51
|
Rasheed T, Ahmad Hassan A, Ahmad T, Khan S, Sher F. Organic Covalent Interaction-based Frameworks as Emerging Catalysts for Environment and Energy Applications: Current Scenario and Opportunities. Chem Asian J 2023:e202300196. [PMID: 37171867 DOI: 10.1002/asia.202300196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/30/2023] [Indexed: 05/13/2023]
Abstract
The term "covalent organic framework" (COF) refers to a class of porous organic polymeric materials made from organic building blocks that have been covalently bonded. The preplanned and predetermined bonding of the monomer linkers allow them to demonstrate directional flexibility in two- or three-dimensional spaces. COFs are modern materials, and the discovery of new synthesis and linking techniques has made it possible to prepare them with a variety of favorable features and use them in a range of applications. Additionally, they can be post-synthetically altered or transformed into other materials of particular interest to produce compounds with enhanced chemical and physical properties. Because of its tunability in different chemical and physical states, post-synthetic modifications, high stability, functionality, high porosity and ordered geometry, COFs are regarded as one of the most promising materials for catalysis and environmental applications. This study highlights the basic advancements in establishing the stable COFs structures and various post-synthetic modification approaches. Further, the photocatalytic applications, such as organic transformations, degradation of emerging pollutants and removal of heavy metals, production of hydrogen and Conversion of carbon dioxide (CO2 ) to useful products have also been presented. Finally, the future research directions and probable outcomes have also been summarized, by focusing their promises for specialists in a variety of research fields.
Collapse
Affiliation(s)
- Tahir Rasheed
- Interdisciplinary Research Center for Adv. Mater., King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, 31261, Saudi Arabia
| | - Adeel Ahmad Hassan
- Department of Polymer Science and Engineering, Shanghai State Key Lab of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Tauqir Ahmad
- Center for Advanced Specialty Chemicals Korea Research Institute of Chemical Technology (KRICT), Ulsan, 44412, Republic of Korea
| | - Sardaraz Khan
- Chemistry Department, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Farooq Sher
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK
| |
Collapse
|
52
|
Wang C, Lyu P, Chen Z, Xu Y. Green and Scalable Synthesis of Atomic-Thin Crystalline Two-Dimensional Triazine Polymers with Ultrahigh Photocatalytic Properties. J Am Chem Soc 2023. [PMID: 37171112 DOI: 10.1021/jacs.3c02874] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Scalable and eco-friendly synthesis of crystalline two-dimensional (2D) polymers with proper band gap and single-layer thickness is highly desired for the fundamental research and practical applications of 2D polymers; however, it remains a considerable and unresolved challenge. Herein, we report a convenient and robust method to synthesize a series of crystalline covalent triazine framework nanosheets (CTF NSs) with a thickness of ∼80 nm via a new solvent-free salt-catalyzed nitrile cyclotrimerization process, which enables the cost-effective large-scale preparation of crystalline CTF NSs at the hundred-gram level. Theoretical calculations and detailed experiments revealed for the first time that the conventional salts such as KCl can not only act as physical templates as traditionally believed but also more importantly can efficiently catalyze the cyclotrimerization reaction of carbonitrile monomers as a new kind of green solid catalysts to achieve crystalline CTF NSs. Upon simple liquid-phase sonication, these CTF NSs can be easily further exfoliated into abundant single-layer crystalline 2D triazine polymers (2D-TPs) in high yields. The obtained atomically thin crystalline 2D-TPs with a band gap of 2.36 eV and rich triazine active groups exhibited a remarkable photocatalytic hydrogen evolution rate of 1321 μmol h-1 under visible light irradiation with an apparent quantum yield up to 29.5% at 420 nm and excellent photocatalytic overall water splitting activity with a solar-to-hydrogen efficiency up to 0.35%, which exceed all molecular framework materials and are among the best metal-free photocatalysts ever reported. Moreover, the processable 2D-TPs could be readily assembled on a support as a photocatalytic film device, which demonstrated superior photocatalytic performance (135.2 mmol h-1 m-2 for hydrogen evolution).
Collapse
Affiliation(s)
- Congxu Wang
- Zhejiang University, Hangzhou 310027, Zhejiang Province, China
- School of Engineering, Westlake University, Hangzhou 310024, Zhejiang Province, China
| | - Pengbo Lyu
- Hunan Provincial Key Laboratory of Thin Film Materials and Devices, School of Material Sciences and Engineering, Xiangtan University, Xiangtan 411105, Hunan Province, China
| | - Zhong Chen
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Instrumentation and Service Center for Molecular Sciences, Westlake University, Hangzhou 310024, Zhejiang Province, China
| | - Yuxi Xu
- School of Engineering, Westlake University, Hangzhou 310024, Zhejiang Province, China
| |
Collapse
|
53
|
Zhang S, Zhao F, Yasin G, Dong Y, Zhao J, Guo Y, Tsiakaras P, Zhao J. Efficient photocatalytic hydrogen evolution: Linkage units engineering in triazine-based conjugated porous polymers. J Colloid Interface Sci 2023; 637:41-54. [PMID: 36682117 DOI: 10.1016/j.jcis.2023.01.066] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/31/2022] [Accepted: 01/13/2023] [Indexed: 01/19/2023]
Abstract
Conjugated porous polymers (CPPs) have been widely reported as promising photocatalysts. However, the realization of powerful photocatalytic hydrogen production performance still benefits from the rational design of molecular frameworks and the appropriate choice of building monomers. Herein, we synthesized two novel conjugated porous polymers (CPPs) by copolymerizing pyrene and 1,3,5-triazine building blocks. It is found that minor structural changes in the peripheral groups of the triazine units can greatly affect the photocatalytic activity of the polymers. Compared with the phenyl-linkage unit, the thiophene-linkage unit can give CPP a wider absorption range of visible light, a narrower band gap, a higher transmission and separation efficiency of photo-generated carriers (electrons/holes), and a better interface contact with the photocatalytic reaction solution. The catalyst containing thiophene-triazine (ThPy-CPP) has an efficient photocatalytic hydrogen evolution rate of 21.65 and 16.69 mmol g-1h-1 under full-arc spectrum and visible light without the addition of a Pt co-catalyst, respectively, much better than the one containing phenyl-triazine (PhPy-CPP, only 5.73 and 3.48 mmol g-1h-1). This study provides a promising direction to design and construct highly efficient, cost-effective CPP-based photocatalysts, for exploring the application of noble metal-free catalysts in photocatalytic hydrogen evolution.
Collapse
Affiliation(s)
- Shengling Zhang
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Fei Zhao
- College of Chemistry and Chemical Engineering, Taishan University, Taian 271000, China
| | - Ghulam Yasin
- Institute for Advanced Studies, Shenzhen University, Shenzhen 518060, China
| | - YunYun Dong
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Jinsheng Zhao
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China.
| | - Yue Guo
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Panagiotis Tsiakaras
- Laboratory of Alternative Energy Conversion Systems Department of Mechanical Engineering School of Engineering, University of Thessaly 1 Sekeri Str., Pedion Areos 38834 Greece.
| | - Jie Zhao
- Institute for Advanced Studies, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
54
|
Enhanced photocatalytic hydrogen evolution activity of co-catalyst free S-scheme polymer heterojunctions via ultrasonic assisted reorganization in solvent. J Colloid Interface Sci 2023; 636:230-244. [PMID: 36634393 DOI: 10.1016/j.jcis.2023.01.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/31/2022] [Accepted: 01/04/2023] [Indexed: 01/08/2023]
Abstract
In this work, two donor-acceptor linear conjugated polymers were designed and synthesized based on thianthrene-5,5,10,10-tetraoxide (TTO) as the acceptor unit, benzo[1,2-b:4,5-b']dithiophene derivative (Py1) and thiophene (Py2) as the donor units, respectively. The Py1/Py2 composite was prepared by physical ball milling of the two polymers in a mixture, which was further treated with a N-methyl-2-pyrrolidone (NMP)-assisted sonication treatment, and the obtained catalyst was named N-Py1/Py2. Compared with the single polymer or Py1/Py2, the FTIR characteristic peaks of O=S=O have a red shift for N-Py1/Py2, accompanied by a profound change in morphology. Furthermore, N-Py1/Py2 has a broader light response and more efficient separation and transport of charge carriers, and as a result it exhibits a higher photocatalytic hydrogen evolution rate (26.5 mmol g-1 h-1) without the involvement of any co-catalyst than Py1/Py2 catalyst (3.56 mmol g-1 h-1). The underlying mechanism for the enhanced photocatalytic activity by the sonication treatment in NMP is discussed based both on experimental and theoretical calculation data.
Collapse
|
55
|
Liu D, Yang X, Chen P, Zhang X, Chen G, Guo Q, Hou H, Li Y. Rational Design of PDI-Based Linear Conjugated Polymers for Highly Effective and Long-Term Photocatalytic Oxygen Evolution. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2300655. [PMID: 37000924 DOI: 10.1002/adma.202300655] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/12/2023] [Indexed: 06/19/2023]
Abstract
Constructed through relatively weak noncovalent forces, the stability of organic supramolecular materials has shown to be a challenge. Herein, the designing of a linear conjugated polymer is proposed through creating a chain polymer connected via bridging covalent bonds in one direction and retaining π-stacked aromatic columns in its orthogonal direction. Specifically, three analogs of linear conjugated polymers through tuning the aromatic core and its covalently linked moiety (bridging group) within the building block monomer are prepared. Cooperatively supported by strong π-π stacking interactions from the extended aromatic core of perylene and favorable dipole-dipole interactions from the bridging group, the as-expected high crystallinity, wide light absorption, and increased stability are successfully achieved for Oxamide-PDI (perylene diimide) through ordered molecular arrangement, and present a remarkable full-spectrum oxygen evolution rate of 5110.25 µmol g-1 h-1 without any cocatalyst. Notably, experimental and theoretical studies reveal that large internal dipole moments within Oxamide-PDI together with its ordered crystalline structure enable a robust built-in electric field for efficient charge carrier migration and separation. Moreover, density functional theory (DFT) calculations also reveal oxidative sites located at carbon atoms next to imide bonds and inner bay positions based on proven spatially separated photogenerated electrons and holes, thus resulting in highly efficient water photolysis into oxygen.
