51
|
Ma X, Xiong L, Qin L, Tang Y, Ma G, Pei Y, Tang Z. A homoleptic alkynyl-protected [Ag 9Cu 6( t BuC[triple bond, length as m-dash]C) 12] + superatom with free electrons: synthesis, structure analysis, and different properties compared with the Au 7Ag 8 cluster in the M 15 + series. Chem Sci 2021; 12:12819-12826. [PMID: 34703569 PMCID: PMC8494057 DOI: 10.1039/d1sc03679c] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/31/2021] [Indexed: 12/03/2022] Open
Abstract
We report the first homoleptic alkynyl-protected AgCu superatomic nanocluster [Ag9Cu6( t BuC[triple bond, length as m-dash]C)12]+ (NC 1, also Ag9Cu6 in short), which has a body-centered-cubic structure with a Ag1@Ag8@Cu6 metal core. Such a configuration is reminiscent of the reported AuAg bimetallic nanocluster [Au1@Ag8@Au6( t BuC[triple bond, length as m-dash]C)12]+ (NC 2, also Au7Ag8 in short), which is also synthesized by an anti-galvanic reaction (AGR) approach with a very high yield for the first time in this study. Despite a similar Ag8 cube for both NCs, structural anatomy reveals that there are some subtle differences between NCs 1 and 2. Such differences, plus the different M1 kernel and M6 octahedron, lead to significantly different optical absorbance features for NCs 1 and 2. Density functional theory calculations revealed the LUMO and HOMO energy levels of NCs 1 and 2, where the characteristic absorbance peaks can be correlated with the discrete molecular orbital transitions. Finally, the stability of NCs 1 and 2 at different temperatures, in the presence of an oxidant or Lewis base, was investigated. This study not only enriches the M15 + series, but also sets an example for correlating the structure-property relationship in alkynyl-protected bimetallic superatomic clusters.
Collapse
Affiliation(s)
- Xiaoshuang Ma
- Guangzhou Key Laboratory for Surface Chemistry of Energy Materials, New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre Guangzhou Guangdong 510006 P. R. China
| | - Lin Xiong
- Department of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Xiangtan University Hunan Province Xiangtan 411105 P. R. China
| | - Lubing Qin
- Guangzhou Key Laboratory for Surface Chemistry of Energy Materials, New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre Guangzhou Guangdong 510006 P. R. China
| | - Yun Tang
- Guangzhou Key Laboratory for Surface Chemistry of Energy Materials, New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre Guangzhou Guangdong 510006 P. R. China
| | - Guanyu Ma
- Guangzhou Key Laboratory for Surface Chemistry of Energy Materials, New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre Guangzhou Guangdong 510006 P. R. China
| | - Yong Pei
- Department of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Xiangtan University Hunan Province Xiangtan 411105 P. R. China
| | - Zhenghua Tang
- Guangzhou Key Laboratory for Surface Chemistry of Energy Materials, New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre Guangzhou Guangdong 510006 P. R. China
| |
Collapse
|
52
|
Peng B, Zheng LX, Wang PY, Zhou JF, Ding M, Sun HD, Shan BQ, Zhang K. Physical Origin of Dual-Emission of Au-Ag Bimetallic Nanoclusters. Front Chem 2021; 9:756993. [PMID: 34646815 PMCID: PMC8503609 DOI: 10.3389/fchem.2021.756993] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 09/09/2021] [Indexed: 11/13/2022] Open
Abstract
On the origin of photoluminescence of noble metal NCs, there are always hot debates: metal-centered quantum-size confinement effect VS ligand-centered surface state mechanism. Herein, we provided solid evidence that structural water molecules (SWs) confined in the nanocavity formed by surface-protective-ligand packing on the metal NCs are the real luminescent emitters of Au-Ag bimetal NCs. The Ag cation mediated Au-Ag bimetal NCs exhibit the unique pH-dependent dual-emission characteristic with larger Stokes shift up to 200 nm, which could be used as potential ratiometric nanosensors for pH detection. Our results provide a completely new insight on the understanding of the origin of photoluminescence of metal NCs, which elucidates the abnormal PL emission phenomena, including solvent effect, pH-dependent behavior, surface ligand effect, multiple emitter centers, and large-Stoke's shift.
