51
|
Zhou F, Cui C, Sun S, Wu S, Chen S, Ma J, Li CM. Electrospun ZnO-loaded chitosan/PCL bilayer membranes with spatially designed structure for accelerated wound healing. Carbohydr Polym 2022; 282:119131. [DOI: 10.1016/j.carbpol.2022.119131] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 12/21/2021] [Accepted: 01/08/2022] [Indexed: 12/21/2022]
|
52
|
Gao Y, Qiu Z, Liu L, Li M, Xu B, Yu D, Qi D, Wu J. Multifunctional fibrous wound dressings for refractory wound healing. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20220008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yujie Gao
- MOE Key Laboratory of Advanced Textile Materials & Manufacturing Technology Zhejiang Sci‐Tech University Hangzhou China
| | - Zhiye Qiu
- MOE Key Laboratory of Advanced Textile Materials & Manufacturing Technology Zhejiang Sci‐Tech University Hangzhou China
| | - Lei Liu
- MOE Key Laboratory of Advanced Textile Materials & Manufacturing Technology Zhejiang Sci‐Tech University Hangzhou China
| | - Mengmeng Li
- MOE Key Laboratory of Advanced Textile Materials & Manufacturing Technology Zhejiang Sci‐Tech University Hangzhou China
| | - Bingjie Xu
- MOE Key Laboratory of Advanced Textile Materials & Manufacturing Technology Zhejiang Sci‐Tech University Hangzhou China
| | - Dan Yu
- Department of Oral and Maxillofacial Surgery, the First Affiliated Hospital Zhejiang University School of Medicine Hangzhou China
| | - Dongming Qi
- MOE Key Laboratory of Advanced Textile Materials & Manufacturing Technology Zhejiang Sci‐Tech University Hangzhou China
- Zhejiang Provincial Engineering Research Center for Green and Low‐carbon Dyeing & Finishing Zhejiang Sci‐Tech University Hangzhou China
| | - Jindan Wu
- MOE Key Laboratory of Advanced Textile Materials & Manufacturing Technology Zhejiang Sci‐Tech University Hangzhou China
- Zhejiang Provincial Engineering Research Center for Green and Low‐carbon Dyeing & Finishing Zhejiang Sci‐Tech University Hangzhou China
| |
Collapse
|
53
|
Liu Y, Zhu T, Li J, Bao Y, Cheng B, Chen S, Du J, Hu S. Magnolol Hybrid Nanofibrous Mat with Antibacterial, Anti-Inflammatory, and Microvascularized Properties for Wound Treatment. Biomacromolecules 2022; 23:1124-1137. [DOI: 10.1021/acs.biomac.1c01430] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Yonghang Liu
- School of Chemistry and Chemical Engineering, Shanghai Engineering Research Center of Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular Non-coding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, 333 Longteng Road, Shanghai 201620, P. R. China
| | - Tonghe Zhu
- School of Chemistry and Chemical Engineering, Shanghai Engineering Research Center of Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular Non-coding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, 333 Longteng Road, Shanghai 201620, P. R. China
| | - Jun Li
- Department of Orthopedics, Shanghai Tenth People’s Hospital Affiliated to Tongji University, 301 Yanchang Road, Shanghai 200072, P. R. China
| | - Yiming Bao
- School of Chemistry and Chemical Engineering, Shanghai Engineering Research Center of Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular Non-coding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, 333 Longteng Road, Shanghai 201620, P. R. China
| | - Biao Cheng
- Department of Orthopedics, Shanghai Tenth People’s Hospital Affiliated to Tongji University, 301 Yanchang Road, Shanghai 200072, P. R. China
| | - Sihao Chen
- School of Chemistry and Chemical Engineering, Shanghai Engineering Research Center of Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular Non-coding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, 333 Longteng Road, Shanghai 201620, P. R. China
| | - Juan Du
- School of Chemistry and Chemical Engineering, Shanghai Engineering Research Center of Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular Non-coding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, 333 Longteng Road, Shanghai 201620, P. R. China
| | - Shaowei Hu
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Biomedical Sciences of Fudan University, NHC Key Laboratory of Hearing Medicine of Fudan University, Fudan University, 83 Fenyang Road, Shanghai 200031, P. R. China
| |
Collapse
|
54
|
Zhang M, Song W, Tang Y, Xu X, Huang Y, Yu D. Polymer-Based Nanofiber-Nanoparticle Hybrids and Their Medical Applications. Polymers (Basel) 2022; 14:351. [PMID: 35054758 PMCID: PMC8780324 DOI: 10.3390/polym14020351] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/11/2022] [Accepted: 01/14/2022] [Indexed: 12/13/2022] Open
Abstract