Collapse
Affiliation(s)
- Di Liu
- School of Chemical & Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, P. R. China
| | - Xuan Yang
- School of Chemical & Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, P. R. China
| | - Peiyan Chen
- State Key Laboratory of Applied Organic Chemistry (Lanzhou University), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province. College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Xinling Zhang
- School of Chemical & Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, P. R. China
| | - GaoYuan Chen
- School of Chemical & Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, P. R. China
| | - Qiwei Guo
- School of Chemical & Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, P. R. China
| | - Huan Hou
- School of Chemical & Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, P. R. China
| | - Yi Li
- Future Science Research Institute, Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310013, P. R. China
| |
Collapse
|
56
|
Liang X, Xue S, Yang C, Ye X, Wang Y, Chen Q, Lin W, Hou Y, Zhang G, Shalom M, Yu Z, Wang X. The Directional Crystallization Process of Poly (triazine imide) Single Crystals in Molten Salts. Angew Chem Int Ed Engl 2023; 62:e202216434. [PMID: 36748541 DOI: 10.1002/anie.202216434] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/06/2023] [Accepted: 02/06/2023] [Indexed: 02/08/2023]
Abstract
Poly (triazine imide) photocatalysts prepared via molten salt methods emerge as promising polymer semiconductors with one-step excitation capacity of overall water splitting. Unveiling the molecular conjugation, nucleation, and crystallization processes of PTI crystals is crucial for their controllable structure design. Herein, microscopy characterization was conducted at the PTI crystallization front from meso to nano scales. The heptazine-based precursor was found to depolymerize to triazine monomers within molten salts and KCl cubes precipitate as the leading cores that guide the directional stacking of PTI molecular units to form aggregated crystals. Upon this discovery, PTI crystals with improved dispersibility and enhanced photocatalytic performance were obtained by tailoring the crystallization fronts. This study advances insights into the directional assembling of PTI monomers on salt templates, placing a theoretical foundation for the ordered condensation of polymer crystals.
Collapse
Affiliation(s)
- Xiaocong Liang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108 (P. R., China
| | - Sikang Xue
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108 (P. R., China
| | - Can Yang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108 (P. R., China
| | - Xiaoyuan Ye
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108 (P. R., China
| | - Yulan Wang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108 (P. R., China
| | - Qidi Chen
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, P. R. China
| | - Wei Lin
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108 (P. R., China
| | - Yidong Hou
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108 (P. R., China
| | - Guigang Zhang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108 (P. R., China
| | - Menny Shalom
- Department of Chemistry, The Ben-Gurion University of the Negev, P.O.B. 653, 8410501 Beer, Sheva, Israel
| | - Zhiyang Yu
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108 (P. R., China
| | - Xinchen Wang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108 (P. R., China.,Fujian Science & Technology Innovation Laboratory for Chemical Engineering of China, Quanzhou, Fujian, 362114, P. R. China
| |
Collapse
|
57
|
Ma S, Liu Q, Cui J, Rao C, Jia M, Yao X, Zhang J. Pyridinium-derived polycationic covalent organic polymers for aromatic C-H bond photocatalytic oxidation. J Colloid Interface Sci 2023; 634:431-439. [PMID: 36542972 DOI: 10.1016/j.jcis.2022.12.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/30/2022] [Accepted: 12/10/2022] [Indexed: 12/14/2022]
Abstract
Using oxygen in the air as the sole oxidant to oxidize hydrocarbons into high value-added compounds is a highly promising synthesis strategy with economic advantages. However, the oxidation of hydrocarbons with molecular oxygen under mild conditions is challenging due to the large C-H bond energy in hydrocarbons. Herein, a metal-free two-dimensional covalent organic polymers (COP) functionalized by photoactive pyridinium units has been developed for heterogeneous photocatalytic oxidation of hydrocarbons. This is the first kind of COPs material that can achieve photocatalytic oxidation of hydrocarbons without any additives or stoichiometric oxidants except for the oxygen in the air.
Collapse
Affiliation(s)
- Shuai Ma
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, PR China
| | - Qiunan Liu
- Department of Nanocharacterization for Nanostructures and Functions, The Institute of Scientific and Industrial Research (ISIR-SANKEN), Osaka University, Osaka 565-0871, Japan
| | - Jingwang Cui
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, PR China
| | - Caihui Rao
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, PR China
| | - Mengze Jia
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, PR China
| | - Xinrong Yao
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, PR China
| | - Jie Zhang
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, PR China.
| |
Collapse
|
58
|
Recent Developments and Perspectives of Cobalt Sulfide-Based Composite Materials in Photocatalysis. Catalysts 2023. [DOI: 10.3390/catal13030544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023] Open
Abstract
Photocatalysis, as an inexpensive and safe technology to convert solar energy, is essential for the efficient utilization of sustainable renewable energy sources. Earth-abundant cobalt sulfide-based composites have generated great interest in the field of solar fuel conversion because of their cheap, diverse structures and facile preparation. Over the past 10 years, the number of reports on cobalt sulfide-based photocatalysts has increased year by year, and more than 500 publications on the application of cobalt sulfide groups in photocatalysis can be found in the last three years. In this review, we initially summarize the four common strategies for preparing cobalt sulfide-based composite materials. Then, the multiple roles of cobalt sulfide-based cocatalysts in photocatalysis have been discussed. After that, we present the latest progress of cobalt sulfide in four fields of photocatalysis application, including photocatalytic hydrogen production, carbon dioxide reduction, nitrogen fixation, and photocatalytic degradation of pollutants. Finally, the development prospects and challenges of cobalt sulfide-based photocatalysts are discussed. This review is expected to provide useful reference for the construction of high-performance cobalt sulfide-based composite photocatalytic materials for sustainable solar-chemical energy conversion.
Collapse
|
59
|
Di Liberto G, Tosoni S. Band Edges Engineering of 2D/2D Heterostructures: The C 3 N 4 /Phosphorene Interface. Chemphyschem 2023; 24:e202200791. [PMID: 36399544 DOI: 10.1002/cphc.202200791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/14/2022] [Indexed: 11/19/2022]
Abstract
We investigate the interface between carbon nitride (C3 N4 ) and phosphorene nanosheets (P-ene) by means of Density Functional Theory (DFT) calculations. C3 N4 /P-ene composites have been recently obtained experimentally showing excellent photoactivity. Our results indicate that the formation of the interface is a favorable process driven by Van der Waals forces. The thickness of P-ene nanosheets determines the band edges offsets and the charge carriers' separation. The system is predicted to pass from a nearly type-II to a type-I junction when the thickness of P-ene increases, and the conduction band offset is particularly sensitive. Last, we apply the Transfer Matrix Method to estimate the efficiency for charge carriers' migration as a function of the P-ene thickness.
Collapse
Affiliation(s)
- Giovanni Di Liberto
- Dipartimento di Scienza dei Materiali, Università di Milano-Bicocca, via Cozzi 55, 20125, Milano, Italy
| | - Sergio Tosoni
- Dipartimento di Scienza dei Materiali, Università di Milano-Bicocca, via Cozzi 55, 20125, Milano, Italy
| |
Collapse
|
60
|
Liao X, Ren HT, Shen B, Lin JH, Lou CW, Li TT. Enhancing mechanical and photocatalytic properties by surface microstructure regulation of TiO 2 nanofiber membranes. CHEMOSPHERE 2023; 313:137195. [PMID: 36370767 DOI: 10.1016/j.chemosphere.2022.137195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/27/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
In this work, TiO2 nanofiber membrane (NFM) with a complete surface microstructure was prepared through regulating the surface microstructure of TiO2 NFM by doping Zr. The crystal structures and morphological analyses indicated that the nanofiber membranes were consisted by disordered accumulation of Zr-doped TiO2 nanofibers with a crack-free surface, small grain size and high aspect ratio. When the doping amount of Zr was 0.8 mL, the tensile strength of the doped membranes reached 1.27 MPa, which was 60.7% higher than that of pure TiO2 NFM. The photocatalytic performance of Zr-doped TiO2 NFM was evaluated by the degradation performance of Methylene orange (MO) under simulated sunlight irradiation. Compared with the undoped TiO2 NFM, the 0.8-Zr/TiO2 NFM presented a higher catalytic degradation efficiency (improved by 69.6%), and the photocatalytic performance maintained stable after five circulating. It was found that the doping of Zr ions effectively limited the surface crack size and grain size of TiO2 nanofibers, thereby improving the tensile strength, and enhanced the surface area effect and carrier transfer efficiency of TiO2 NFM. On the other hand, a narrow band-gap was obtained by doping a small amount of Zr ions, which expanded the visible light response range to improve the photocatalytic performance of TiO2 nanofibers.