Collapse
Affiliation(s)
- Bo Peng
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, College of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Liu-Xi Zheng
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, College of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Pan-Yue Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, College of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Jia-Feng Zhou
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, College of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Meng Ding
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, College of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Hao-Di Sun
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, College of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Bing-Qian Shan
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, College of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Kun Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, College of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
- Laboratoire de Chimie, Ecole Normale Supérieure de Lyon, Institut de Chimie de Lyon, Université de Lyon, Lyon, France
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, China
| |
Collapse
|
53
|
Miyamoto M, Taketsugu T, Iwasa T. A comparative study of structural, electronic, and optical properties of thiolated gold clusters with icosahedral vs face-centered cubic cores. J Chem Phys 2021; 155:094304. [PMID: 34496588 DOI: 10.1063/5.0057566] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The structural, electronic, and optical properties of the protected Au clusters with icosahedral (Ih) and face-centered cubic (FCC)-like Au13 cores were studied to understand the origin of the difference in the optical gaps of these clusters. It has been demonstrated that the choice of density functionals does not qualitatively affect the properties of Au23 and Au25 clusters with Ih and FCC cores. The density of states, molecular orbitals, and natural charges were analyzed in detail using the B3LYP functional. The substantial energy difference in the lowest-energy absorption peaks for the clusters with the Ih and FCC cores is attributed to the difference in the natural charges of the central Au atoms (Auc) in the Ih and FCC cores, the former of which is more negative than the latter. Natural population analysis demonstrates that the excess negative charge of the Auc atom in clusters with Ih cores occupies the 6p atomic orbitals. This difference in Auc is attributed to the smaller size of the Ih core compared to the FCC core, as a less bulky ligand allows a smaller core with increased electron density, which, in turn, increases the highest occupied molecular orbital energy and decreases the optical gap.
Collapse
Affiliation(s)
- Maho Miyamoto
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-0810, Japan
| | - Tetsuya Taketsugu
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Takeshi Iwasa
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| |
Collapse
|
54
|
Lin X, Tang J, Zhang J, Yang Y, Ren X, Liu C, Huang J. The doping engineering and crystal structure of rod-like Au 8Ag 17 nanoclusters. J Chem Phys 2021; 155:074301. [PMID: 34418932 DOI: 10.1063/5.0060292] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Alloy nanoclusters protected by ligands were widely studied due to the synergistic effect of metal atoms, and they exhibit enhanced properties in different fields, such as bio-imaging and catalysis. Herein, we obtained Au8Ag17(PPh3)10Cl10 nanoclusters via one-step simple synthesis. The atomically precise crystal structure was determined by x-ray crystallography. It is found that the rod-like Au8Ag17 nanoclusters were composed of two Au4Ag9 icosahedrons via sharing the same Ag atom. Two Au atoms occupy the center of icosahedrons, and the other six Au atoms are all at the neck sites. Four kinds of Cl-Ag connecting modes were observed in Au8Ag17 nanoclusters. Moreover, the ultraviolet-visible absorption spectrum shows that the prominent absorption peaks of Au8Ag17 nanoclusters are at ∼395 and 483 nm. This work provides a feasible strategy to synthesize alloy nanoclusters with precise composition via doping engineering.
Collapse
Affiliation(s)
- Xinzhang Lin
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Jie Tang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Jubo Zhang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yang Yang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xiuqing Ren
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Chao Liu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Jiahui Huang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
55
|
Rodríguez-Kessler PL, Rojas-Poblete M, Muñoz-Castro A. Evaluation of ultrasmall coinage metal M 13(dppe) 6 M = Cu, Ag, and Au clusters. Bonding, structural and optical properties from relativistic DFT calculations. Phys Chem Chem Phys 2021; 23:18035-18043. [PMID: 34386809 DOI: 10.1039/d1cp02451e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ultrasmall ligand-protected clusters are prototypical species for evaluating the variation at the bottom of the nanoscale range. Here we explored the ultrasmall gold-phosphine M13(dppe)6 cluster, as a prototypical framework to gain insights into the fundamental similarities and differences between Au, Ag, and Cu, in the 1-3 nm size range, via relativistic DFT calculations. Different charge states involving 8- and 10-cluster electron (ce) species with a 1S21P6 and 1S21P61D2 configuration, leading to structural modification in the Au species between Au13(dppm)65+ and Au13(dppm)63+, respectively. Furthermore, this structural distortion of the M13 core is found to occur to a lower degree for the calculated Ag and Cu counterparts. Interestingly, optical properties exhibit similar main patterns along with the series, inducing a blue-shift for silver and copper, in comparison to the gold parent cluster. For 10-ce species, the main features of 8-ce are retained with the appearance of several weak transitions in the range. The ligand-core interaction is enhanced for gold counterparts and decreased for lighter counterparts resulting in the Au > Cu > Ag trend for the interaction stabilization. Hence, the Ag and Cu counterparts of the Au13(dppm)6 cluster appear as useful alternatives, which can be further explored towards different cluster alternatives for building blocks for nanostructured materials.
