A. Shestopalov
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Academician Lavrentiev Avenue, 630090 Novosibirsk, Russia
| |
Collapse
|
52
|
Jakob DS, Centrone A. Visible to Mid-IR Spectromicroscopy with Top-Down Illumination and Nanoscale (≈10 nm) Resolution. Anal Chem 2022; 94:15564-15569. [PMID: 36321942 PMCID: PMC9798386 DOI: 10.1021/acs.analchem.2c03685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Photothermal induced resonance (PTIR), an atomic force microscopy (AFM) analogue of IR spectroscopy also known as AFM-IR, is capable of nanoscale lateral resolution and finds broad applications in biology and materials science. Here, the spectral range of a top-illumination PTIR setup operating in contact-mode is expanded for the first time to the visible and near-IR spectral ranges. The result is a tool that yields absorption spectra and maps of electronic and vibrational features with spatial resolution down to ≈10 nm. In addition to the improved resolution, the setup enables light-polarization-dependent PTIR experiments in the visible and near-IR ranges for the first time. While previous PTIR implementations in the visible used total internal reflection illumination requiring challenging sample preparations on an optically transparent prism, the top illumination used here greatly simplifies sample preparation and will foster a broad application of this method.
Collapse
Affiliation(s)
- Devon S Jakob
- Nanoscale Device Characterization Division, Physical Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, United States
| | - Andrea Centrone
- Nanoscale Device Characterization Division, Physical Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, United States
| |
Collapse
|
53
|
Li J, Wei X, Sun XX, Li R, Wu C, Liao J, Zheng T, Wu J. A Novel Strategy for Excellent Piezocatalytic Activity in Lead-Free BaTiO 3-Based Materials via Manipulating the Multiphase Coexistence. ACS APPLIED MATERIALS & INTERFACES 2022; 14:46765-46774. [PMID: 36198138 DOI: 10.1021/acsami.2c14322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Piezocatalysis is regarded as a fascinating technology for water remediation and possible disease treatment. A high piezoelectric coefficient (d33) is one of the most important parameters to determine piezocatalytic performance, which can be manipulated via phase boundary design. Herein, a novel strategy for excellent piezocatalytic activity in lead-free BaTiO3-based materials via manipulating the multiphase coexistence is proposed. The piezocatalyst of 0.82Ba(Ti0.89Sn0.11)O3-0.18(Ba0.7Ca0.3)TiO3 (0.82BTS-0.18BCT) with multiphase coexistence is prepared, and a large d33 can be obtained. As a result, 0.82BTS-0.18BCT exhibits excellent piezocatalytic performance for the degradation of Rhodamine B (RhB). Furthermore, the removal rate of RhB could reach more than 90% after vibration for 30 min, and the reaction rate constant (k) could reach 0.0706 min-1, which is much superior to that of most other representative perovskite-structured piezoelectric materials. Excellent piezocatalytic performance can be attributed to the strong local ferro-/piezoelectric response induced by the multiphase coexistence, as confirmed by the in situ piezoresponse force microscopy (PFM). Finally, the piezocatalytic degradation mechanism is analyzed systemically and proposed. This work not only provides a high-efficiency piezocatalyst but also sheds light on developing efficient BT-based piezocatalysts by manipulating the multiphase coexistence.
Collapse
Affiliation(s)
- Junhua Li
- College of Materials Science and Engineering, Sichuan University, Chengdu610065, China
| | - Xiaowei Wei
- College of Materials Science and Engineering, Sichuan University, Chengdu610065, China
| | - Xi-Xi Sun
- College of Materials Science and Engineering, Sichuan University, Chengdu610065, China
| | - Ruichen Li
- College of Materials Science and Engineering, Sichuan University, Chengdu610065, China
| | - Chao Wu
- College of Materials Science and Engineering, Sichuan University, Chengdu610065, China
| | - Jiayang Liao
- College of Materials Science and Engineering, Sichuan University, Chengdu610065, China
| | - Ting Zheng
- College of Materials Science and Engineering, Sichuan University, Chengdu610065, China
| | - Jiagang Wu
- College of Materials Science and Engineering, Sichuan University, Chengdu610065, China
| |
Collapse
|
54
|
Wang G, Li H, Li N, Chen D, He J, Xu Q, Lu J. Construction of Perylene‐based Amphiphilic Micelle and Its Efficient Adsorption and In Situ Photodegradation of Bisphenol A in Aqueous Solution. Angew Chem Int Ed Engl 2022; 61:e202210619. [DOI: 10.1002/anie.202210619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Guan Wang
- College of Chemistry Chemical Engineering and Materials Science Collaborative Innovation Center of Suzhou Nano Science and Technology Soochow University Suzhou 215123 P. R. China
| | - Hua Li
- College of Chemistry Chemical Engineering and Materials Science Collaborative Innovation Center of Suzhou Nano Science and Technology Soochow University Suzhou 215123 P. R. China
| | - Najun Li
- College of Chemistry Chemical Engineering and Materials Science Collaborative Innovation Center of Suzhou Nano Science and Technology Soochow University Suzhou 215123 P. R. China
| | - Dongyun Chen
- College of Chemistry Chemical Engineering and Materials Science Collaborative Innovation Center of Suzhou Nano Science and Technology Soochow University Suzhou 215123 P. R. China
| | - Jinghui He
- College of Chemistry Chemical Engineering and Materials Science Collaborative Innovation Center of Suzhou Nano Science and Technology Soochow University Suzhou 215123 P. R. China
| | - Qingfeng Xu
- College of Chemistry Chemical Engineering and Materials Science Collaborative Innovation Center of Suzhou Nano Science and Technology Soochow University Suzhou 215123 P. R. China
| | - Jianmei Lu
- College of Chemistry Chemical Engineering and Materials Science Collaborative Innovation Center of Suzhou Nano Science and Technology Soochow University Suzhou 215123 P. R. China
| |
Collapse
|
55
|
Du H, Yang F, Yao C, Zhong Z, Jiang P, Stanciu SG, Peng H, Hu J, Jiang B, Li Z, Lv W, Zheng F, Stenmark HA, Wu A. Multifunctional Modulation of High-Performance Zn x Fe 3-x O 4 Nanoparticles by Precisely Tuning the Zinc Doping Content. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201669. [PMID: 36101918 DOI: 10.1002/smll.202201669] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 08/02/2022] [Indexed: 06/15/2023]
Abstract
The possibility to precisely control important properties of nanoparticles (NPs) such as their size, morphology, surface charge, or doping content is crucial for enhancing the performance of existing solutions beyond the state-of-the-art and for enabling novel applications. In this work, custom-tailored Znx Fe3- x O4 NPs are synthesized at different Zn doping concentrations to augment and expand their usefulness for high-performance applications in nanomedicine. By precisely increasing the Zn2+ content in the range of 0 ≤ x ≤ 2.0, the discussed NPs can sequentially acquire valuable properties enabling magnetic resonance imaging, near-infrared (NIR) photothermal effects, NIR photocatalytic and photoelectric effects, depending on the variation of substitution position of the Zn2+ in the magnetite structure and the emergence of a ZnO/ZnFe2 O4 heterostructure at high doping concentrations. The presented work demonstrates and explainsa facile route for the synthesis and modulation of multifunctional nanomaterials with manifold roles in disease diagnostics and therapy, and provides helpful guidance in designing divalent transition metal ion-doped nanomaterials.
Collapse
Affiliation(s)
- Hui Du
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo, 315201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fang Yang
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo, 315201, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, 516000, China
| | - Chenyang Yao
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo, 315201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhicheng Zhong
- CAS Key Laboratory of Magnetic Materials and Devices & Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Peiheng Jiang
- CAS Key Laboratory of Magnetic Materials and Devices & Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Stefan G Stanciu
- Center for Microscopy-Microanalysis and Information Processing, University Politehnica of Bucharest, Bucharest, 060042, Romania
| | - Hao Peng
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo, 315201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiapeng Hu
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo, 315201, China
| | - Bo Jiang
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo, 315201, China
| | - Zihou Li
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo, 315201, China
| | - Wenhao Lv
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo, 315201, China
| | - Fang Zheng
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo, 315201, China
| | - Harald A Stenmark
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, 0379, Norway
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, 0379, Norway
| | - Aiguo Wu
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo, 315201, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, 516000, China
| |
Collapse
|
56
|
Aldeen EMS, Jalil AA, Mim RS, Alhebshi A, Hassan NS, Saravanan R. Altered zirconium dioxide based photocatalyst for enhancement of organic pollutants degradation: A review. CHEMOSPHERE 2022; 304:135349. [PMID: 35714961 DOI: 10.1016/j.chemosphere.2022.135349] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/10/2022] [Accepted: 06/12/2022] [Indexed: 06/15/2023]
Abstract
Heterogeneous advanced oxidation processes are a promising approach for cost-efficient removal of pollutants using semiconductors. Zirconium dioxide (ZrO2) is an auspicious material for photocatalytic activity owning to its suitable bandgap, stability, and low cost. However, ZrO2 suffers from fast recombination rate, and poor light harvesting ability. Nonetheless, extra modification has also shown improvements and therefore is worth investigating. The endeavour of this paper initially discusses the fundamentals with respect to reactive species, classification, and synthesis methods for ZrO2. Furthermore, with particular consideration to stability and reusability, several additional modification approaches for ZrO2-based photocatalysts such as doping and noble metals loading. Furthermore, the formation of heterojunctions has also been shown to boost photocatalytic activity while inhibiting charge carrier recombination. Finally, photocatalyst separation via magnetic-based photocatalysts are elucidated. As a result, ZrO2-based photocatalysts are regarded as a promising emerging technology that warrants further development and research.