The search for higher-quality nanomaterials for medicinal applications continues. There are similarities between electrospun fibers and natural tissues. This property has enabled electrospun fibers to make significant progress in medical applications. However, electrospun fibers are limited to tissue scaffolding applications. When nanoparticles and nanofibers are combined, the composite material can perform more functions, such as photothermal, magnetic response, biosensing, antibacterial, drug delivery and biosensing. To prepare nanofiber and nanoparticle hybrids (NNHs), there are two primary ways. The electrospinning technology was used to produce NNHs in a single step. An alternate way is to use a self-assembly technique to create nanoparticles in fibers. This paper describes the creation of NNHs from routinely used biocompatible polymer composites. Single-step procedures and self-assembly methodologies are used to discuss the preparation of NNHs. It combines recent research discoveries to focus on the application of NNHs in drug release, antibacterial, and tissue engineering in the last two years.
Collapse
Affiliation(s)
- Mingxin Zhang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (M.Z.); (Y.T.); (X.X.); (Y.H.)
| | - Wenliang Song
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (M.Z.); (Y.T.); (X.X.); (Y.H.)
| | - Yunxin Tang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (M.Z.); (Y.T.); (X.X.); (Y.H.)
| | - Xizi Xu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (M.Z.); (Y.T.); (X.X.); (Y.H.)
| | - Yingning Huang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (M.Z.); (Y.T.); (X.X.); (Y.H.)
| | - Dengguang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (M.Z.); (Y.T.); (X.X.); (Y.H.)
- Shanghai Engineering Technology Research Center for High-Performance Medical Device Materials, Shanghai 200093, China
| |
Collapse
|
55
|
Saiding Q, Cui W. Functional nanoparticles in electrospun fibers for biomedical applications. NANO SELECT 2021. [DOI: 10.1002/nano.202100335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Qimanguli Saiding
- Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital Shanghai Jiao Tong University School of Medicine Shanghai P. R. China
| | - Wenguo Cui
- Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital Shanghai Jiao Tong University School of Medicine Shanghai P. R. China
| |
Collapse
|
56
|
Dutta G, Sugumaran A. Bioengineered zinc oxide nanoparticles: Chemical, green, biological fabrication methods and its potential biomedical applications. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102853] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
57
|
Chen C, Zhai S, Li C, Tan M, Zhao J, Wei Y, Dai T, Wang L. Exploration of the Wound Healing Potential of Thermoplastic Polyurethane Electrospun Membrane Incorporated with Phenolic Acids in Spenceria ramalana Trimen. Macromol Biosci 2021; 22:e2100302. [PMID: 34679241 DOI: 10.1002/mabi.202100302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/11/2021] [Indexed: 11/05/2022]
Abstract
Wound healing process is usually accompanied by infection and the wound dressing loaded with antibiotics is usually used to treat skin wound. However, the intensive use of antibiotics may lead to development of resistance and the antibiotic resistance has become a major global problem. Finding new wound dressing with sustained antibacterial property to overcome the problem of resistance is one of clinical challenge. In this work, phenolic acids in Spenceria ramalana Trimen and sliver nanoparticle incorporated thermoplastic polyurethane nanofibrous membrane (TPU/AgNPs/TPA) are fabricated via electrospinning. The TPU/AgNPs/TPA membrane exhibits excellent physicochemical properties with uniform morphology, good mechanical capacity, and appropriate hydrophilia providing suitable environment for wound healing. Moreover, the TPU/AgNPs/TPA membrane shows mild antioxidant property and exhibits continuous antibacterial activity against Staphylococcus aureus and Escherichia coli especially against drug-resistant E. coli. The antibacterial efficiency is as high as 99% lasting for 36 h. Furthermore, the TPU/AgNPs/TPA membrane used as wound dressing can accelerate wound healing through downregulating TNF-α and IL-1β and upregulating vascular endothelial growth factor and epidermal growth factor. Therefore, the TPU/AgNPs/TPA membrane presented in this work with good antibacterial activity is an excellent wound dressing and has great potential in wound healing applications to overcome the problem of resistance.