Collapse
Affiliation(s)
- Xilin Liao
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Hai-Tao Ren
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Baolei Shen
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Jia-Horng Lin
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, China; Laboratory of Fiber Application and Manufacturing, Department of Fiber and Composite Materials, Feng Chia University, Taichung, 40724, Taiwan
| | - Ching-Wen Lou
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, China; Department of Bioinformatics and Medical Engineering, Asia University, Taichung, 41354, Taiwan.
| | - Ting-Ting Li
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, China; Tianjin and Ministry of Education Key Laboratory for Advanced Textile Composite Materials, Tiangong University, Tianjin, 300387, China
| |
Collapse
|
61
|
Zn Vacancy-Tailoring Mediated ZnIn2S4 Nanosheets with Accelerated Orderly Charge Flow for Boosting Photocatalytic Hydrogen Evolution. Chem Eng Sci 2023. [DOI: 10.1016/j.ces.2023.118533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
62
|
An S, Wu Z, Jeong H, Lee J, Jeong SY, Lee W, Kim S, Han JW, Lim J, Cha H, Woo HY, Chung DS. Synergistic Contribution of Oligo(ethylene glycol) and Fluorine Substitution of Conjugated Polymer Photocatalysts toward Solar Driven Sacrificial Hydrogen Evolution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2204905. [PMID: 36446633 DOI: 10.1002/smll.202204905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/25/2022] [Indexed: 06/16/2023]
Abstract
To separately explore the importance of hydrophilicity and backbone planarity of polymer photocatalyst, a series of benzothiadiazole-based donor-acceptor alternating copolymers incorporating alkoxy, linear oligo(ethylene glycol) (OEG) side chain, and backbone fluorine substituents is presented. The OEG side chains in the polymer backbone increase the surface energy of the polymer nanoparticles, thereby improving the interaction with water and facilitating electron transfer to water. Moreover, the OEG-attached copolymers exhibit enhanced intermolecular packing compared to polymers with alkoxy side chains, which is possibly attributed to the self-assembly properties of the side chains. Fluorine substituents on the polymer backbone produce highly ordered lamellar stacks with distinct π-π stacking features; subsequently, the long-lived polarons toward hydrogen evolution are observed by transient absorption spectroscopy. In addition, a new nanoparticle synthesis strategy using a methanol/water mixed solvent is first adopted, thereby avoiding the screening effect of surfactants between the nanoparticles and water. Finally, hydrogen evolution rate of 26 000 µmol g-1 h-1 is obtained for the copolymer incorporated with both OEG side chains and fluorine substituents under visible-light irradiation (λ > 420 nm). This study demonstrates how the glycol side chain strategy can be further optimized for polymer photocatalysts by controlling the backbone planarity.
Collapse
Affiliation(s)
- Sanghyeok An
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Ziang Wu
- Department of Chemistry, Korea University, Seoul, 02841, Republic of Korea
| | - Hayoung Jeong
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Juhyeok Lee
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Sang Young Jeong
- Department of Chemistry, Korea University, Seoul, 02841, Republic of Korea
| | - Wonjong Lee
- Graduate School of Energy Science and Technology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Sunkyu Kim
- Graduate School of Energy Science and Technology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Jeong Woo Han
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Jongchul Lim
- Graduate School of Energy Science and Technology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Hyojung Cha
- Department of Hydrogen and Renewable Energy, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Han Young Woo
- Graduate School of Energy Science and Technology, Chungnam National University, Daejeon, 34134, Republic of Korea
- Department of Chemistry, KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Dae Sung Chung
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| |
Collapse
|
63
|
Liu T, Chen L, Li X, Cooper AI. Investigating the factors that influence sacrificial hydrogen evolution activity for three structurally-related molecular photocatalysts: thermodynamic driving force, excited-state dynamics, and surface interaction with cocatalysts. Phys Chem Chem Phys 2023; 25:3494-3501. [PMID: 36637095 DOI: 10.1039/d2cp04039e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The design of molecular organic photocatalysts for reactions such as water splitting requires consideration of factors that go beyond electronic band gap and thermodynamic driving forces. Here, we carried out a theoretical investigation of three molecular photocatalysts (1-3) that are structurally similar but that show different hydrogen evolution activities (25, 23 & 0 μmol h-1 for 1-3, respectively). We used density functional theory (DFT) and time-dependent DFT calculations to evaluate the molecules' optoelectronic properties, such as ionization potential, electron affinity, and exciton potentials, as well as the interaction between the molecular photocatalysts and an idealized platinum cocatalyst surface. The 'static' picture thus obtained was augmented by probing the nonadiabatic dynamics of the molecules beyond the Born-Oppenheimer approximation, revealing a different picture of exciton recombination and relaxation for molecule 3. Our results suggest that slow exciton recombination, fast relaxation to the lowest-energy excited state, and a shorter charge transfer distance between the photocatalyst and the metal cocatalyst are important features that contribute to the photocatalytic hydrogen evolution activity of 1 and 2, and may partly rationalize the observed inactivity of 3, in addition to its lower light absorption profile.
Collapse
Affiliation(s)
- Tao Liu
- Materials Innovation Factory and Department of Chemistry, University of Liverpool, Liverpool, L7 3NY, UK.
| | - Linjiang Chen
- School of Chemistry and School of Computer Science, University of Birmingham, Birmingham, B15 2TT, UK.
| | - Xiaobo Li
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China
| | - Andrew I Cooper
- Materials Innovation Factory and Department of Chemistry, University of Liverpool, Liverpool, L7 3NY, UK.
| |
Collapse
|
64
|
Praus P. Photocatalytic Nitrogen Fixation using Graphitic Carbon Nitride: A Review. ChemistrySelect 2023. [DOI: 10.1002/slct.202204511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Petr Praus
- Department of Chemistry and Physico-Chemical Processes VSB-Technical University of Ostrava 17. listopadu 15 708 00 Ostrava-Poruba Czech Republic
- Institute of Environmental Technology CEET VSB-Technical University of Ostrava 17. listopadu 15 708 00 Ostrava-Poruba Czech Republic
| |
Collapse
|
65
|
Ultra-thin nanosheet assembled 3D honeycomb-like Zn0.5Cd0.5S for boosting photocatalytic H2 evolution. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
66
|
Barlocco I, Cipriano LA, Di Liberto G, Pacchioni G. Does the Oxygen Evolution Reaction follow the classical OH*, O*, OOH* path on single atom catalysts? J Catal 2023. [DOI: 10.1016/j.jcat.2022.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
67
|
Sun Y, Kumar V, Kim KH. The assessment of graphitic carbon nitride (g-C3N4) materials for hydrogen evolution reaction: Effect of metallic and non-metallic modifications. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
68
|
Liu ZJ, Zhang WD, Yu YX. Edge-grafting carbon nitride with aromatic rings for highly-efficient charge separation and enhanced photocatalytic hydrogen evolution. Catal Sci Technol 2023. [DOI: 10.1039/d2cy01598f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Edge-modification of g-C3N4 induces highly-efficient charge separation through directional transfer of electrons from the center to the edge of the framework.
Collapse
Affiliation(s)
- Zhang-Jie Liu
- School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, 510641, PR China
| | - Wei-De Zhang
- School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, 510641, PR China
| | - Yu-Xiang Yu
- School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, 510641, PR China
| |
Collapse
|
69
|
Huang L, Wang D, Zeng H, Zheng L, Lai S, Zou JP. Synergistically interactive P-Co-N bonding states in cobalt phosphide-decorated covalent organic frameworks for enhanced photocatalytic hydrogen evolution. NANOSCALE 2022; 14:18209-18216. [PMID: 36468582 DOI: 10.1039/d2nr05076e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Non-noble materials with high efficiency and stability are essential for renewable energy applications. Herein, cobalt phosphide nanoparticles-decorated covalent organic frameworks (CTF-CoP) are synthesized via an in situ self-assembly method combined with the calcination process. In such a configuration, an intimate interaction between CoP and CTF matrix is gained through the Co-N chemical bonds, which not only significantly enhance the recyclability of CoP nanoparticles but also significantly improve the charge separation efficiency. Besides, the synergistically interactive Pδ--Coδ+-Nδ- states induced by the polarization effect of N-anchoring sites benefit for the adsorption and dissociation of water molecules in CTF-CoP. Consequently, CTF-CoP exhibits a higher photocatalytic hydrogen evolution rate (261.7 μmol g-1 h-1) and better durability as compared with the physically fixed CTF/CoP composite (64.8 μmol g-1 h-1) and even the noble metal-based CTF-Pt (191.3 μmol g-1 h-1). This work provides an avenue to construct highly stable non-noble photocatalyst for energy conversion and also emphasizes the potential of CTFs in constructing efficient heterojunctions.
Collapse
Affiliation(s)
- Lumei Huang
- College of Environmental Science and Engineering, Guilin University of technology, Guilin 541004, P. R. China
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, P. R. China.
| | - Dengke Wang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, P. R. China.
| | - Honghu Zeng
- College of Environmental Science and Engineering, Guilin University of technology, Guilin 541004, P. R. China
| | - Lingling Zheng
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, P. R. China.
| | - Shiqin Lai
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, P. R. China.
| | - Jian-Ping Zou
- College of Environmental Science and Engineering, Guilin University of technology, Guilin 541004, P. R. China
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, P. R. China.
| |
Collapse
|
70
|
Xu G, Du X, Wang W, Qu Y, Liu X, Zhao M, Li W, Li YQ. Plasmonic Nanozymes: Leveraging Localized Surface Plasmon Resonance to Boost the Enzyme-Mimicking Activity of Nanomaterials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204131. [PMID: 36161698 DOI: 10.1002/smll.202204131] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/25/2022] [Indexed: 06/16/2023]
Abstract
Nanozymes, a type of nanomaterials that function similarly to natural enzymes, receive extensive attention in biomedical fields. However, the widespread applications of nanozymes are greatly plagued by their unsatisfactory enzyme-mimicking activity. Localized surface plasmon resonance (LSPR), a nanoscale physical phenomenon described as the collective oscillation of surface free electrons in plasmonic nanoparticles under light irradiation, offers a robust universal paradigm to boost the catalytic performance of nanozymes. Plasmonic nanozymes (PNzymes) with elevated enzyme-mimicking activity by leveraging LSPR, emerge and provide unprecedented opportunities for biocatalysis. In this review, the physical mechanisms behind PNzymes are thoroughly revealed including near-field enhancement, hot carriers, and the photothermal effect. The rational design and applications of PNzymes in biosensing, cancer therapy, and bacterial infections elimination are systematically introduced. Current challenges and further perspectives of PNzymes are also summarized and discussed to stimulate their clinical translation. It is hoped that this review can attract more researchers to further advance the promising field of PNzymes and open up a new avenue for optimizing the enzyme-mimicking activity of nanozymes to create superior nanocatalysts for biomedical applications.