Collapse
Affiliation(s)
- E M Sharaf Aldeen
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, UTM Johor Bahru, 81310, Johor, Malaysia
| | - A A Jalil
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, UTM Johor Bahru, 81310, Johor, Malaysia; Centre of Hydrogen Energy, Institute of Future Energy, UTM Johor Bahru, 81310, Johor, Malaysia.
| | - R S Mim
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, UTM Johor Bahru, 81310, Johor, Malaysia
| | - A Alhebshi
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, UTM Johor Bahru, 81310, Johor, Malaysia
| | - N S Hassan
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, UTM Johor Bahru, 81310, Johor, Malaysia; Centre of Hydrogen Energy, Institute of Future Energy, UTM Johor Bahru, 81310, Johor, Malaysia
| | - R Saravanan
- Faculty of Engineering, Department of Mechanical Engineering, University of Tarapacá, Avda, General Velasquez, 1775, Arica, Chile
| |
Collapse
|
57
|
Murali G, Reddy Modigunta JK, Park YH, Lee JH, Rawal J, Lee SY, In I, Park SJ. A Review on MXene Synthesis, Stability, and Photocatalytic Applications. ACS NANO 2022; 16:13370-13429. [PMID: 36094932 DOI: 10.1021/acsnano.2c04750] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Photocatalytic water splitting, CO2 reduction, and pollutant degradation have emerged as promising strategies to remedy the existing environmental and energy crises. However, grafting of expensive and less abundant noble-metal cocatalysts on photocatalyst materials is a mandatory practice to achieve enhanced photocatalytic performance owing to the ability of the cocatalysts to extract electrons efficiently from the photocatalyst and enable rapid/enhanced catalytic reaction. Hence, developing highly efficient, inexpensive, and noble-metal-free cocatalysts composed of earth-abundant elements is considered as a noteworthy step toward considering photocatalysis as a more economical strategy. Recently, MXenes (two-dimensional (2D) transition-metal carbides, nitrides, and carbonitrides) have shown huge potential as alternatives for noble-metal cocatalysts. MXenes have several excellent properties, including atomically thin 2D morphology, metallic electrical conductivity, hydrophilic surface, and high specific surface area. In addition, they exhibit Gibbs free energy of intermediate H atom adsorption as close to zero and less than that of a commercial Pt-based cocatalyst, a Fermi level position above the H2 generation potential, and an excellent ability to capture and activate CO2 molecules. Therefore, there is a growing interest in MXene-based photocatalyst materials for various photocatalytic events. In this review, we focus on the recent advances in the synthesis of MXenes with 2D and 0D morphologies, the stability of MXenes, and MXene-based photocatalysts for H2 evolution, CO2 reduction, and pollutant degradation. The existing challenges and the possible future directions to enhance the photocatalytic performance of MXene-based photocatalysts are also discussed.
Collapse
Affiliation(s)
- G Murali
- Department of Polymer Science and Engineering, Department of IT-Energy Convergence (BK21 FOUR), Chemical Industry Institute, Korea National University of Transportation, Chungju 27469, Republic of Korea
| | - Jeevan Kumar Reddy Modigunta
- Department of Polymer Science and Engineering, Department of IT-Energy Convergence (BK21 FOUR), Chemical Industry Institute, Korea National University of Transportation, Chungju 27469, Republic of Korea
| | - Young Ho Park
- Department of Polymer Science and Engineering, Department of IT-Energy Convergence (BK21 FOUR), Chemical Industry Institute, Korea National University of Transportation, Chungju 27469, Republic of Korea
| | - Jong-Hoon Lee
- Department of Chemistry, Inha University, Incheon 22212, Republic of Korea
| | - Jishu Rawal
- Department of Chemistry, Inha University, Incheon 22212, Republic of Korea
| | - Seul-Yi Lee
- Department of Chemistry, Inha University, Incheon 22212, Republic of Korea
| | - Insik In
- Department of Polymer Science and Engineering, Department of IT-Energy Convergence (BK21 FOUR), Chemical Industry Institute, Korea National University of Transportation, Chungju 27469, Republic of Korea
| | - Soo-Jin Park
- Department of Chemistry, Inha University, Incheon 22212, Republic of Korea
| |
Collapse
|
58
|
Rana P, Kaushik B, Solanki K, Saini KM, Sharma RK. Development of heterogeneous photocatalysts via the covalent grafting of metal complexes on various solid supports. Chem Commun (Camb) 2022; 58:11354-11377. [PMID: 36148784 DOI: 10.1039/d2cc03568e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
To date, remarkable progress has been achieved in the development of photocatalysts owing to their high activity, selectivity, and tunable light absorption in the visible light range. Recently, heterogeneous photocatalytic systems have emerged as potential candidates due to their beneficial attributes (e.g., high surface area, ease of functionalization and facile separation). Herein, we provide a concise overview of the rational design of heterogeneous photocatalysts by grafting photoactive complexes on heterogeneous support matrices via covalent grafting and their detailed characterization techniques, which have been followed by the landmark examples of their applications. Also, major challenges and opportunities in the forthcoming progress of these appealing areas are emphasised.
Collapse
Affiliation(s)
- Pooja Rana
- Green Chemistry Network Centre, Department of Chemistry, University of Delhi, New Delhi-110007, India.
| | - Bhawna Kaushik
- Green Chemistry Network Centre, Department of Chemistry, University of Delhi, New Delhi-110007, India.
| | - Kanika Solanki
- Green Chemistry Network Centre, Department of Chemistry, University of Delhi, New Delhi-110007, India.
| | - Kapil Mohan Saini
- Kalindi College, University of Delhi, New Delhi, Delhi 110008, India
| | - R K Sharma
- Green Chemistry Network Centre, Department of Chemistry, University of Delhi, New Delhi-110007, India.
| |
Collapse
|
59
|
Khan M, Assal ME, Nawaz Tahir M, Khan M, Ashraf M, Rafe Hatshan M, Khan M, Varala R, Mohammed Badawi N, Farooq Adil S. Graphene/Inorganic Nanocomposites: Evolving Photocatalysts for Solar Energy Conversion for Environmental Remediation. JOURNAL OF SAUDI CHEMICAL SOCIETY 2022. [DOI: 10.1016/j.jscs.2022.101544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
60
|
Facile synthesis of VS2/CdS/NaYF4: Yb, Er ternary heterojunctions for the visible-near-infrared-light driven photocatalysis. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
61
|
Remesal ER, Morales-García Á. Carbon-doped anatase titania nanoparticles: similarities and differences with respect to bulk and extended surface models. Phys Chem Chem Phys 2022; 24:21381-21387. [PMID: 36047279 DOI: 10.1039/d2cp02455a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
C-Doping of titania nanoparticles is analyzed by using all-electron density functional theory-based calculations considering the (TiO2)84 nanoparticle as a realistic representative of nanoparticles in the scalable regime. Several sites are evaluated including substituting oxygen (CO) and titanium (CTi) sites as well as interstitial (Ci) situations. The formation energy of such a doped structure is studied as a function of the oxygen chemical potential (or oxygen partial pressure). Our calculations predict that low partial oxygen pressure favors the formation of C-doped (TiO2)84 NPs at oxygen and interstitial sites. For the former, the most stable situation is for O sites at the inner part of the nanoparticle. Interestingly, the substitution of O by C at facet sites requires formation energies as those reported in previous studies where the bulk anatase and surfaces models were considered. However, C-doping - at other low coordinated sites not presented in extended models - is even more favorable which shows the need to employ more realistic models for nanostructures involved in photocatalytic processes.