Collapse
Affiliation(s)
- Peter L Rodríguez-Kessler
- Laboratorio de Química Inorgánica y Materiales Moleculares, Facultad de Ingeniería, Universidad Autonoma de Chile, El Llano Subercaseaux 2801, Santiago, Chile.
| | | | | |
Collapse
|
56
|
Takano S, Tsukuda T. Atomically-ordered Trimetallic Superatoms M@Au 6Ag 6 (M = Pd, Pt): Synthesis and Photoluminescence Properties. CHEM LETT 2021. [DOI: 10.1246/cl.210190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Shinjiro Takano
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tatsuya Tsukuda
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Katsura, Kyoto 615-8520, Japan
| |
Collapse
|
57
|
Takano S, Tsukuda T. Chemically Modified Gold/Silver Superatoms as Artificial Elements at Nanoscale: Design Principles and Synthesis Challenges. J Am Chem Soc 2021; 143:1683-1698. [DOI: 10.1021/jacs.0c11465] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Shinjiro Takano
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tatsuya Tsukuda
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Katsura, Kyoto 615-8520, Japan
| |
Collapse
|
58
|
Gan W, Huang B, Yang M, Geng L, Luo Z, Hansen K. The reactivity of Nb n+ clusters with acetylene and ethylene to produce a cubic aromatic metal carbide Nb 4C 4+. NEW J CHEM 2021. [DOI: 10.1039/d1nj04750g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The reactions of niobium cationic clusters with acetylene and ethylene under sufficient gas collision conditions give rise to dominant dehydrogenation and produce a main metal carbide Nb4C4+ which is associated with cubic aromaticity.
Collapse
Affiliation(s)
- Wen Gan
- Beijing National Laboratory for Molecular Science, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Benben Huang
- Beijing National Laboratory for Molecular Science, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengzhou Yang
- Beijing National Laboratory for Molecular Science, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lijun Geng
- Beijing National Laboratory for Molecular Science, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Zhixun Luo
- Beijing National Laboratory for Molecular Science, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Klavs Hansen
- Center for Joint Quantum Studies and Department of Physics, School of Science, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| |
Collapse
|
59
|
Lei X, Zhang H, Jia Y, Luo Z. Gas-phase preparation and the stability of superatomic Nb 11O 15. Phys Chem Chem Phys 2021; 23:15766-15773. [PMID: 34286767 DOI: 10.1039/d1cp02128a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report a study of the reactions of pure metal clusters Nbn- with dioxygen in the gas phase. It is found that the presence of low-concentration dioxygen reactants results in oxygen-addition products, whereas sufficient high-concentration dioxygen enables oxygen-etching reactions giving rise to molecular niobium oxides. Interestingly, in the presence of a suitable gas flow rate of an intermediate dioxygen concentration, a highly selective product Nb11O15- shows up in the mass spectra. Utilizing density functional theory (DFT) calculations, we have discussed the reactivities of Nbn- (3 ≤ n ≤ 14) clusters with oxygen, and unveiled the reasonable stability of Nb11O15- pertaining to its unique geometric structure with a D5h Nb@Nb10 core fully protected by 15 bridge-oxygen atoms. The oxygen-passivated Nb@Nb10O15- cluster exhibits a large HOMO-LUMO gap (1.46 eV) and effective multicenter bonds with remarkable superatom orbitals for all the 26 valence electrons of the Nb@Nb10 core corresponding to well-staggered energy levels. We illustrate the superatomic features in the Nb@Nb10 metallic core for which the adaptive natural density partitioning (AdNDP) analysis unveils thirteen 11c-2e bonds. Among them, one of the 11c-2e bonds accounts for the superatomic S orbital, three bonds correspond to superatomic P orbitals, another five display vivid D orbital characteristics, and the remaining four 11c-2e bonds are assigned to F orbital features. In addition, the net atomic charge of the center Nb atom is as high as -0.804 |e| rendering core-shell electrostatic interactions and the shielding effect of the Nb10O15 shell.
Collapse
Affiliation(s)
- Xin Lei
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Hanyu Zhang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Yuhan Jia
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhixun Luo
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|