Collapse
Affiliation(s)
- Guopeng Xu
- Institute of Advanced Interdisciplinary Science, School of Physics, Shandong University, Jinan, 250100, China
| | - Xuancheng Du
- Institute of Advanced Interdisciplinary Science, School of Physics, Shandong University, Jinan, 250100, China
| | - Weijie Wang
- Institute of Advanced Interdisciplinary Science, School of Physics, Shandong University, Jinan, 250100, China
| | - Yuanyuan Qu
- Institute of Advanced Interdisciplinary Science, School of Physics, Shandong University, Jinan, 250100, China
| | - Xiangdong Liu
- Institute of Advanced Interdisciplinary Science, School of Physics, Shandong University, Jinan, 250100, China
| | - Mingwen Zhao
- Institute of Advanced Interdisciplinary Science, School of Physics, Shandong University, Jinan, 250100, China
| | - Weifeng Li
- Institute of Advanced Interdisciplinary Science, School of Physics, Shandong University, Jinan, 250100, China
| | - Yong-Qiang Li
- Institute of Advanced Interdisciplinary Science, School of Physics, Shandong University, Jinan, 250100, China
- Suzhou Research Institute, Shandong University, Suzhou, 215123, China
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, 250014, China
| |
Collapse
|
71
|
Mao S, Shi JW, Sun G, Zhang Y, Ma D, Song K, Lv Y, Zhou J, Wang H, Cheng Y. PdS Quantum Dots as a Hole Attractor Encapsulated into the MOF@Cd 0.5Zn 0.5S Heterostructure for Boosting Photocatalytic Hydrogen Evolution under Visible Light. ACS APPLIED MATERIALS & INTERFACES 2022; 14:48770-48779. [PMID: 36259606 DOI: 10.1021/acsami.2c15052] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Herein, a new photocatalyst PdS@UiOS@CZS is successfully synthesized, where thiol-functionalized UiO-66 (UiOS), a metal-organic framework (MOF) material, is used as a host to encapsulate PdS quantum dots (QDs) in its cages, and Cd0.5Zn0.5S (CZS) solid solution nanoparticles (NPs) are anchored on its outer surface. The resultant PdS@UiOS@CZS with an optimal ratio between components displays an excellent photocatalytic H2 evolution rate of 46.1 mmol h-1 g-1 under visible light irradiation (420∼780 nm), which is 512.0, 9.2, and 5.9 times that of pure UiOS, CZS, and UiOS@CZS, respectively. The reason for the significantly enhanced performance is that the encapsulated PdS QDs strongly attract the photogenerated holes into the pores of UiOS, while the photogenerated electrons are effectively migrated to CZS due to the heterojunction effect, thereby effectively suppressing the recombination of charge carriers for further high-efficiency hydrogen production. This work provides an idea for developing efficient photocatalysts induced by hole attraction.
Collapse
Affiliation(s)
- Siman Mao
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jian-Wen Shi
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Guotai Sun
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yijun Zhang
- Key Laboratory of Electronic Ceramics and Devices of Ministry of Education, Department of Electronics and Information, Xi'an Jiaotong University, Xi'an 710049, China
| | - Dandan Ma
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Kunli Song
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yixuan Lv
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jun Zhou
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Hongkang Wang
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yonghong Cheng
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
72
|
Metal oxide/2D layered TMDs composites for H2 evolution reaction via photocatalytic water splitting – A mini review. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
73
|
Ming M, Yuan H, Yang S, Wei Z, Lei Q, Lei J, Han Z. Efficient Red-Light-Driven Hydrogen Evolution with an Anthraquinone Organic Dye. J Am Chem Soc 2022; 144:19680-19684. [PMID: 36260355 DOI: 10.1021/jacs.2c08171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The direct utilization of the full solar spectrum to obtain renewable fuels remains a challenge because the conversion of the low-energy light (red and near-infrared) is difficult. Current light-driven systems show activity for hydrogen generation with the high-energy part of sunlight. Here we report the use of a simple anthraquinone organic dye in an artificial photosynthetic system that promotes efficient red-light-driven production of hydrogen. The system contains no noble metal and exhibits a turnover number greater than 0.78 million and a quantum yield of 30.6% at 630 nm. A mechanistic study revealed that the excited-state and redox properties of the chromophore are critical to achieving high activity and stability.
Collapse
Affiliation(s)
- Mei Ming
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Huiqing Yuan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Shuang Yang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Zuting Wei
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Qinqin Lei
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Jingxiang Lei
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhiji Han
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
74
|
Wen J, Zhang S, Liu Y, Zhai Y. Formic acid assisted fabrication of Oxygen-doped Rod-like carbon nitride with improved photocatalytic hydrogen evolution. J Colloid Interface Sci 2022; 624:338-347. [PMID: 35660902 DOI: 10.1016/j.jcis.2022.05.130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/15/2022] [Accepted: 05/22/2022] [Indexed: 01/17/2023]
Abstract
Rod-like carbon nitrides synthesized by calcinating supramolecular precursors prepared from acid (or alkali) and melamine have attracted great attention because they have large surface area and abundant accessible active sites. However, they are highly inefficient in separating charges, which limits their photocatalytic activity. Here, we prepared porous, rod-shaped carbon nitrides doped with oxygen by calcinating the precursors prepared from melamine and formic acid. The porous O-doped g-C3N4 nanorods have a large surface area of 81.4 m2 g-1. In particular, the oxygen doped into the catalyst enables it to have high efficiency in utilizing light in a range of 420-600 nm, and significantly improves its ability to separate photogenerated carriers. Under light irradiation (λ ≥ 420 nm), the prepared catalyst exhibits high photocatalytic activity with a hydrogen production rate of 12,766 μmol g-1h-1, which is 18.3 times that of pure carbon nitride. This research provides a novel way of preparing highly active non-metallic photocatalysts.
Collapse
Affiliation(s)
- Jiaqi Wen
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Shuaiyang Zhang
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Yonggang Liu
- College of Ecology and Environment, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Yunpu Zhai
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
75
|
Wang G, Li H, Li N, Chen D, He J, Xu Q, Lu J. Construction of Perylene‐based Amphiphilic Micelle and Its Efficient Adsorption and In Situ Photodegradation of Bisphenol A in Aqueous Solution. Angew Chem Int Ed Engl 2022; 61:e202210619. [DOI: 10.1002/anie.202210619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Guan Wang
- College of Chemistry Chemical Engineering and Materials Science Collaborative Innovation Center of Suzhou Nano Science and Technology Soochow University Suzhou 215123 P. R. China
| | - Hua Li
- College of Chemistry Chemical Engineering and Materials Science Collaborative Innovation Center of Suzhou Nano Science and Technology Soochow University Suzhou 215123 P. R. China
| | - Najun Li
- College of Chemistry Chemical Engineering and Materials Science Collaborative Innovation Center of Suzhou Nano Science and Technology Soochow University Suzhou 215123 P. R. China
| | - Dongyun Chen
- College of Chemistry Chemical Engineering and Materials Science Collaborative Innovation Center of Suzhou Nano Science and Technology Soochow University Suzhou 215123 P. R. China
| | - Jinghui He
- College of Chemistry Chemical Engineering and Materials Science Collaborative Innovation Center of Suzhou Nano Science and Technology Soochow University Suzhou 215123 P. R. China
| | - Qingfeng Xu
- College of Chemistry Chemical Engineering and Materials Science Collaborative Innovation Center of Suzhou Nano Science and Technology Soochow University Suzhou 215123 P. R. China
| | - Jianmei Lu
- College of Chemistry Chemical Engineering and Materials Science Collaborative Innovation Center of Suzhou Nano Science and Technology Soochow University Suzhou 215123 P. R. China
| |
Collapse
|
76
|
Zhai W, Wang M, Liu S, Xu S, Dong H, Wang L, Wei S, Wang Z, Liu S, Lu X. Theoretical investigation on two-dimensional conjugated aromatic polymer membranes for high-efficiency hydrogen separation: The effects of pore size and interaction. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
77
|
Han X, Zhao F, Shang Q, Zhao J, Zhong X, Zhang J. Effect of Nitrogen Atom Introduction on the Photocatalytic Hydrogen Evolution Activity of Covalent Triazine Frameworks: Experimental and Theoretical Study. CHEMSUSCHEM 2022; 15:e202200828. [PMID: 35869028 DOI: 10.1002/cssc.202200828] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/22/2022] [Indexed: 06/15/2023]
Abstract
The construction of high-performance photocatalyst has always been explored. Covalent organic frameworks (COFs), especially keto-amine-linked COFs, have many advantages, such as adjustable bandgaps, π-π stacking structure, excellent response ability to visible light, high specific surface area, high mobility of carrier carriers, good physical and chemical stability, and so on, showing strong potential applications in photocatalytic solar energy conversion and hydrogen production. Two analogous covalent triazine frameworks (CTFs), T3H-CTF and T3N-CTF, have been synthesized via Schiff-base condensation reactions between 2,4,6-trihydroxybenzene-1,3,5-tricarbalehyde (MOP) and the corresponding triazine-based aromatic amines under solvothermal condition. For T3N-CTF, the peripheral aromatic linker to the central triazine unit was the pyridine unit, instead of the benzene unit in the T3H-CTF unit. T3N-CTF had a hydrogen production rate (HPR) of 6485.05 μmol g-1 h-1 , much higher than that of T3H-CTF (2028.06 μmol g-1 h-1 ). Accordingly, T3N-CTF had a much higher apparent quantum yield (AQY) of 12.2 % than that of T3H-CTF (4.12 %) at 405 nm. The experimental and theoretical results showed that the extended light absorption range, enlarged surface area, and enhanced separation and transportation efficiencies of charge carriers of T3N-CTF compared with T3H-CTF were uniformly induced by the introduction of peripheral nitrogen atoms into the skeleton of former CTF, which eventually boosted the visible-light induced hydrogen evolution reaction (HER). The work suggests a new method for enhancing the intrinsic HER activity by modulating the electronic features of the conjugated COFs by the introduction of pyridinic N atoms.