Collapse
Affiliation(s)
- Elena R Remesal
- Departament de Ciència de Materials i Química Física & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, c/Martí i Franquès 1-11, 08028 Barcelona, Spain.
| | - Ángel Morales-García
- Departament de Ciència de Materials i Química Física & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, c/Martí i Franquès 1-11, 08028 Barcelona, Spain.
| |
Collapse
|
62
|
Wang G, Li H, Li N, Chen D, He J, Xu Q, Lu JM. Construction of Perylene‐based Amphiphilic Micelle and Its Efficient Adsorption and In‐situ Photodegradation of Bisphenol A in Aqueous Solution. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202210619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Guan Wang
- Soochow University College of Chemistry, Chemical Engineering and Materials Science Soochow University, No. 199, Ren'ai Road, Suzhou city, Jiangsu province 215000 CHINA
| | - Hua Li
- Soochow University College of Chemistry, Chemical Engineering and Materials Science Soochow University, No. 199, Ren'ai Road, Suzhou city, Jiangsu province 215000 CHINA
| | - Najun Li
- Soochow University College of Chemistry, Chemical Engineering and Materials Science CHINA
| | - Dongyun Chen
- Soochow University College of Chemistry, Chemical Engineering and Materials Science CHINA
| | - Jinghui He
- Soochow University College of Chemistry, Chemical Engineering and Materials Science CHINA
| | - Qingfeng Xu
- Soochow University College of Chemistry, Chemical Engineering and Materials Science CHINA
| | - Jian-Mei Lu
- Soochow University College of Chemistry, Chemical Engineering and Materials Science No.199 Renai RoadSuzhou Industrial Park 215123 Suzhou CHINA
| |
Collapse
|
63
|
Ahmed AI, Kospa DA, Gamal S, Samra SE, Salah AA, El-Hakam SA, Awad Ibrahim A. Fast and simple fabrication of reduced graphene oxide-zinc tungstate nanocomposite with enhanced photoresponse properties as a highly efficient indirect sunlight driven photocatalyst and antibacterial agent. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.113907] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
64
|
Zehtab-Lotfi E, Amani-Ghadim AR, Soltani B. Visible light-driven photocatalytic activity of wide band gap ATiO 3 (A = Sr, Zn and Cd) perovskites by lanthanide doping and the formation of a mesoporous heterostructure with ZnS QDs. Dalton Trans 2022; 51:12198-12212. [PMID: 35894544 DOI: 10.1039/d2dt01751b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Charge carrier recombination and wide band gap energy are still the main challenges in the visible-light-driven photocatalytic applications of titanate perovskites, ATiO3. Herein, three strategies are rationally used to achieve a titanate-based photocatalyst with high photocatalytic performance under visible light. In the first step, SrTiO3, ZnTiO3, and CdTiO3 perovskites were synthesized and their photocatalytic activity was evaluated in the degradation of methylene blue (MB) and bisphenol A (BPA). Then, a dysprosium cation (Dy3+) was doped into an ATiO3 crystalline lattice. Systematic investigations indicate that Dy doping in SrTiO3 and CdTiO3 extends the ligand to metal charge transfer absorption edge to visible wavelengths leading to the activation of doped perovskites under visible light. Higher visible-light-driven photocatalytic performance (73.29% for MB and 52.57% for BPA) and higher total organic carbon (TOC) removal (59.20% for MB and 39.53% for BPA) have been achieved by Dy doped CdTiO3 compared to other photocatalysts. Finally, we prepared a Dy-CdTP/ZnS QD mesoporous type-II heterostructure by the in situ growth of ZnS QDs on a flower-like Dy-CdTP. This design accelerates the separation and transfer of photogenerated electron-hole pairs. The surface area of the Dy-CdTP/ZnS QD heterostructure was ∼11.6 times greater than that of Dy-CdTP, offering a large surface area for the adsorption of organics, and abundant active sites for photocatalytic degradation. Taking advantage of the large surface area and considerable suppressing of the charge carrier recombination, the optimized Dy-CdTP(0.6)/ZnS QD photocatalyst exhibits excellent and stable performance for the degradation of MB (98.25%) and BPA (89.12%) with their considerable mineralization under visible light.
Collapse
Affiliation(s)
- Elnaz Zehtab-Lotfi
- Department of Chemistry, Faculty of Science, Azarbaijan Shahid Madani University (ASMU), Tabriz 53751-71379, Iran
| | - Ali Reza Amani-Ghadim
- Applied Chemistry Research laboratory, Department of Chemistry, Faculty of Basic Science, Azarbaijan Shahid Madani University (ASMU), Tabriz 53751-71379, Iran. .,New Technologies in the Environment Research Center, Azarbaijan Shahid Madani University (ASMU), Tabriz 53751-71379, Iran
| | - Behzad Soltani
- Department of Chemistry, Faculty of Science, Azarbaijan Shahid Madani University (ASMU), Tabriz 53751-71379, Iran
| |
Collapse
|
65
|
Liu X, Wang X, Xu N, Zhang Z, Li X, Liu G, Wang X. A Multifunctional {P2Mo5}-based Hybrid Applying to Catalysis, Electrocatalysis and Dye Adsorption. Chem Res Chin Univ 2022. [DOI: 10.1007/s40242-022-2129-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
66
|
Gabriunaite I, Valiuniene A, Ramanavicius S, Ramanavicius A. Biosensors Based on Bio-Functionalized Semiconducting Metal Oxides. Crit Rev Anal Chem 2022; 54:549-564. [PMID: 35714203 DOI: 10.1080/10408347.2022.2088226] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Immobilization of biomaterials is a very important task in the development of biofuel cells and biosensors. Some semiconducting metal-oxide-based supporting materials can be used in these bioelectronics-based devices. In this article, we are reviewing some functionalization methods that are applied for the immobilization of biomaterials. The most significant attention is paid to the immobilization of biomolecules on the surface of semiconducting metal oxides. The improvement of biomaterials immobilization on metal oxides and analytical performance of biosensors by coatings based on conducting polymers, self-assembled monolayers and lipid membranes is discussed.
Collapse
Affiliation(s)
- Inga Gabriunaite
- Vilnius University, Faculty of Chemistry and Geosciences, Institute of Chemistry, Department of Physical Chemistry, Vilnius, Lithuania
| | - Ausra Valiuniene
- Vilnius University, Faculty of Chemistry and Geosciences, Institute of Chemistry, Department of Physical Chemistry, Vilnius, Lithuania
| | - Simonas Ramanavicius
- Centre for Physical Sciences and Technology, Department of Electrochemical Material Science, Vilnius, Lithuania
| | - Arunas Ramanavicius
- Vilnius University, Faculty of Chemistry and Geosciences, Institute of Chemistry, Department of Physical Chemistry, Vilnius, Lithuania
- Centre for Physical Sciences and Technology, Department of Electrochemical Material Science, Vilnius, Lithuania
| |
Collapse
|
67
|
Always-on photocatalytic antibacterial facemask with mini UV-LED array. MATERIALS TODAY SUSTAINABILITY 2022; 18. [PMCID: PMC8828298 DOI: 10.1016/j.mtsust.2022.100117] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The facemask is a device to protect yourself and others against pandemics, such as coronavirus disease 2019 (COVID-19), and adding a functional filter to the facemask could offer extra protection against infectious microbes (such as bacteria and viruses) to the wearer. Here, we designed and fabricated an always-on photocatalytic antibacterial facemask, which comprised a reusable polypropylene filter layer coated with the photocatalytic laminated ZnO/TiO2 bilayer and a separate UV-LEDs layer to supply UV whenever necessary. The fabricated photocatalytic filter was able to be directly inserted into the reusable facemask together with the UV-LEDs layer. This facemask could be used repeatedly and sustainably anytime and anywhere regardless of solar illumination. The photocatalytic filter exhibited an excellent photocatalytic antibacterial effect likely due to recombination suppression of electrons and holes of ZnO/TiO2 bilayer and wetting transition from hydrophilic to superhydrophilic state on the surface of the filter. Thanks to the kirigami pattern in both photocatalytic filter and UV-LEDs layer, full-face covering, breathability, flexibility, and the snug fit are believed to be improved. Although further in-depth studies are still needed and there is a long way to go, we expect our design idea on the facemask to be considered in various fields.
Collapse
|
68
|
Ma X, Gao Y, Yang B, Lou X, Huang J, Ma L, Jing D. Enhanced charge separation in La 2NiO 4 nanoplates by coupled piezocatalysis and photocatalysis for efficient H 2 evolution. NANOSCALE 2022; 14:7083-7095. [PMID: 35476112 DOI: 10.1039/d2nr01202b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Photocatalytic hydrogen evolution is one promising method for solar energy conversion, but the rapid charge recombination limits its efficiency. To this end, in this work, grain size, and hence the charge carrier migration path, is reduced by lowering the synthesis temperature of two-dimensional visible light-responsive La2NiO4 perovskite. Interestingly, the hydrogen yield for the piezoelectric response of La2NiO4 under only 40 kHz ultrasonic vibration is as high as 680 μmol h-1 g-1, which is 80 times that under only 600 mW cm-2 visible light irradiation. More surprisingly, the hydrogen production rate under both light illumination and ultrasonic vibration is 129 times higher than under visible light irradiation alone. Clearly, a synergistic effect exists between piezocatalysis and photocatalysis. The hydrogen production activity of the samples with water splitting can reach 1097 μmol h-1 g-1 without any sacrificial reagent or co-catalyst, when the light intensity reaches about 1000 mW cm-2, which is a much higher hydrogen evolution rate by piezo-photocatalysis than is achieved by either piezocatalysis or photocatalysis individually. Further analysis indicates that the internal electric field generated by deformation of the La2NiO4 edge under piezoelectric action facilitates the directional separation and migration of photogenerated charges, which in turn significantly enhances the efficiency of use of photogenerated charges for hydrogen production. The investigation here provides a novel approach to design a new reaction system for hydrogen production by coupling multiple external physical fields.