Collapse
Affiliation(s)
- Xiao Han
- Shandong Key Laboratory of Chemical Energy Storage and New Battery Technology, College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, P. R. China
| | - Fei Zhao
- College of Chemistry and Chemical Engineering, Taishan University, Taian, 271000, P. R. China
| | - Qianqian Shang
- Shandong Key Laboratory of Chemical Energy Storage and New Battery Technology, College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, P. R. China
| | - Jinsheng Zhao
- Shandong Key Laboratory of Chemical Energy Storage and New Battery Technology, College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, P. R. China
| | - Xiujuan Zhong
- Shandong Key Laboratory of Chemical Energy Storage and New Battery Technology, College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, P. R. China
| | - Junhong Zhang
- Shandong Key Laboratory of Chemical Energy Storage and New Battery Technology, College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, P. R. China
| |
Collapse
|
78
|
Carbon-based nanostructures for emerging photocatalysis: CO2 reduction, N2 fixation, and organic conversion. TRENDS IN CHEMISTRY 2022. [DOI: 10.1016/j.trechm.2022.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
79
|
Wang E, Mahmood A, Chen SG, Sun W, Muhmood T, Yang X, Chen Z. Solar-Driven Photocatalytic Reforming of Lignocellulose into H 2 and Value-Added Biochemicals. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Eryu Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, People’s Republic of China
| | - Ayyaz Mahmood
- School of Mechanical Engineering, Dongguan University of Technology, Dongguan 523808, People’s Republic of China
| | - Sheng-Gui Chen
- School of Mechanical Engineering, Dongguan University of Technology, Dongguan 523808, People’s Republic of China
| | - Wenhong Sun
- Guangxi Key Laboratory of Processing for Non-Ferrous Metallic and Featured Materials, Research Center for Optoelectronic Materials and Devices, Guangxi Key Laboratory for Relativistic Astrophysics, School of Physical Science & Technology, Guangxi University, 530004 Nanning, People’s Republic of China
| | - Tahir Muhmood
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, People’s Republic of China
| | - Xiaofei Yang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, People’s Republic of China
| | - Zupeng Chen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, People’s Republic of China
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Street 29a, Rostock 18059, Germany
| |
Collapse
|
80
|
Afzal J, Fu Y, Luan TX, Su Z, Li PZ. Highly Effective Proton-Conductive Matrix-Mixed Membrane Based on a -SO 3H-Functionalized Polyphosphazene. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:10503-10511. [PMID: 35976224 DOI: 10.1021/acs.langmuir.2c01273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A polyphosphazene with in-built -SO3H moieties (PP-PhSO3H) was facilely synthesized by the polymeric combination of hexachlorocyclotriphosphazene (HCCP) and sulfonate p-phenylenediamine. Characterization reveals that it is a highly stable amorphous polymer. Proton conductivity investigations showed that the synthesized PP-PhSO3H exhibits a proton conductivity of up to 6.64 × 10-2 S cm-1 at 353 K and 98% relative humidity (RH). This value is almost 2 orders of magnitude higher than the corresponding value for its -SO3H-free analogue, PP-Ph, which is 1.72 × 10-4 S cm-1 when measured under the same condition. Consequently, matrix-mixed membranes (labeled PP-PhSO3H-PAN) were further prepared by mixing PP-PhSO3H with polyacrylonitrile (PAN) in different ratios to test its potential application in the proton-exchange membrane (PEM) fuel cell. The analysis results indicate that when the weight ratio of PP-PhSO3H/PAN is 3:1 [named PP-PhSO3H-PAN (3:1)], its proton conductivity can reach up to 5.05 × 10-2 S cm-1 at 353 K and 98% RH, which is even comparable with those of proton-conductive electrolytes currently used in PEM fuel cells. Furthermore, the continuous test demonstrates that the PP-PhSO3H-PAN (3:1) has long-life reusability. This research reveals that by using phosphazene and sulfonated multiple-amine modules as precursors, organic polymers with excellent proton conductivity for the assembly of matrix-mixed membranes in PEM fuel cells can be easily synthesized by a simple polymeric process.
Collapse
Affiliation(s)
- Jamal Afzal
- School of Chemistry and Chemical Engineering, Shandong University, No.27 Shanda South Road, Ji'nan 250100, Shandong Province, People's Republic of China
| | - Yaomei Fu
- Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization, Weifang University of Science and Technology, Shouguang 262700, Shandong Province, People's Republic of China
| | - Tian-Xiang Luan
- School of Chemistry and Chemical Engineering, Shandong University, No.27 Shanda South Road, Ji'nan 250100, Shandong Province, People's Republic of China
| | - Zhongmin Su
- Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization, Weifang University of Science and Technology, Shouguang 262700, Shandong Province, People's Republic of China
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun 130022, Jilin Province, People's Republic of China
| | - Pei-Zhou Li
- School of Chemistry and Chemical Engineering, Shandong University, No.27 Shanda South Road, Ji'nan 250100, Shandong Province, People's Republic of China
- Science Center for Material Creation and Energy Conversion, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, Shandong Province, People's Republic of China
| |
Collapse
|
81
|
Yu H, Wang D. Suppressing the Excitonic Effect in Covalent Organic Frameworks for Metal-Free Hydrogen Generation. JACS AU 2022; 2:1848-1856. [PMID: 36032531 PMCID: PMC9400042 DOI: 10.1021/jacsau.2c00169] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Photocatalytic hydrogen generation is a promising solution for renewable energy production and plays a role in achieving carbon neutrality. Covalent organic frameworks (COFs) with highly designable backbones and inherent pores have emerged as novel photocatalysts, yet the strong excitonic effect in COFs can impede the promotion of energy conversion efficiency. Here, we propose a facile approach to suppress the excitonic effect in COFs, which is by narrowing the band gap and increasing the dielectric screening via a rational backbone design and chemical modifications. Based on the GW-BSE method, we uncover a linear relationship between the electronic dielectric constant and the inverse square of the optical band gap of COFs of the Lieb lattice. We further demonstrate that both reduced exciton binding energy and enhanced sunlight absorption can be simultaneously realized in COFs with a narrow band gap. Specifically, we show that one of our designed COFs whose exciton binding energy is nearly half that of g-C3N4 is capable of metal-free hydrogen production under near-infrared light irradiation. Our results showcase an effective method to suppress the excitonic effect in COFs and also pave the way for their applications in photocatalytic, photovoltaic, and other related solar energy conversions.
Collapse
|
82
|
Wang G, Li H, Li N, Chen D, He J, Xu Q, Lu JM. Construction of Perylene‐based Amphiphilic Micelle and Its Efficient Adsorption and In‐situ Photodegradation of Bisphenol A in Aqueous Solution. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202210619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Guan Wang
- Soochow University College of Chemistry, Chemical Engineering and Materials Science Soochow University, No. 199, Ren'ai Road, Suzhou city, Jiangsu province 215000 CHINA
| | - Hua Li
- Soochow University College of Chemistry, Chemical Engineering and Materials Science Soochow University, No. 199, Ren'ai Road, Suzhou city, Jiangsu province 215000 CHINA
| | - Najun Li
- Soochow University College of Chemistry, Chemical Engineering and Materials Science CHINA
| | - Dongyun Chen
- Soochow University College of Chemistry, Chemical Engineering and Materials Science CHINA
| | - Jinghui He
- Soochow University College of Chemistry, Chemical Engineering and Materials Science CHINA
| | - Qingfeng Xu
- Soochow University College of Chemistry, Chemical Engineering and Materials Science CHINA
| | - Jian-Mei Lu
- Soochow University College of Chemistry, Chemical Engineering and Materials Science No.199 Renai RoadSuzhou Industrial Park 215123 Suzhou CHINA
| |
Collapse
|
83
|
Bai X, Guo L, Jia T, Hao D, Wang C, Li H, Zong R. Perylene diimide growth on both sides of carbon nanotubes for remarkably boosted photocatalytic degradation of diclofenac. JOURNAL OF HAZARDOUS MATERIALS 2022; 435:128992. [PMID: 35489317 DOI: 10.1016/j.jhazmat.2022.128992] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/07/2022] [Accepted: 04/20/2022] [Indexed: 06/14/2023]
Abstract
Perylene diimide and its derivatives are promising photocatalysts for clean and efficient production, but their practical application in the field of photocatalysis is still limited by the rapid photogenerated charge recombination. In this work, the confined photocatalysts were synthesized by using a gas-phase self-assembly method and comparing the morphology and photocatalytic properties of different photocatalysts after the confinement of carbon nanotubes. The confinement effect of carbon nanotubes acts to stabilize perylene diimide. Electrostatic interaction formed by a wide range of dispersion forces is dominant in the process of stabilization. Benefitting from the three-dimensional electron transfer pathway formed by the conjugation of perylene diimide with a large number of π electrons to the carbon nanotubes plane, the confined photocatalyst shows the pseudo-first-order kinetic constant k of 1.106 h-1 for the photocatalytic degradation of diclofenac under light, which is 6.11 times higher than that of perylene diimide. The electron transfer created an internal electric field at the interface from carbon nanotubes to perylene diimide, which greatly accelerated the separation of photogenerated electron-hole pairs and improved the photocatalytic activity. This study further expands the applicability of perylene diimide in the field of photocatalysis and provides a new approach for water environment treatment.