Collapse
Affiliation(s)
- Xinyu Ma
- International Research Center for Renewable Energy & State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China.
| | - Yangfei Gao
- Frontier Institute of Science and Technology, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Bian Yang
- School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, Shaanxi, People's Republic of China
| | - Xiaojie Lou
- Frontier Institute of Science and Technology, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Jianbing Huang
- International Research Center for Renewable Energy & State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China.
| | - Lijing Ma
- International Research Center for Renewable Energy & State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China.
| | - Dengwei Jing
- International Research Center for Renewable Energy & State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China.
| |
Collapse
|
69
|
Khan I, Luo M, Khan S, Asghar H, Saeed M, Khan S, Khan A, Humayun M, Guo L, Shi B. Green synthesis of SrO bridged LaFeO 3/g-C 3N 4 nanocomposites for CO 2 conversion and bisphenol A degradation with new insights into mechanism. ENVIRONMENTAL RESEARCH 2022; 207:112650. [PMID: 34979124 DOI: 10.1016/j.envres.2021.112650] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 12/24/2021] [Accepted: 12/28/2021] [Indexed: 06/14/2023]
Abstract
Very recently the green synthesis routes of nanomaterials have attracted massive attention as it overcome the sustainability concerns of conventional synthesis approaches. With this heed, in this novel research work we have synthesized the g-C3N4 nanosheets based nanocomposites by utilizing Eriobotrya japonica as mediator and stabilizer agent. Our designed bio-caped and green g-C3N4 nanosheets based nanocomposites have abundant organic functional groups, activated surface and strong adsorption capability which are very favorable for conversion CO2 into useful products and bisphenol A degradation. Beneficial to further upgrade the performances of g-C3N4 nanosheets, the resulting pristine g-C3N4 nanosheets are coupled with LaFeO3 nanosheets via SrO bridge. Based on our experimental results such as TEM, XRD, DRS, TPD, TGA, PL, PEC and FS spectra linked with OH amount it is confirmed that the biologically mediated green g-C3N4 nanosheets are eco-friendly, highly efficient and stable. Furthermore, the coupling of LaFeO3 nanosheets enlarged the surface area, enhanced the charge separation, while the insertion of SrO bridge worked as facilitator for electron transportation and photo-electron modulation. In contrast to pristine green g-C3N4 nanosheets (GCN), the activities of final resulting sample 6LFOS-(4SrO)-GCN are improved by 8.0 times for CO2 conversion (CH4 = 4.2, CO = 9.2 μmol g-1 h-1) and 2.5-fold for bisphenol A degradation (88%) respectively. More specifically, our current research work will open a new gateway to design cost effective, eco-friendly and biological inspired green nanomaterials for CO2 conversion and organic pollutants degradation which will further support the net zero carbon emission manifesto and the optimization of carbon neutrality level.
Collapse
Affiliation(s)
- Iltaf Khan
- College of Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing, 102617, PR China; Beijing Academy of Safety Engineering and Technology, 19 Qing-Yuan North Road, Daxing District, Beijing, 102617, China; School of Chemistry and Environment, Beijing University of Aeronautics and Astronautics, Beijing, 100191, China.
| | - Mingsheng Luo
- College of Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing, 102617, PR China; Beijing Academy of Safety Engineering and Technology, 19 Qing-Yuan North Road, Daxing District, Beijing, 102617, China.
| | - Sohail Khan
- Department of Pharmacy, University of Swabi, Khyber Pakhtunkhwa, 94640, Pakistan
| | - Humaira Asghar
- Department of Chemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Muhammad Saeed
- Department of Chemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Shoaib Khan
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits and Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Aftab Khan
- College of Agriculture, Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, Shihezi University, Shihezi, Xinjiang, 832003, China
| | - Muhammad Humayun
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Lin Guo
- School of Chemistry and Environment, Beijing University of Aeronautics and Astronautics, Beijing, 100191, China
| | - Buchang Shi
- Department of Chemistry, Eastern Kentucky University, Richmond, KY, 40475, USA
| |
Collapse
|
70
|
Gan L, Mei H, Lin Q, Peng J, Ji X, Zhang R, Wang X. Three-dimensionally ordered Macroporous perovskite sodium tantalum for robust hydrogen and hydrogen peroxide production. J Colloid Interface Sci 2022; 613:597-605. [DOI: 10.1016/j.jcis.2022.01.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/29/2021] [Accepted: 01/06/2022] [Indexed: 10/19/2022]
|
71
|
Zhong W, Xu J, Wang P, Zhu B, Fan J, Yu H. Novel core-shell Ag@AgSe nanoparticle co-catalyst: In situ surface selenization for efficient photocatalytic H2 production of TiO2. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)63969-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
72
|
Tang JH, Han G, Li G, Yan K, Sun Y. Near-infrared light photocatalysis enabled by a ruthenium complex-integrated metal–organic framework via two-photon absorption. iScience 2022; 25:104064. [PMID: 35355522 PMCID: PMC8958328 DOI: 10.1016/j.isci.2022.104064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/23/2021] [Accepted: 03/09/2022] [Indexed: 11/18/2022] Open
Abstract
Photocatalysis under UV/visible light irradiation has emerged as one of the green methodologies for solar energy utilization and organic synthesis. These photocatalytic processes are typically initiated by one-photon-absorbing metal complexes or organic dyes. Nevertheless, the intrinsic restrictions of UV/visible light irradiation, such as shallow penetration in reaction solutions, competing absorption by substrates, and limited coverage of the solar spectrum, call for the development of innovative photocatalysts functioning under longer wavelength irradiation. Herein, we report a ruthenium complex containing a metal-organic framework, MOF-Ru1, which can drive diverse organic reactions under 740 nm light irradiation following the two-photon absorption (TPA) process. Various organic transformations such as energy transfer, reductive, oxidative, and redox neutral reactions were realized using this heterogeneous hybrid photocatalyst. Overall, MOF-Ru1 represents an intriguing TPA photocatalyst active under near-infrared light irradiation, paving a way for the efficient utilization of low-energy light and convenient photocatalyst recycling because of phase separation. Ru complexes with π-conjugation ligands show two-photon absorption of NIR photons Hybrid MOF-Ru has NIR light-driven photocatalytic performance with recyclability A variety of organic reactions were photocatalyzed by MOF-Ru under 740 nm irradiation
Collapse
Affiliation(s)
- Jian-Hong Tang
- Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Guanqun Han
- Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Guodong Li
- Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Kaili Yan
- Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Yujie Sun
- Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, USA
- Corresponding author
| |
Collapse
|
73
|
Controlled Synthesis and Photoelectrochemical Performance Enhancement of Cu2−xSe Decorated Porous Au/Bi2Se3 Z-Scheme Plasmonic Photoelectrocatalyst. Catalysts 2022. [DOI: 10.3390/catal12040359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In this paper, uniform Cu2−xSe-modified Au/Bi2Se3 hybrid nanoparticles with porous shells have been prepared through a cation exchange method. Bi2Se3/Cu2−xSe Z-scheme heterojunction is introduced onto Au nanocube by replacing Bi3+ with Cu2+. Owing to the effective coupling between Au core and semiconductor shells, Au/Bi2Se3/Cu2−xSe hybrids present a broad and strong plasmon resonance absorption in the visible band. More intriguingly, the carrier lifetime of Au/Bi2Se3/Cu2−xSe hybrid photoelectrodes can be further tailored with corresponding Cu2−xSe content. Through parameter optimization, 0.1-Au/Bi2Se3/Cu2−xSe electrode exhibits the longest electron lifetime (86.03 ms) among all the parallel samples, and corresponding photoelectrochemical performance enhancement is also observed in the tests. Compared with that of pure Bi2Se3 (0.016% at 0.90 V vs. RHE) and Au/Bi2Se3 (0.02% at 0.90 V vs. RHE) nanoparticles, the maximum photoconversion efficiency of porous Au/Bi2Se3/Cu2−xSe hybrid photoanodes increased by 5.87 and 4.50 times under simulated sunlight illumination, attributing to the cooperation of Z-scheme heterojunction and plasmon resonance enhancement effects. All the results indicate that Au/Bi2Se3/Cu2−xSe porous hybrids combine eco-friendliness with excellent sunlight harvesting capability and effectively inhibiting the charge recombination, which provide a new idea for efficient solar-driven water splitting.
Collapse
|
74
|
Li S, Xu W, Meng L, Tian W, Li L. Recent Progress on Semiconductor Heterojunction‐Based Photoanodes for Photoelectrochemical Water Splitting. SMALL SCIENCE 2022. [DOI: 10.1002/smsc.202100112] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Shengnan Li
- School of Physical Science and Technology Jiangsu Key Laboratory of Thin Films Center for Energy Conversion Materials & Physics (CECMP) Soochow University Suzhou 215006 P. R. China
| | - Weiwei Xu
- School of Physical Science and Technology Jiangsu Key Laboratory of Thin Films Center for Energy Conversion Materials & Physics (CECMP) Soochow University Suzhou 215006 P. R. China
| | - Linxing Meng
- School of Physical Science and Technology Jiangsu Key Laboratory of Thin Films Center for Energy Conversion Materials & Physics (CECMP) Soochow University Suzhou 215006 P. R. China
| | - Wei Tian
- School of Physical Science and Technology Jiangsu Key Laboratory of Thin Films Center for Energy Conversion Materials & Physics (CECMP) Soochow University Suzhou 215006 P. R. China
| | - Liang Li
- School of Physical Science and Technology Jiangsu Key Laboratory of Thin Films Center for Energy Conversion Materials & Physics (CECMP) Soochow University Suzhou 215006 P. R. China
| |
Collapse
|
75
|
Recent advances on dual-functional photocatalytic systems for combined removal of hazardous water pollutants and energy generation. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04677-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
76
|
Wang JT, Cai YL, Liu XJ, Zhang XD, Cai FY, Cao HL, Zhong Z, Li YF, Lü J. Unveiling the visible-light-driven photodegradation pathway and products toxicity of tetracycline in the system of Pt/BiVO 4 nanosheets. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127596. [PMID: 34808448 DOI: 10.1016/j.jhazmat.2021.127596] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/17/2021] [Accepted: 10/22/2021] [Indexed: 06/13/2023]
Abstract
The antibiotics pollution has currently captured increasing concerns due to its potential hazards to the environment and human health. The development of efficient and viable techniques for the removal of antibiotics is one of the research hotspots in fields of wastewater treatment and pharmaceutical industry. Although the photodegradation of antibiotics is widely studied, the evolution and toxicity of degradation intermediates have been rarely documented. Herein, Pt nanoparticles (NPs) decorated BiVO4 nanosheets (Pt/BiVO4 NSs) that exhibit excellent tetracycline (TC) photodegradation activity and stability have been prepared. Especially, the TC degradation efficiency reaches ca. 88.5% after 60 min under visible light irradiation, which is superior to most of the metal loaded two-dimensional photocatalysts reported hitherto. The excellent photocatalytic activity is attributable to the enhanced light absorption capacity and charge separation efficiency in Pt/BiVO4 NSs. h+, •O2- and •OH are the main active species for TC degradation, resulting in three possible degradation pathways. Furthermore, we first verify that TC solutions treated by Pt/BiVO4 NSs are harmless to Escherichia coli K-12 and various bacteria in natural rivers, which would not stimulate Escherichia coli to produce antibiotics resistance genes (ARGs). This work develops an environmentally friendly photodegradation strategy using Pt/BiVO4 NSs with potentials for efficient remediation of antibiotics pollution in wastewater.
Collapse
Affiliation(s)
- Jun-Tao Wang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, No. 15 Shang Xia Dian Road, Fuzhou 350002, China
| | - Yong-Li Cai
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, No. 15 Shang Xia Dian Road, Fuzhou 350002, China
| | - Xiang-Ji Liu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, No. 15 Shang Xia Dian Road, Fuzhou 350002, China
| | - Xiao-Dong Zhang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, No. 15 Shang Xia Dian Road, Fuzhou 350002, China
| | - Feng-Ying Cai
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, No. 15 Shang Xia Dian Road, Fuzhou 350002, China
| | - Hai-Lei Cao
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, No. 15 Shang Xia Dian Road, Fuzhou 350002, China
| | - Zhou Zhong
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, No. 15 Shang Xia Dian Road, Fuzhou 350002, China.
| | - Ya-Feng Li
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, No. 2 Xue Yuan Road, Fuzhou 350116, China
| | - Jian Lü
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, No. 15 Shang Xia Dian Road, Fuzhou 350002, China; State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, No. 2 Xue Yuan Road, Fuzhou 350116, China.
| |
Collapse
|
77
|
Khane A, Tahmasebi N, Kaboli HS. PVP-assisted hydrothermal synthesis of BiOCl/Bi2Mo3O12 photocatalyst for decolorization of rhodamine B under visible-light irradiation. KOREAN J CHEM ENG 2022. [DOI: 10.1007/s11814-021-1042-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
78
|
Liu Y, Chen S, Li K, Wang J, Chen P, Wang H, Li J, Dong F. Promote the activation and ring opening of intermediates for stable photocatalytic toluene degradation over Zn-Ti-LDH. J Colloid Interface Sci 2022; 606:1435-1444. [PMID: 34492478 DOI: 10.1016/j.jcis.2021.08.146] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/20/2021] [Accepted: 08/21/2021] [Indexed: 12/22/2022]
Abstract
Improving the selectivity of photocatalysis and reducing the generation of toxic by-products are the two key challenges for the development of highly efficient and stable photocatalysts. In this work, it was revealed that Zn-Ti-layered double hydroxide (ZT-LDH) photocatalyst, which generated less intermediates, showed better toluene degradation efficiency (removal ratio, 75.2%) and stability, compared with P25 (removal ratio, 10.9%). During the photocatalytic toluene degradation, benzaldehyde and benzoic acid were the main intermediates existed in the gas phase and on the surface of the catalyst, respectively. By combining experiments with theoretical calculation, it was found that the hydrogen atoms on the hydroxyl groups in the LDH would selectively attract the oxygen atoms in the carbon-oxygen double bond of the two major intermediates, facilitating their adsorption and activation on ZT-LDH. Besides, the surface electronic structure of ZT-LDH was demonstrated to facilitate the ring-opening reaction of the two major intermediates, eventually maintaining high activity and stability. This work could provide new molecular perspectives for understanding the photocatalytic reactions in VOCs degradation and developing efficient and stable photocatalysts.
Collapse
Affiliation(s)
- Yongyi Liu
- Research Center for Environmental and Energy Catalysis, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Si Chen
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313000, China
| | - Kanglu Li
- Research Center for Environmental and Energy Catalysis, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China; College of Architecture and Environment, Sichuan University, Chengdu, Sichuan 610065, China
| | - Jielin Wang
- Research Center for Environmental and Energy Catalysis, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Peng Chen
- Research Center for Environmental and Energy Catalysis, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China; School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China
| | - Hong Wang
- Research Center for Environmental and Energy Catalysis, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Jieyuan Li
- Research Center for Environmental and Energy Catalysis, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China; Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313000, China
| | - Fan Dong
- Research Center for Environmental and Energy Catalysis, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China; Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313000, China.
| |
Collapse
|
79
|
Shen R, Hao L, Ng YH, Zhang P, Arramel A, Li Y, Li X. Heterogeneous N-coordinated single-atom photocatalysts and electrocatalysts. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(22)64104-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
80
|
Yuan H, Li J, Zhang W, Wang D, Wang L, Chu S, Zhai W, Ding L, Jiao Z. Polydopamine assisted transformation of ZnO from nanospheres to nanosheets grown in nanoporous BiVO4 films for improved photocatalytic performance. Catal Sci Technol 2022. [DOI: 10.1039/d1cy01879e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A BiVO4/ZnO nanosheet heterostructure has been fabricated on stainless steel mesh by a solid-solution drying and calcination method, during which ZnO spheres were converted to nanosheets with the aid of polydopamine.
Collapse
Affiliation(s)
- Hao Yuan
- Institute of Materials for Energy and Environment, College of Material Science and Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Jiaxin Li
- Institute of Materials for Energy and Environment, College of Material Science and Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Wenjie Zhang
- Institute of Materials for Energy and Environment, College of Material Science and Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Deting Wang
- Institute of Materials for Energy and Environment, College of Material Science and Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Lin Wang
- Institute of Materials for Energy and Environment, College of Material Science and Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Shuai Chu
- Institute of Materials for Energy and Environment, College of Material Science and Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Wei Zhai
- Institute of Materials for Energy and Environment, College of Material Science and Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Lei Ding
- Institute of Materials for Energy and Environment, College of Material Science and Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Zhengbo Jiao
- Institute of Materials for Energy and Environment, College of Material Science and Engineering, Qingdao University, Qingdao 266071, P. R. China
| |
Collapse
|
81
|
Bakhsh EM, Khan MI. Clove oil-mediated green synthesis of silver-doped cadmium sulfide and their photocatalytic degradation activity. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
82
|
Visualizing electron transfer at semiconductor–metal interface by surface plasmon resonance imaging. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2021.115918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
83
|
Yang W, Wang X, Wang Z, Sun P, Tang J, Li J, Li DS, Wu T. Interstitially O-doped Cd xZn 1−xS solid solution derived from chalcogenide molecular clusters for photocatalytic hydrogen evolution. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00497f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An Oi-doped CdxZn1−xS solid solution with rich VS can trap holes and electrons for carrier separation to enhance photocatalytic activity.
Collapse
Affiliation(s)
- Weijie Yang
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong 510632, China
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China
| | - Xiang Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China
| | - Zhiqiang Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China
| | - Peipei Sun
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China
| | - Jiaqi Tang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China
| | - Juan Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China
| | - Dong-Sheng Li
- College of Materials and Chemical Engineering, Hubei Provincial Collaborative Innovation Center for New Energy Microgrid, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, Hubei 443002, China
| | - Tao Wu
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong 510632, China
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
84
|
Zhang Z, Si W, Wu B, Wang W, Li Y, Ma W, Lin Y. Two‐Dimensional‐Polycyclic Photovoltaic Molecule with Low Trap Density for High‐Performance Photocatalytic Hydrogen Evolution. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202114234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Wenqin Si
- ICCAS: Institute of Chemistry Chinese Academy of Sciences Key laboratory of organic solids CHINA
| | - Baohua Wu
- Xian Jiaotong University: Xi'an Jiaotong University school of mechanical engineering CHINA
| | | | | | - Wei Ma
- Xi'an Jiaotong University Xian Jiaotong Univerisity CHINA
| | - Yuze Lin
- Institute of Chemistry, Chinese Academy of Sciences ICCAS CHINA
| |
Collapse
|
85
|
Zhang Z, Si W, Wu B, Wang W, Li Y, Ma W, Lin Y. Two-Dimensional-Polycyclic Photovoltaic Molecule with Low Trap Density for High-Performance Photocatalytic Hydrogen Evolution. Angew Chem Int Ed Engl 2021; 61:e202114234. [PMID: 34967489 DOI: 10.1002/anie.202114234] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Indexed: 11/12/2022]
Abstract
Typical organic semiconductors show a high trap density of states (1016-1018 cm-3), providing a large number of centers for charge-carrier recombination, thus hindering the development of photocatalytic hydrogen evolution. Here, we introduce a strategy of designing and synthesizing two-dimensional-polycyclic photovoltaic material, named as TPP, to reduce the trap density as low as 2.3×1015 cm-3, which is 1-3 orders of magnitudes lower than those of typical organic photovoltaic semiconductors. Moreover, TPP exhibited broad and strong absorption, ordered molecular packing with large crystalline coherence length and enhanced electron mobility. Then, the bulk heterojunction nanoparticles (BHJ-NPs) based on the blend of polymer donor (PM6) and TPP, exhibited an average hydrogen evolution rate (HER) of 72.75 mmol h-1 g-1, which is higher than that of the control NPs based on typical PM6:Y6 (62.67 mmol h-1 g-1) tested under 330-1100 nm illumination with light intensity of 198 mW cm-2.