Collapse
Affiliation(s)
- Xiaojuan Bai
- Key Laboratory of Urban Stormwater System and Water Environment (Beijing University of Civil Engineering and Architecture), Ministry of Education, Beijing 100044, China; Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing University of Civil Engineering and Architecture, Beijing 100044, China.
| | - Linlong Guo
- Key Laboratory of Urban Stormwater System and Water Environment (Beijing University of Civil Engineering and Architecture), Ministry of Education, Beijing 100044, China
| | - Tianqi Jia
- Key Laboratory of Urban Stormwater System and Water Environment (Beijing University of Civil Engineering and Architecture), Ministry of Education, Beijing 100044, China
| | - Derek Hao
- Centre for Catalysis and Clean Energy, Gold Coast Campus, Griffith University, Gold Coast 4222, Australia.
| | - Cong Wang
- Key Laboratory of Urban Stormwater System and Water Environment (Beijing University of Civil Engineering and Architecture), Ministry of Education, Beijing 100044, China
| | - Haiyan Li
- Key Laboratory of Urban Stormwater System and Water Environment (Beijing University of Civil Engineering and Architecture), Ministry of Education, Beijing 100044, China
| | - Ruilong Zong
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
84
|
Kumar Singh A, Das C, Indra A. Scope and prospect of transition metal-based cocatalysts for visible light-driven photocatalytic hydrogen evolution with graphitic carbon nitride. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214516] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
85
|
Afzal J, Fu Y, Luan TX, Zhang D, Li Y, Li H, Cheng K, Su Z, Li PZ. Facile construction of a highly proton-conductive matrix-mixed membrane based on a -SO 3H functionalized polyamide. SOFT MATTER 2022; 18:5518-5523. [PMID: 35848897 DOI: 10.1039/d2sm00451h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Developing a facile strategy to construct low-cost and efficient proton-conductive electrolytes is pivotal in the practical application of proton exchange membrane (PEM) fuel cells. Herein, a polyamide with in-built -SO3H moieties, PA(PhSO3H)2, was synthesized via a simple one-pot polymeric acylation process. Investigations via electrochemical impedance spectroscopy (EIS) measurements revealed that the fabricated PA(PhSO3H)2 displays a proton conductivity of up to 5.54 × 10-2 S cm-1 at 353 K under 98% relative humidity (RH), which is more than 2 orders of magnitude higher than that of its -SO3H-free analogue PA(Ph)2 (2.38 × 10-4 S cm-1) under the same conditions. Therefore, after mixing with polyacrylonitrile (PAN) at different ratios, PA(PhSO3H)2-based matrix-mixed membranes were subsequently made and the analysis results revealed that the proton conductivity can reach up to 5.82 × 10-2 S cm-1 at 353 K and 98% RH when the weight ratio of PA(PhSO3H)2 : PAN is in 3 : 1 (labeled as PA(PhSO3H)2-PAN(3 : 1)), the value of which is comparable even to those of commercially available electrolytes that are used in PEM fuel cells. In addition, continuous testing shows that PA(PhSO3H)2-PAN(3 : 1) possesses long-life reusability. This work demonstrates that, utilizing the simple reaction of polymeric acylation with a sulfonated module as a precursor, highly effective proton-conductive membranes for PEM fuel cells can be achieved in a facile manner.
Collapse
Affiliation(s)
- Jamal Afzal
- School of Chemistry and Chemical Engineering, Shandong University, No. 27 Shanda South Road, Ji'nan 250100, Shandong Province, People's Republic of China.
| | - Yaomei Fu
- Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization, Weifang University of Science and Technology, Shouguang 262700, Shandong Province, People's Republic of China
| | - Tian-Xiang Luan
- School of Chemistry and Chemical Engineering, Shandong University, No. 27 Shanda South Road, Ji'nan 250100, Shandong Province, People's Republic of China.
| | - Deshan Zhang
- School of Chemistry and Chemical Engineering, Shandong University, No. 27 Shanda South Road, Ji'nan 250100, Shandong Province, People's Republic of China.
| | - Yangyang Li
- School of Chemistry and Chemical Engineering, Shandong University, No. 27 Shanda South Road, Ji'nan 250100, Shandong Province, People's Republic of China.
| | - Hailian Li
- School of Chemistry and Chemical Engineering, Shandong University, No. 27 Shanda South Road, Ji'nan 250100, Shandong Province, People's Republic of China.
| | - Ke Cheng
- School of Chemistry and Chemical Engineering, Shandong University, No. 27 Shanda South Road, Ji'nan 250100, Shandong Province, People's Republic of China.
| | - Zhongmin Su
- Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization, Weifang University of Science and Technology, Shouguang 262700, Shandong Province, People's Republic of China
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun 130022, Jilin Province, People's Republic of China
| | - Pei-Zhou Li
- School of Chemistry and Chemical Engineering, Shandong University, No. 27 Shanda South Road, Ji'nan 250100, Shandong Province, People's Republic of China.
- Science Center for Material Creation and Energy Conversion, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, Shandong Province, People's Republic of China
| |
Collapse
|
86
|
Mai H, Le TC, Chen D, Winkler DA, Caruso RA. Machine Learning for Electrocatalyst and Photocatalyst Design and Discovery. Chem Rev 2022; 122:13478-13515. [PMID: 35862246 DOI: 10.1021/acs.chemrev.2c00061] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Electrocatalysts and photocatalysts are key to a sustainable future, generating clean fuels, reducing the impact of global warming, and providing solutions to environmental pollution. Improved processes for catalyst design and a better understanding of electro/photocatalytic processes are essential for improving catalyst effectiveness. Recent advances in data science and artificial intelligence have great potential to accelerate electrocatalysis and photocatalysis research, particularly the rapid exploration of large materials chemistry spaces through machine learning. Here a comprehensive introduction to, and critical review of, machine learning techniques used in electrocatalysis and photocatalysis research are provided. Sources of electro/photocatalyst data and current approaches to representing these materials by mathematical features are described, the most commonly used machine learning methods summarized, and the quality and utility of electro/photocatalyst models evaluated. Illustrations of how machine learning models are applied to novel electro/photocatalyst discovery and used to elucidate electrocatalytic or photocatalytic reaction mechanisms are provided. The review offers a guide for materials scientists on the selection of machine learning methods for electrocatalysis and photocatalysis research. The application of machine learning to catalysis science represents a paradigm shift in the way advanced, next-generation catalysts will be designed and synthesized.
Collapse
Affiliation(s)
- Haoxin Mai
- Applied Chemistry and Environmental Science, School of Science, STEM College, RMIT University, GPO Box 2476, Melbourne, Victoria 3001, Australia
| | - Tu C Le
- School of Engineering, STEM College, RMIT University, GPO Box 2476, Melbourne, Victoria 3001, Australia
| | - Dehong Chen
- Applied Chemistry and Environmental Science, School of Science, STEM College, RMIT University, GPO Box 2476, Melbourne, Victoria 3001, Australia
| | - David A Winkler
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.,Biochemistry and Chemistry, La Trobe University, Kingsbury Drive, Bundoora, Victoria 3042, Australia.,School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Rachel A Caruso
- Applied Chemistry and Environmental Science, School of Science, STEM College, RMIT University, GPO Box 2476, Melbourne, Victoria 3001, Australia
| |
Collapse
|
87
|
Synergy of heterojunction and interfacial strain for boosting photocatalytic H 2 evolution of black phosphorus nanosheets. J Colloid Interface Sci 2022; 627:969-977. [PMID: 35905583 DOI: 10.1016/j.jcis.2022.07.097] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 07/09/2022] [Accepted: 07/17/2022] [Indexed: 11/22/2022]
Abstract
As an emerging post-graphene two-dimensional material, black phosphorus (BP) has attracted enormous interest as a promising cocatalyst for photocatalytic hydrogen (H2) evolution, however, the activity of either pristine bulk or BP nanosheets is far from satisfactory. Herein, we present an effective strategy to greatly boost the H2 evolution performance of BP via applying the synergistic effect of heterojunction and interfacial lattice strain. A multilayered heterostructure coupling BP nanosheets and nickel oxide (NiO) nanosheets with abundant interface P-Ni and PO bonds is synthesized and utilized as a proof-of-concept material for our design. Both the experimental and theoretical results have revealed that the strain is formed in BP-NiO multilayered heterostructure. The generated lattice strain induces the charge redistribution at the interface between BP and NiO, which leads to the improved electron transfer efficiency and favorable H* adsorption kinetics for photocatalytic H2 evolution reaction. As a result, the BP-NiO heterostructure with strain effect exhibits much enhanced photocatalytic H2 evolution activity in the presence of Eosin Y (EY) as photosensitizer, exceeding that of zero-strained BP/NiO heterostructure and many other reported noble-metal-free cocatalyst.
Collapse
|
88
|
Teng Q, He YP, Chen SM, Zhang J. Synthesis of a Zr 4(embonate) 6-cobalt based superstructure for photocatalytic hydrogen production. Dalton Trans 2022; 51:11612-11616. [PMID: 35852398 DOI: 10.1039/d2dt01976k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we report an efficient method to construct cage-based MOF materials with exposed metal active sites for catalysis. By employing Zr4L6 (L = embonate) cages as precursors for assembly with N-containing ligands and Co2+ ions, a new Zr4L6-Co based chain structure (PTC-318) has been generated through two-step reactions. Interestingly, in the absence of a photosensitizer, PTC-318 exhibits notable photocatalytic activity for H2 evolution under visible-light irradiation.
Collapse
Affiliation(s)
- Qian Teng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China. .,College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Yan-Ping He
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China.
| | - Shu-Mei Chen
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Jian Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China.