Collapse
Affiliation(s)
| | - Wenqin Si
- ICCAS: Institute of Chemistry Chinese Academy of Sciences, Key laboratory of organic solids, CHINA
| | - Baohua Wu
- Xian Jiaotong University: Xi'an Jiaotong University, school of mechanical engineering, CHINA
| | | | | | - Wei Ma
- Xi'an Jiaotong University, Xian Jiaotong Univerisity, CHINA
| | - Yuze Lin
- Institute of Chemistry, Chinese Academy of Sciences, ICCAS, CHINA
| |
Collapse
|
86
|
Mo G, Wang L, Luo J. Controlled thermal treatment of NH2-MIL-125(Ti) for drastically enhanced photocatalytic reduction of Cr(VI). Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119643] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
87
|
Nanostructure Engineering via Intramolecular Construction of Carbon Nitride as Efficient Photocatalyst for CO 2 Reduction. NANOMATERIALS 2021; 11:nano11123245. [PMID: 34947595 PMCID: PMC8706010 DOI: 10.3390/nano11123245] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 11/26/2022]
Abstract
Light-driven heterogeneous photocatalysis has gained great significance for generating solar fuel; the challenging charge separation process and sluggish surface catalytic reactions significantly restrict the progress of solar energy conversion using a semiconductor photocatalyst. Herein, we propose a novel and feasible strategy to incorporate dihydroxy benzene (DHB) as a conjugated monomer within the framework of urea containing CN (CNU-DHBx) to tune the electronic conductivity and charge separation due to the aromaticity of the benzene ring, which acts as an electron-donating species. Systematic characterizations such as SPV, PL, XPS, DRS, and TRPL demonstrated that the incorporation of the DHB monomer greatly enhanced the photocatalytic CO2 reduction of CN due to the enhanced charge separation and modulation of the ionic mobility. The significantly enhanced photocatalytic activity of CNU–DHB15.0 in comparison with parental CN was 85 µmol/h for CO and 19.92 µmol/h of the H2 source. It can be attributed to the electron–hole pair separation and enhance the optical adsorption due to the presence of DHB. Furthermore, this remarkable modification affected the chemical composition, bandgap, and surface area, encouraging the controlled detachment of light-produced photons and making it the ideal choice for CO2 photoreduction. Our research findings potentially offer a solution for tuning complex charge separation and catalytic reactions in photocatalysis that could practically lead to the generation of artificial photocatalysts for efficient solar energy into chemical energy conversion.
Collapse
|
88
|
Peroxymonosulfate Activation by Bi 2WO 6/BiOCl Heterojunction Nanocomposites under Visible Light for Bisphenol A Degradation. NANOMATERIALS 2021; 11:nano11113130. [PMID: 34835894 PMCID: PMC8621688 DOI: 10.3390/nano11113130] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/07/2021] [Accepted: 11/17/2021] [Indexed: 11/17/2022]
Abstract
The combination of peroxymonosulfate (PMS) activation and photocatalysis has proven to be effective for organic contaminants treatment. However, the construction of an efficient catalytic material is an important challenge. Herein, novel Bi2WO6/BiOCl heterojunction nanocomposites were successfully designed and fabricated using a facile and effective strategy for bisphenol A (BPA) photodegradation with PMS activation. The well-designed heterojunction with improvement of the contact area and interface microstructure was obtained through in situ growth of the Bi2WO6 on the surface of BiOCl. The Bi2WO6/BiOCl nanocomposites exhibit excellent catalytic performance in PMS activation for BPA degradation under visible light irradiation. A possible photocatalytic reaction mechanism was systematically revealed. The excellent catalytic performance is mainly attributed to the strong interaction between Bi2WO6 and BiOCl, resulting in an enhanced photoabsorption and a more efficient interfacial charge separation and transfer. This paper provides a novel strategy to design efficient catalytic materials for organic contaminants remediation with PMS activation.
Collapse
|
89
|
Howlader D, Hossain MS, Chakma U, Kumer A, Islam MJ, Islam MT, Hossain T, Islam J. Structural geometry, electronic structure, thermo-electronic and optical properties of GaCuO2 and GaCu0.94Fe0.06O2: a first principle approach of three DFT functionals. MOLECULAR SIMULATION 2021. [DOI: 10.1080/08927022.2021.1977295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Debashis Howlader
- Department of Electrical and Electronics Engineering, European University of Bangladesh, Gabtoli, Dhaka, Bangladesh
| | - Md. Sayed Hossain
- Center for Research Reactor, Bangladesh Atomic Energy Commission, Dhaka, Bangladesh
| | - Unesco Chakma
- Department of Electrical and Electronics Engineering, European University of Bangladesh, Gabtoli, Dhaka, Bangladesh
| | - Ajoy Kumer
- Department of Chemistry, European University of Bangladesh, Gabtoli, Dhaka, Bangladesh
| | | | - Md. Tawhidul Islam
- Department of Electrical and Electronics Engineering, European University of Bangladesh, Gabtoli, Dhaka, Bangladesh
| | - Tomal Hossain
- Department of Electrical and Electronics Engineering, European University of Bangladesh, Gabtoli, Dhaka, Bangladesh
| | - Jahedul Islam
- Department Of Civil Engineering, Presidency University, Dhaka, Bangladesh
| |
Collapse
|
90
|
Abstract
Graphene oxide (GO) has been widely utilized as the precursor of graphene (GR) to fabricate GR-based hybrid photocatalysts for solar-to-chemical energy conversion. However, until now, the properties and roles that GO played in heterogeneous photocatalysis have remained relatively elusive. In this Review, we start with a brief discussion of synthesis and structure of GO. Then, the photocatalysis-related properties of GO, including electrical conductivity, surface chemistry, dispersibility, and semiconductor properties, are concisely summarized. In particular, we have highlighted the fundamental multifaceted roles of GO in heterogeneous photocatalysis, which contain the precursor of GR, cross-linked framework for constructing aerogel photocatalyst, macromolecular surfactant, two-dimensional growth template, and photocatalyst by itself. Furthermore, the future prospects and remaining challenges on developing effective GO-derived hybrid photocatalysts are presented, which is expected to inspire further research into this promising research domain.
Collapse
Affiliation(s)
- Kang-Qiang Lu
- College
of Materials, Metallurgical and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, P. R. China,College
of Chemistry, State Key Laboratory of Photocatalysis on Energy and
Environment, Fuzhou University, Fuzhou 350116, P. R. China,
| | - Yue-Hua Li
- College
of Chemistry, State Key Laboratory of Photocatalysis on Energy and
Environment, Fuzhou University, Fuzhou 350116, P. R. China
| | - Zi-Rong Tang
- College
of Chemistry, State Key Laboratory of Photocatalysis on Energy and
Environment, Fuzhou University, Fuzhou 350116, P. R. China
| | - Yi-Jun Xu
- College
of Chemistry, State Key Laboratory of Photocatalysis on Energy and
Environment, Fuzhou University, Fuzhou 350116, P. R. China,
| |
Collapse
|
91
|
Xin Y, Yu K, Zhang L, Yang Y, Yuan H, Li H, Wang L, Zeng J. Copper-Based Plasmonic Catalysis: Recent Advances and Future Perspectives. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2008145. [PMID: 34050979 DOI: 10.1002/adma.202008145] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Indexed: 06/12/2023]
Abstract
With the capability of inducing intense electromagnetic field, energetic charge carriers, and photothermal effect, plasmonic metals provide a unique opportunity for efficient light utilization and chemical transformation. Earth-abundant low-cost Cu possesses intense and tunable localized surface plasmon resonance from ultraviolet-visible to near infrared region. Moreover, Cu essentially exhibits remarkable catalytic performance toward various reactions owing to its intriguing physical and chemical properties. Coupling with light-harvesting ability and catalytic function, plasmonic Cu serves as a promising platform for efficient light-driven chemical reaction. Herein, recent advancements of Cu-based plasmonic photocatalysis are systematically summarized, including designing and synthetic strategies for Cu-based catalysts, plasmonic catalytic performance, and mechanistic understanding over Cu-based plasmonic catalysts. What's more, approaches for the enhancement of light utilization efficiency and construction of active centers on Cu-based plasmonic catalysts are highlighted and discussed in detail, such as morphology and size control, regulation of electronic structure, defect and strain engineering, etc. Remaining challenges and future perspectives for further development of Cu-based plasmonic catalysis are also proposed.
Collapse
Affiliation(s)
- Yue Xin
- State Key Laboratory for Powder Metallurgy, Key Laboratory of Electronic Packing and Advanced Functional Materials of Hunan Province, School of Materials Science and Engineering, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Kaifu Yu
- State Key Laboratory for Powder Metallurgy, Key Laboratory of Electronic Packing and Advanced Functional Materials of Hunan Province, School of Materials Science and Engineering, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Lantian Zhang
- State Key Laboratory for Powder Metallurgy, Key Laboratory of Electronic Packing and Advanced Functional Materials of Hunan Province, School of Materials Science and Engineering, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Yanru Yang
- State Key Laboratory for Powder Metallurgy, Key Laboratory of Electronic Packing and Advanced Functional Materials of Hunan Province, School of Materials Science and Engineering, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Haibo Yuan
- State Key Laboratory for Powder Metallurgy, Key Laboratory of Electronic Packing and Advanced Functional Materials of Hunan Province, School of Materials Science and Engineering, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Hongliang Li
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Liangbing Wang
- State Key Laboratory for Powder Metallurgy, Key Laboratory of Electronic Packing and Advanced Functional Materials of Hunan Province, School of Materials Science and Engineering, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Jie Zeng
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
92
|
Zhang W, Xu D, Wang F, Chen M. Element-doped graphitic carbon nitride: confirmation of doped elements and applications. NANOSCALE ADVANCES 2021; 3:4370-4387. [PMID: 36133458 PMCID: PMC9417723 DOI: 10.1039/d1na00264c] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/17/2021] [Indexed: 05/11/2023]
Abstract
Doping is widely reported as an efficient strategy to enhance the performance of graphitic carbon nitride (g-CN). In the study of element-doped g-CN, the characterization of doped elements is an indispensable requirement, as well as a huge challenge. In this review, we summarize some useful characterization methods which can confirm the existence and chemical states of doped elements. The advantages and shortcomings of these characterization methods are discussed in detail. Various applications of element-doped g-CN and the function of doped elements are also introduced. Overall, this review article aims to provide helpful information for the research of element-doped g-CN.
Collapse
Affiliation(s)
- Wenjun Zhang
- Department of Materials Science, Fudan University Shanghai 200433 PR China
| | - Datong Xu
- Department of Materials Science, Fudan University Shanghai 200433 PR China
| | - Fengjue Wang
- Department of Materials Science, Fudan University Shanghai 200433 PR China
| | - Meng Chen
- Department of Materials Science, Fudan University Shanghai 200433 PR China
| |
Collapse
|
93
|
Wang J, Liu X, Li Z. Acceptorless Photocatalytic Dehydrogenation of Furfuryl Alcohol (FOL) to Furfural (FAL) and Furoic Acid (FA) over Ti 3 C 2 T x /CdS under Visible Light. Chem Asian J 2021; 16:2932-2938. [PMID: 34296809 DOI: 10.1002/asia.202100729] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/22/2021] [Indexed: 11/05/2022]
Abstract
Acceptorless photocatalytic dehydrogenation is not only a promising alternative to photocatalytic water splitting for hydrogen generation but also provides a green and sustainable strategy for the synthesis of value-added organic compounds. In this work, Ti3 C2 Tx /CdS nanocomposites were obtained by self-assembly of hexagonal CdS in the presence of preformed Ti3 C2 Tx nanosheets, which serves as a photocatalyst for acceptorless dehydrogenation of biomass-derived furfuryl alcohol (FOL) to furfural (FAL) and furoic acid (FA) in neutral and alkaline medium respectively, with simultaneous generation of stoichiometric hydrogen under visible light. Ti3 C2 Tx MXene acts as an efficient cocatalyst for the photocatalytic dehydrogenation of FOL over CdS, with an optimum performance achieved over 0.50 wt%Ti3 C2 Tx /CdS nanocomposite. This study provides an economic and sustainable strategy for the simultaneous valorization of biomass-derived FOL to produce FAL and FA as well as the production of clean energy hydrogen under mild condition based on noble metal-free semiconductor-based photocatalysts.
Collapse
Affiliation(s)
- Jiaqi Wang
- Research Institute of Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Xinyu Liu
- Research Institute of Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Zhaohui Li
- Research Institute of Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| |
Collapse
|
94
|
Koutavarapu R, Tamtam MR, Rao MC, Peera SG, Shim J. Recent progress in transition metal oxide/sulfide quantum dots-based nanocomposites for the removal of toxic organic pollutants. CHEMOSPHERE 2021; 272:129849. [PMID: 33582511 DOI: 10.1016/j.chemosphere.2021.129849] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/06/2021] [Accepted: 01/30/2021] [Indexed: 06/12/2023]
Abstract
Water is an essential solvent that is extremely necessary for the survival of life. Water pollution due to the increased utilization of water for various processes, including domestic and industrial activities, poses a special threat that contaminates both surface and ground water. In recent years, advanced oxidation processes (AOPs) have been applied to deal with wastewater problems, which is a green method used to oxidize organic contaminants with strong oxidative radical species. Among the AOPs, photocatalytic technology is one of the most promising strategies for wastewater cleaning, which fulfills the aims of environmentally friendly and sustainable development. Owing to their unique electronic, optical, and structural properties, nanoscale semiconductors have received substantial interest as materials for AOPs, particularly inspired by their superb quantum confinement effects and large surface-area-to-volume ratio, which are essential for catalytic reaction kinetics. Recent advancements have revealed that semiconductor nanocrystals, known as quantum dots (QDs), are newly emerging zero-dimensional (0-D) nanomaterials, which have garnered much attention owing to their special physiochemical characteristics such as high conductivity, thermo-chemical and opto-mechanical stability, high adsorption coefficients, and, most importantly, their admirable recyclability. In this review, we provide a clear understanding of the importance of semiconductor QD-based nanocomposites in the degradation of organic pollutants, in addition to the mechanism involved in the reaction process. Following this, the enhancement of different materials, such as metal oxides and metal sulfide QD-based nanocomposites, is discussed in the context of combating environmental pollution.
Collapse
Affiliation(s)
| | - Mohan Rao Tamtam
- Chemical Engineering Department, Debre Berhan University, Debre Berhan 445, Ethiopia
| | - M C Rao
- Department of Physics, Andhra Loyola College, Vijayawada, 520-008, Andhra Pradesh, India.
| | - Shaik Gouse Peera
- Department of Environmental Science and Engineering, Keimyung University, Daegu, 42602, Republic of Korea.
| | - Jaesool Shim
- School of Mechanical Engineering, Yeungnam University, Gyeongsan, 712-749, Republic of Korea.
| |
Collapse
|
95
|
Lin JX, Thaomonpun J, Thongpool V, Chen WJ, Huang CH, Sun SJ, Remes Z, Tseng YT, Liao YF, Hsu HS. Enhanced Photodegradation in Metal Oxide Nanowires with Co-Doped Surfaces under a Low Magnetic Field. ACS APPLIED MATERIALS & INTERFACES 2021; 13:23173-23180. [PMID: 33955729 DOI: 10.1021/acsami.1c03397] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This work demonstrated the enhanced photodegradation (PD) resulting from Co-rich doping of ZnO nanowire (NW) surfaces (Co2+/ZnO NWs) prepared by combining Co sputtering on ZnO NWs and immersion in deionized water to exploit the hydrophilic-hydrophobic transitions on the ZnO surfaces resulting from Co atom diffusion. Because of the controllable spin-dependent density of states (DOS) induced by Co2+, the PD of methylene blue dye can be enhanced by approximately 90% (when compared with bare ZnO NWs) by using a conventional permanent magnet with a relatively low magnetic field strength of approximately 0.15 T. The reliability of spin polarization-modulation attained through surface doping, based on the magnetic response observed from X-ray absorption measurements and magnetic circular dichroism, provides an opportunity to create highly efficient catalysts by engineering surfaces and tailoring their spin-dependent DOS.