| |
Collapse
|
89
|
Li Q, Li J, Wang W, Liu L, Xu Z, Xie G, Li J, Yao J, Li W. Tuning Acceptor Length in Photocatalytic
Donor‐Acceptor
Conjugated Polymers for Efficient
Solar‐to‐Hydrogen
Energy Conversion. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Qian Li
- The Education Ministry Key Laboratory of Resource Chemistry Shanghai Normal University Shanghai 200234 China
- CAS Key Laboratory of Synthetic and Self‐Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road Shanghai 200032 China
| | - Jia Li
- CAS Key laboratory of Energy Regulation Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road Shanghai 200032 China
| | - Wen‐Rui Wang
- CAS Key Laboratory of Synthetic and Self‐Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road Shanghai 200032 China
| | - Li‐Na Liu
- CAS Key Laboratory of Synthetic and Self‐Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road Shanghai 200032 China
- Engineering Research Center of Zhengzhou for High Performance Organic Functional Materials Zhengzhou Institute of Technology, 6 Yingcai Street, Huiji District Zhengzhou 450044 China
| | - Zi‐Wen Xu
- CAS Key Laboratory of Synthetic and Self‐Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road Shanghai 200032 China
| | - Guanghui Xie
- Engineering Research Center of Zhengzhou for High Performance Organic Functional Materials Zhengzhou Institute of Technology, 6 Yingcai Street, Huiji District Zhengzhou 450044 China
| | - Jingjing Li
- Engineering Research Center of Zhengzhou for High Performance Organic Functional Materials Zhengzhou Institute of Technology, 6 Yingcai Street, Huiji District Zhengzhou 450044 China
| | - Jianhua Yao
- CAS Key laboratory of Energy Regulation Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road Shanghai 200032 China
- Engineering Research Center of Zhengzhou for High Performance Organic Functional Materials Zhengzhou Institute of Technology, 6 Yingcai Street, Huiji District Zhengzhou 450044 China
| | - Wei‐Shi Li
- The Education Ministry Key Laboratory of Resource Chemistry Shanghai Normal University Shanghai 200234 China
- CAS Key Laboratory of Synthetic and Self‐Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road Shanghai 200032 China
- Engineering Research Center of Zhengzhou for High Performance Organic Functional Materials Zhengzhou Institute of Technology, 6 Yingcai Street, Huiji District Zhengzhou 450044 China
| |
Collapse
|
90
|
Han C, Xiang S, Ge M, Xie P, Zhang C, Jiang JX. An Efficient Electron Donor for Conjugated Microporous Polymer Photocatalysts with High Photocatalytic Hydrogen Evolution Activity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202072. [PMID: 35689304 DOI: 10.1002/smll.202202072] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Conjugated microporous polymers (CMPs) with donor-acceptor (D-A) molecular structure show high photocatalytic activity for hydrogen evolution due to the efficient light-induced electron/hole separation, which is mostly determined by the nature of electron donor and acceptor units. Therefore, the selection of electron donor and acceptor holds the key point to construct high performance polymer photocatalysts. Herein, two dibenzo[b,d]thiophene-S,S-dioxide (BTDO) containing CMP photocatalysts using tetraphenylethylene (TPE) or dibenzo[g,p]chrysene (DBC) as the electron donor to investigate the influence of the geometry of electron donor on the photocatalytic activity are design and synthesized. Compared with the twisted TPE donor, DBC has a planar molecular structure with extended π-conjugation, which promotes the charges transmission and light-induced electron/hole separation. As a result, the polymer DBC-BTDO produced from DBC donor shows a remarkable photocatalytic hydrogen evolution rate (HER) of 104.86 mmol h-1 g-1 under full arc light (λ > 300 nm), which is much higher than that of the polymer TPE-BTDO (1.80 mmol h-1 g-1 ), demonstrating that DBC can be an efficient electron donor for constructing D-A polymer photocatalysts with high photocatalytic activity for hydrogen evolution.
Collapse
Affiliation(s)
- Changzhi Han
- Key Laboratory for Macromolecular Science of Shaanxi Province, Shaanxi Engineering Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710062, P. R. China
| | - Sihui Xiang
- Key Laboratory for Macromolecular Science of Shaanxi Province, Shaanxi Engineering Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710062, P. R. China
| | - Mantang Ge
- Key Laboratory for Macromolecular Science of Shaanxi Province, Shaanxi Engineering Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710062, P. R. China
| | - Peixuan Xie
- Key Laboratory for Macromolecular Science of Shaanxi Province, Shaanxi Engineering Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710062, P. R. China
| | - Chong Zhang
- Key Laboratory for Macromolecular Science of Shaanxi Province, Shaanxi Engineering Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710062, P. R. China
| | - Jia-Xing Jiang
- Key Laboratory for Macromolecular Science of Shaanxi Province, Shaanxi Engineering Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710062, P. R. China
| |
Collapse
|
91
|
Li L, Li JZ, Sun YB, Luo CM, Qiu H, Tang K, Liu H, Wei WT. Visible-Light-Catalyzed Tandem Radical Addition/1,5-Hydrogen Atom Transfer/Cyclization of 2-Alkynylarylethers with Sulfonyl Chlorides. Org Lett 2022; 24:4704-4709. [PMID: 35724683 DOI: 10.1021/acs.orglett.2c01977] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A novel visible-light-catalyzed tandem radical addition/1,5-hydrogen atom transfer/cyclization cascade of 2-alkynylarylethers with sulfonyl chlorides in 2-methyltetrahydrofuran was developed under photocatalyst- and additive-free conditions. This reaction relies on unique energy transfer and solvent-radical relay strategies to generate sulfonyl radicals for the preparation of a series of sulfonyl-functionalized dihydrobenzofurans in moderate to high yields catalyzed by visible light or solar radiation.
Collapse
Affiliation(s)
- Long Li
- School of Materials Science and Chemical Engineering, Institute of Drug Discovery Technology, Institute of Mass Spectrometry, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Jiao-Zhe Li
- School of Materials Science and Chemical Engineering, Institute of Drug Discovery Technology, Institute of Mass Spectrometry, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Yong-Bin Sun
- School of Materials Science and Chemical Engineering, Institute of Drug Discovery Technology, Institute of Mass Spectrometry, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Chun-Mei Luo
- School of Materials Science and Chemical Engineering, Institute of Drug Discovery Technology, Institute of Mass Spectrometry, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Hui Qiu
- School of Materials Science and Chemical Engineering, Institute of Drug Discovery Technology, Institute of Mass Spectrometry, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Keqi Tang
- School of Materials Science and Chemical Engineering, Institute of Drug Discovery Technology, Institute of Mass Spectrometry, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Hongxin Liu
- College of Chemistry and Materials Engineering, Institute of New Materials & Industrial Technology, Wenzhou University, Wenzhou 325035, China
| | - Wen-Ting Wei
- School of Materials Science and Chemical Engineering, Institute of Drug Discovery Technology, Institute of Mass Spectrometry, Ningbo University, Ningbo, Zhejiang 315211, China
| |
Collapse
|
92
|
Jing Y, Zhu X, Maier S, Heine T. 2D conjugated polymers: exploiting topological properties for the rational design of metal-free photocatalysts. TRENDS IN CHEMISTRY 2022. [DOI: 10.1016/j.trechm.2022.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
93
|
Afzal J, Fu Y, Luan TX, Su Z, Li PZ. Highly Effective Proton-Conduction Matrix-Mixed Membrane Derived from an -SO3H Functionalized Polyamide. Molecules 2022; 27:molecules27134110. [PMID: 35807357 PMCID: PMC9268481 DOI: 10.3390/molecules27134110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/09/2022] [Accepted: 06/23/2022] [Indexed: 01/27/2023] Open
Abstract
Developing a low-cost and effective proton-conductive electrolyte to meet the requirements of the large-scale manufacturing of proton exchange membrane (PEM) fuel cells is of great significance in progressing towards the upcoming “hydrogen economy” society. Herein, utilizing the one-pot acylation polymeric combination of acyl chloride and amine precursors, a polyamide with in-built -SO3H moieties (PA-PhSO3H) was facilely synthesized. Characterization shows that it possesses a porous feature and a high stability at the practical operating conditions of PEM fuel cells. Investigations of electrochemical impedance spectroscopy (EIS) measurements revealed that the fabricated PA-PhSO3H displays a proton conductivity of up to 8.85 × 10−2 S·cm−1 at 353 K under 98% relative humidity (RH), which is more than two orders of magnitude higher than that of its -SO3H-free analogue, PA-Ph (6.30 × 10−4 S·cm−1), under the same conditions. Therefore, matrix-mixed membranes were fabricated by mixing with polyacrylonitrile (PAN) in different ratios, and the EIS analyses revealed that its proton conductivity can reach up to 4.90 × 10−2 S·cm−1 at 353 K and a 98% relative humidity (RH) when the weight ratio of PA-PhSO3H:PAN is 3:1 (labeled as PA-PhSO3H-PAN (3:1)), the value of which is even comparable with those of commercial-available electrolytes being used in PEM fuel cells. Additionally, continuous tests showed that PA-PhSO3H-PAN (3:1) possesses a long-life reusability. This work demonstrates, using the simple acylation reaction with the sulfonated module as precursor, that low-cost and highly effective proton-conductive electrolytes for PEM fuel cells can be facilely achieved.
Collapse
Affiliation(s)
- Jamal Afzal
- School of Chemistry and Chemical Engineering, Shandong University, No. 27 Shanda South Road, Jinan 250100, China; (J.A.); (T.-X.L.)
| | - Yaomei Fu
- Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization, Weifang University of Science and Technology, Shouguang 262700, China; (Y.F.); (Z.S.)
| | - Tian-Xiang Luan
- School of Chemistry and Chemical Engineering, Shandong University, No. 27 Shanda South Road, Jinan 250100, China; (J.A.); (T.-X.L.)
| | - Zhongmin Su
- Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization, Weifang University of Science and Technology, Shouguang 262700, China; (Y.F.); (Z.S.)
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun 130022, China
| | - Pei-Zhou Li
- School of Chemistry and Chemical Engineering, Shandong University, No. 27 Shanda South Road, Jinan 250100, China; (J.A.); (T.-X.L.)
- Science Center for Material Creation and Energy Conversion, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, China
- Correspondence:
| |
Collapse
|
94
|
Ghosh A, Karmakar S, Rahimi FA, Roy RS, Nath S, Gautam UK, Maji TK. Confinement Matters: Stabilization of CdS Nanoparticles inside a Postmodified MOF toward Photocatalytic Hydrogen Evolution. ACS APPLIED MATERIALS & INTERFACES 2022; 14:25220-25231. [PMID: 35613366 DOI: 10.1021/acsami.1c23458] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Insights into developing innovative routes for the stabilization of photogenerated charge-separated states by suppressing charge recombination in photocatalysts is a topic of immense importance. Herein, we report the synthesis of a metal-organic framework (MOF)-based composite where CdS nanoparticles (NPs) are confined inside the nanosized pores of Zr4+-based MOF-808, namely, CdS@MOF-808. Anchoring l-cysteine into the nanospace of MOF-808 via postsynthetic ligand exchange allows the capture of Cd2+ ions from their aqueous solution, which are further utilized for in situ growth of CdS NPs inside the nanosized MOF pores. The formation of CdS@MOF-808 opens up a possibility for visible-light photocatalysis as CdS NPs (1-2 nm) are a well-studied semiconductor system with a band gap of ∼2.6 eV. The confinement of the CdS NPs inside the MOF pores, close to the Zr4+ cluster, opens up a shorter electron transfer route from CdS to the catalytic Zr4+ cluster and shows a high rate of H2 evolution (10.41 mmol g-1 h-1) from water with a loading of 3.56 wt % CdS. In contrast, a similar composite in which CdS NPs are stabilized on the external surface of MOF-808 reveals poor activity (0.15 mmol g-1 h-1). CdS NPs stabilized on the MOF-808 surface show slower and inefficient electron transfer kinetics compared to CdS stabilized inside the nanospace of the MOF, as realized by the transient absorption measurements. Therefore, this work unveils the critical role of stabilizing the photosensitizer NPs in close proximity of the catalytic sites in MOF systems towards developing highly efficient H2 evolution photocatalysts.
Collapse
Affiliation(s)
- Adrija Ghosh
- New Chemistry Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur Post, Bangalore 560064, India
| | - Sanchita Karmakar
- Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur Post, Bangalore 560064, India
| | - Faruk Ahamed Rahimi
- Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur Post, Bangalore 560064, India
| | - Raj Sekhar Roy
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER)-Mohali, Sector 81, Mohali, SAS Nagar, Punjab 140306, India
| | - Sukhendu Nath
- Radiation and Photochemistry Division, Bhabha Atomic Research Center, Mumbai 400085, India
| | - Ujjal K Gautam
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER)-Mohali, Sector 81, Mohali, SAS Nagar, Punjab 140306, India
| | - Tapas Kumar Maji
- New Chemistry Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur Post, Bangalore 560064, India
- Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur Post, Bangalore 560064, India
| |
Collapse
|
95
|
Lu J, Li Z, Liu L, Cui W. Supramolecular photocatalysts as electrons storage: Enhanced photocatalytic degradation activity via interfacial charge transfer effect with Fe (Ⅲ). Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128771] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
96
|
Anchoring nickel complex to g-C3N4 enables an efficient photocatalytic hydrogen evolution reaction through ligand-to-metal charge transfer mechanism. J Colloid Interface Sci 2022; 616:791-802. [DOI: 10.1016/j.jcis.2022.02.122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 11/18/2022]
|
97
|
Kumar A, Soni V, Singh P, Parwaz Khan AA, Nazim M, Mohapatra S, Saini V, Raizada P, Hussain CM, Shaban M, Marwani HM, Asiri AM. Green aspects of photocatalysts during corona pandemic: a promising role for the deactivation of COVID-19 virus. RSC Adv 2022; 12:13609-13627. [PMID: 35530385 PMCID: PMC9073611 DOI: 10.1039/d1ra08981a] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 03/17/2022] [Indexed: 12/14/2022] Open
Abstract
The selection of a facile, eco-friendly, and effective methodology is the need of the hour for efficient curing of the COVID-19 virus in air, water, and many food products. Recently, semiconductor-based photocatalytic methodologies have provided promising, green, and sustainable approaches to battle against viral activation via the oxidative capabilities of various photocatalysts with excellent performance under moderate conditions and negligible by-products generation as well. Considering this, recent advances in photocatalysis for combating the spread of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are inclusively highlighted. Starting from the origin to the introduction of the coronavirus, the significant potential of photocatalysis against viral prevention and -disinfection is discussed thoroughly. Various photocatalytic material-based systems including metal-oxides, metal-free and advanced 2D materials (MXenes, MOFs and COFs) are systematically examined to understand the mechanistic insights of virus-disinfection in the human body to fight against COVID-19 disease. Also, a roadmap toward sustainable solutions for ongoing COVID-19 contagion is also presented. Finally, the challenges in this field and future perspectives are comprehensively discussed involving the bottlenecks of current photocatalytic systems along with potential recommendations to deal with upcoming pandemic situations in the future.
Collapse
Affiliation(s)
- Abhinandan Kumar
- School of Advanced Chemical Sciences, Shoolini University Solan Himachal Pradesh 173229 India
| | - Vatika Soni
- School of Advanced Chemical Sciences, Shoolini University Solan Himachal Pradesh 173229 India
| | - Pardeep Singh
- School of Advanced Chemical Sciences, Shoolini University Solan Himachal Pradesh 173229 India
| | - Aftab Aslam Parwaz Khan
- Center of Excellence for Advanced Materials Research, King Abdulaziz University P. O. Box 80203 Jeddah 21589 Saudi Arabia
- Chemistry Department, Faculty of Science, King Abdulaziz University P. O. Box 80203 Jeddah 21589 Saudi Arabia
| | - Mohammed Nazim
- Department of Chemical Engineering, Kumoh National Institute of Technology 61 Daehak-ro Gumi-si Gyeongbuk-do 39177 Republic of Korea
| | - Satyabrata Mohapatra
- University School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University Dwarka New Delhi 110078 India
| | - Vipin Saini
- Maharishi Markandeshwar Medical College Kumarhatti Solan Himachal Pradesh 173229 India
| | - Pankaj Raizada
- School of Advanced Chemical Sciences, Shoolini University Solan Himachal Pradesh 173229 India
| | | | - Mohamed Shaban
- Department of Physics, Faculty of Science, Beni-Suef University Beni-Suef 62514 Egypt
| | - Hadi M Marwani
- Center of Excellence for Advanced Materials Research, King Abdulaziz University P. O. Box 80203 Jeddah 21589 Saudi Arabia
- Chemistry Department, Faculty of Science, King Abdulaziz University P. O. Box 80203 Jeddah 21589 Saudi Arabia
| | - Abdullah M Asiri
- Center of Excellence for Advanced Materials Research, King Abdulaziz University P. O. Box 80203 Jeddah 21589 Saudi Arabia
- Chemistry Department, Faculty of Science, King Abdulaziz University P. O. Box 80203 Jeddah 21589 Saudi Arabia
| |
Collapse
|
98
|
Synergetic metal-semiconductor interaction: Single-atomic Pt decorated CdS nano-photocatalyst for highly water-to-hydrogen conversion. J Colloid Interface Sci 2022; 621:160-168. [PMID: 35461131 DOI: 10.1016/j.jcis.2022.04.053] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/02/2022] [Accepted: 04/07/2022] [Indexed: 01/07/2023]
Abstract
Solar driven water-to-hydrogen conversion is a promising technology for the typical sustainable production mode, so increasing efforts are being devoted to exploit high-performance photocatalytic materials. Cadmium sulfide (CdS) is widely used to prepare highly active photocatalysts owing to its merits of broadband-light harvesting and feasible band structure. However, the slow photo-carriers' migration in CdS body structure generally results in high-frequency carriers recombination, which leads to unsatisfied photoactivity. Metallic single-atom surface decoration is an effective method to build the strong metal-support interaction for promotion of photo-carriers' migration. Herein, a simple light-induced reduction procedure was proposed to decorate single-atomic Pt on the surface of CdS nanoparticles for highly photocatalytic HER activity. Research showed that the synergetic metal (Pt)-semiconductor (CdS) interaction significantly promoted the body-to-surface (BTS) photo-carriers' migration of CdS, thereby the high light-to-fuel conversion efficiency (AQY500 nm = 25.70%) and 13.5-fold greater simulated sunlight driven HER rate of bare CdS was achieved by this CdS-Pt nano-photocatalyst. Based on the photo-electrochemical analysis and density functional theory calculations, the remarkably improved HER photoactivity can be attributed to the enhanced light-harvesting, promoted BTS electron migration and reduced reaction energy barriers. This study provides a facile procedure to obtain CdS based photocatalyst with metallic single-atom sites for high-performance HER photocatalysis.
Collapse
|
99
|
Abednatanzi S, Gohari Derakhshandeh P, Dalapati S, Veerapandian SKP, Froissart AC, Epping JD, Morent R, De Geyter N, Van Der Voort P. Metal-Free Chemoselective Reduction of Nitroarenes Catalyzed by Covalent Triazine Frameworks: The Role of Embedded Heteroatoms. ACS APPLIED MATERIALS & INTERFACES 2022; 14:15287-15297. [PMID: 35322660 DOI: 10.1021/acsami.2c01091] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Chemoselective reduction of nitroarenes to arylamines is a core technology for the synthesis of numerous chemicals. The technology, however, relies on applying precious noble metal catalysts. We present our findings on the development of robust nanoporous covalent triazine frameworks (CTFs) as metal-free catalysts for the green chemoselective reduction of nitroarenes. The turnover frequency is found to be 43.03 h-1, exceeding activities of the heteroatom-doped carbon nanomaterials by a factor of 30. The X-ray photoelectron spectroscopy and control experiments provide further insights into the nature of active species for prompt catalysis. This report confirms the importance of quaternary 'N' and 'F' atom functionalities to create active hydrogen species via charge delocalization as a critical step in improving the catalytic activity.
Collapse
Affiliation(s)
- Sara Abednatanzi
- Center for Ordered Materials, Organometallics and Catalysis, Ghent University, Krijgslaan 281-S3, 9000 Gent, Belgium
| | - Parviz Gohari Derakhshandeh
- Center for Ordered Materials, Organometallics and Catalysis, Ghent University, Krijgslaan 281-S3, 9000 Gent, Belgium
| | - Sasanka Dalapati
- Center for Ordered Materials, Organometallics and Catalysis, Ghent University, Krijgslaan 281-S3, 9000 Gent, Belgium
- Department of Materials Science, School of Technology, Central University of Tamil Nadu (CUTN), Thiruvarur 610005, Tamil Nadu, India
| | - Savita K P Veerapandian
- Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Engineering and Architecture, Ghent University, 9000 Ghent, Belgium
| | - Anne-Claire Froissart
- Center for Ordered Materials, Organometallics and Catalysis, Ghent University, Krijgslaan 281-S3, 9000 Gent, Belgium
| | - Jan Dirk Epping
- Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 115, 10623 Berlin, Germany
| | - Rino Morent
- Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Engineering and Architecture, Ghent University, 9000 Ghent, Belgium
| | - Nathalie De Geyter
- Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Engineering and Architecture, Ghent University, 9000 Ghent, Belgium
| | - Pascal Van Der Voort
- Center for Ordered Materials, Organometallics and Catalysis, Ghent University, Krijgslaan 281-S3, 9000 Gent, Belgium
| |
Collapse
|
100
|
CdS@Ni3(NO3)2(OH)4 nanorods@nanosheets for boosted photocatalytic H2 generation rate and stability under visible light irradiation. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|