Collapse
Affiliation(s)
- Jun-Xiao Lin
- Department of Applied Physics, National Pingtung University, No. 4-18, Minsheng Road, Pingtung 90044, Taiwan, R. O. C
| | - Jutathip Thaomonpun
- Department of Applied Physics, National Pingtung University, No. 4-18, Minsheng Road, Pingtung 90044, Taiwan, R. O. C
| | - Voranuch Thongpool
- Division of Physics, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi, Rangsit-Nakhonnayok Rd. (Klong 6), Thanyaburi Pathum Thani 12110, Thailand
| | - Wei-Jhong Chen
- Department of Applied Physics, National Pingtung University, No. 4-18, Minsheng Road, Pingtung 90044, Taiwan, R. O. C
| | - Chien-Hua Huang
- Department of Applied Physics, National Pingtung University, No. 4-18, Minsheng Road, Pingtung 90044, Taiwan, R. O. C
| | - Shih-Jye Sun
- Department of Applied Physics, National University of Kaohsiung, No. 700, Kaohsiung University Rd., Nanzih District, Kaohsiung 811, Taiwan, R.O.C
| | - Zdenek Remes
- Institute of Physics CAS, Na Slovance 1999/2, Praha 8, Czech Republic
| | - Yaw-Teng Tseng
- Department of Applied Physics, National Pingtung University, No. 4-18, Minsheng Road, Pingtung 90044, Taiwan, R. O. C
| | - Yen-Fa Liao
- National Synchrotron Radiation Research Center, No. 101, Hsin-Ann Road, Hsinchu 30013, Taiwan, R. O. C
| | - Hua-Shu Hsu
- Department of Applied Physics, National Pingtung University, No. 4-18, Minsheng Road, Pingtung 90044, Taiwan, R. O. C
| |
Collapse
|
96
|
Rong F, Lu Q, Mai H, Chen D, Caruso RA. Hierarchically Porous WO 3/CdWO 4 Fiber-in-Tube Nanostructures Featuring Readily Accessible Active Sites and Enhanced Photocatalytic Effectiveness for Antibiotic Degradation in Water. ACS APPLIED MATERIALS & INTERFACES 2021; 13:21138-21148. [PMID: 33908249 DOI: 10.1021/acsami.0c22825] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The intentional design and construction of photocatalysts containing heterojunctions with readily accessible active sites will improve their ability to degrade pollutants. Herein, hierarchically porous WO3/CdWO4 fiber-in-tube nanostructures with three accessible surfaces (surface of core fiber and inner and outer surfaces of the porous tube shell) were fabricated by an electrospinning method. This WO3/CdWO4 heterostructure, assembled by interconnected nanoparticles, displays good photocatalytic degradation of ciprofloxacin (CIP, 93.4%) and tetracycline (TC, 81.6%) after 90 min of simulated sunlight irradiation, much higher than the pristine WO3 (<75.3% for CIP and <53.6% for TC) or CdWO4 materials (<58.9% for CIP and <39.5% for TC). The WO3/CdWO4 fiber-in-tube promotes the separation of photoinduced electrons and holes and also provides readily accessible reaction sites for photocatalytic degradation. The dominant active species determined by trapping active species and electron paramagnetic resonance were hydroxyl radicals followed by photogenerated holes and superoxide anions. The WO3/CdWO4 materials formed a Z-scheme heterojunction that generated superoxide anion and hydroxyl radicals, leading to degradation of antibiotics (CIP and TC) via photocatalysis in aqueous solution.
Collapse
Affiliation(s)
- Feng Rong
- School of Material Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, P. R. China
| | - Qifang Lu
- School of Material Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, P. R. China
| | - Haoxin Mai
- Applied Chemistry and Environmental Science, School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| | - Dehong Chen
- Applied Chemistry and Environmental Science, School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| | - Rachel A Caruso
- Applied Chemistry and Environmental Science, School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| |
Collapse
|
97
|
Koutavarapu R, Tamtam MR, Myla CR, Cho M, Shim J. Enhanced solar-light-driven photocatalytic properties of novel Z-scheme binary BiPO 4 nanorods anchored onto NiFe 2O 4 nanoplates: Efficient removal of toxic organic pollutants. J Environ Sci (China) 2021; 102:326-340. [PMID: 33637258 DOI: 10.1016/j.jes.2020.09.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/18/2020] [Accepted: 09/21/2020] [Indexed: 06/12/2023]
Abstract
Global environmental problems have been increasing with the growth of the world economy and have become a crucial issue. To replace fossil fuels, sustainable and eco-friendly catalysts are required for the removal of organic pollutants. In this study, nickel ferrite (NiFe2O4) was prepared using a simple wet-chemical synthesis, followed by calcination; bismuth phosphate (BiPO4) was also prepared using a hydrothermal method. Further, NiFe2O4/BiPO4 nanocomposites were prepared using a hydrothermal technique. Numerous characterization studies, such as structural, morphology, surface area, optical, photoluminescence, and photoelectrochemical investigations, were used to analyze NiFe2O4/BiPO4 nanocomposites. The morphology analysis indicated a successful decoration of BiPO4 nanorods on the surface of NiFe2O4 nanoplate. Further, the bandgap of the NiFe2O4/BiPO4 nanocomposites was modified owing to the formation of a heterostructure. The as-prepared NiFe2O4/BiPO4 nanocomposite exhibited promising properties to be used as a novel heterostructure for tetracycline (TC) and Rhodamine B (RhB) removal. The NiFe2O4/BiPO4 nanocomposite degrades TC (98%) and RhB (99%) pollutants upon solar-light irradiation within 100 and 60 min, respectively. Moreover, the trapping experiments confirmed the Z-scheme approach of the prepared nanocomposites. The efficient separation and transfer of photogenerated electron-hole pairs rendered by the heterostructure were confirmed by utilizing electrochemical impedance spectroscopy, photocurrent experiments, and photoluminescence. Mott-Schottky measurements were used determine the positions of the conduction and valence bands of the samples, and the detailed mechanism of photocatalytic degradation of toxic pollutants was projected and discussed.
Collapse
Affiliation(s)
| | - Mohan Rao Tamtam
- Chemical Engineering Department, Debre Berhan University, Debre Berhan 445, Ethiopia
| | - Chimpiri Rao Myla
- Department of Physics, Andhra Loyola College, Vijayawada 520-008, Andhra Pradesh, India.
| | - Migyung Cho
- Department of Computer and Media Engineering, Tongmyong University, Busan 48520, Republic of Korea.
| | - Jaesool Shim
- School of Mechanical Engineering, Yeungnam University, Gyeongsan 712-749, Republic of Korea.
| |
Collapse
|
98
|
Guo C, Tian K, Wang L, Liang F, Wang F, Chen D, Ning J, Zhong Y, Hu Y. Approach of fermi level and electron-trap level in cadmium sulfide nanorods via molybdenum doping with enhanced carrier separation for boosted photocatalytic hydrogen production. J Colloid Interface Sci 2021; 583:661-671. [DOI: 10.1016/j.jcis.2020.09.093] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/15/2020] [Accepted: 09/23/2020] [Indexed: 02/07/2023]
|
99
|
Pickering emulsion-embedded hierarchical solid-liquid hydrogel spheres for static and flow photocatalysis. J Colloid Interface Sci 2021; 589:587-596. [PMID: 33503508 DOI: 10.1016/j.jcis.2021.01.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 01/07/2021] [Accepted: 01/10/2021] [Indexed: 11/22/2022]
Abstract
Pickering emulsion-based photocatalysis is considered to be a promising system due to its large active surface area and water/oil spatial separation capability for enrichment of substrates and products. In this work, a novel hierarchical structure composed of calcium alginate gel sphere wrapped ionic liquid-in-water Pickering emulsion with TiO2 in the water phase, which are stabilized by graphene oxide, is prepared via a facile one-step emulsion gelation method. Such subtle combination of Pickering emulsion, hydrogel and TiO2 with a multi-stage solid-liquid assemblage structure shows enhanced degradation activity of 2-naphthol into small molecular alkanes under simulated solar irradiation. The photodegradation activity is attributed to the ionic liquid as adsorption medium for 2-naphthol, and the high-efficient charge separation at graphene oxide/TiO2 interface superior to that of pure TiO2. More importantly, the as-prepared millimeter-sized assembled gel spheres can be directly used as the column filler to construct continuous flow photocatalytic system, maintaining the promising performance in removing pollutants from water with ~100% remove ability of 2-naphthol on stream. A charge transfer mechanism of the photocatalyst is proposed, i.e. photogenerated charges are separated in TiO2/graphene oxide p-n heterostructure at the interface of Pickering emulsion droplets.
Collapse
|
100
|
Fu Y, Huang J, Wu Y, Liu X, Zhong F, Wang J. Biocatalytic Cross-Coupling of Aryl Halides with a Genetically Engineered Photosensitizer Artificial Dehalogenase. J Am Chem Soc 2021; 143:617-622. [PMID: 33410683 DOI: 10.1021/jacs.0c10882] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Devising artificial photoenzymes for abiological bond-forming reactions is of high synthetic value but also a tremendous challenge. Disclosed herein is the first photobiocatalytic cross-coupling of aryl halides enabled by a designer artificial dehalogenase, which features a genetically encoded benzophenone chromophore and site-specifically modified synthetic NiII(bpy) cofactor with tunable proximity to streamline the dual catalysis. Transient absorption studies suggest the likelihood of energy transfer activation in the elementary organometallic event. This design strategy is viable to significantly expand the catalytic repertoire of artificial photoenzymes for useful organic transformations.
Collapse
Affiliation(s)
- Yu Fu
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology (HUST), 1037 Luoyu Road, Wuhan 430074, P.R. China.,Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Science, 15 Datun Road, Beijing 100020, P.R. China
| | - Jian Huang
- Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Science, 15 Datun Road, Beijing 100020, P.R. China
| | - Yuzhou Wu
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology (HUST), 1037 Luoyu Road, Wuhan 430074, P.R. China
| | - Xiaohong Liu
- Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Science, 15 Datun Road, Beijing 100020, P.R. China
| | - Fangrui Zhong
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology (HUST), 1037 Luoyu Road, Wuhan 430074, P.R. China
| | - Jiangyun Wang
- Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Science, 15 Datun Road, Beijing 100020, P.R. China
| |
Collapse
|