Collapse
Affiliation(s)
- Chaoxi Chen
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, China.,Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu, 610041, China
| | - Shuo Zhai
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, China
| | - Congcong Li
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, China
| | - Min Tan
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, China
| | - Juebo Zhao
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, China
| | - Yucai Wei
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, China
| | - Tao Dai
- College of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, China
| | - Lu Wang
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, China.,Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu, 610041, China
| |
Collapse
|
58
|
Pardeshi SR, Nikam A, Chandak P, Mandale V, Naik JB, Giram PS. Recent advances in PLGA based nanocarriers for drug delivery system: a state of the art review. INT J POLYM MATER PO 2021. [DOI: 10.1080/00914037.2021.1985495] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Sagar R. Pardeshi
- Department of Pharmaceutical Technology, University Institute of Chemical Technology, KBC North Maharashtra University, Jalgaon, India
| | - Aniket Nikam
- Department of Pharmaceutical Quality Assurance, Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pune, India
| | - Priyanka Chandak
- Department of Pharmaceutical Quality Assurance, Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pune, India
| | - Vijaya Mandale
- Department of Pharmaceutical Quality Assurance, Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pune, India
| | - Jitendra B. Naik
- Department of Pharmaceutical Technology, University Institute of Chemical Technology, KBC North Maharashtra University, Jalgaon, India
| | - Prabhanjan S. Giram
- Department of Pharmaceutics, Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pune, India
| |
Collapse
|
59
|
DNA-assisted synthesis of flower-like ZnO mesocrystal. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2021.138807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
60
|
Opálková Šišková A, Mosnáčková K, Hrůza J, Frajová J, Opálek A, Bučková M, Kozics K, Peer P, Eckstein Andicsová A. Electrospun Poly(ethylene Terephthalate)/Silk Fibroin Composite for Filtration Application. Polymers (Basel) 2021; 13:2499. [PMID: 34372102 PMCID: PMC8348435 DOI: 10.3390/polym13152499] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/24/2022] Open
Abstract
In this study, fibrous membranes from recycled-poly(ethylene terephthalate)/silk fibroin (r-PSF) were prepared by electrospinning for filtration applications. The effect of silk fibroin on morphology, fibers diameters, pores size, wettability, chemical structure, thermo-mechanical properties, filtration efficiency, filtration performance, and comfort properties such as air and water vapor permeability was investigated. The filtration efficiency (FE) and quality factor (Qf), which represents filtration performance, were calculated from penetration through the membranes using aerosol particles ranging from 120 nm to 2.46 μm. The fiber diameter influenced both FE and Qf. However, the basis weight of the membranes has an effect, especially on the FE. The prepared membranes were classified according to EN149, and the most effective was assigned to the class FFP1 and according to EN1822 to the class H13. The impact of silk fibroin on the air permeability was assessed. Furthermore, the antibacterial activity against bacteria S. aureus and E. coli and biocompatibility were evaluated. It is discussed that antibacterial activity depends not only on the type of used materials but also on fibrous membranes' surface wettability. In vitro biocompatibility of the selected samples was studied, and it was proven to be of the non-cytotoxic effect of the keratinocytes (HaCaT) after 48 h of incubation.
Collapse
Affiliation(s)
- Alena Opálková Šišková
- Polymer Institute of Slovak Academy of Sciences, Dúbravská cesta 9, 845 41 Bratislava, Slovakia;
- Institute of Materials and Machine Mechanics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 13 Bratislava, Slovakia;
| | - Katarína Mosnáčková
- Polymer Institute of Slovak Academy of Sciences, Dúbravská cesta 9, 845 41 Bratislava, Slovakia;
| | - Jakub Hrůza
- Advanced Technologies and Innovation, Institute for Nanomaterials, Technical University in Liberec, Studentská 1402/2, 461 17 Liberec, Czech Republic;
| | - Jaroslava Frajová
- Faculty of Arts and Architecture, Technical University in Liberec, Studentská 1402/2, 460 01 Liberec, Czech Republic;
| | - Andrej Opálek
- Institute of Materials and Machine Mechanics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 13 Bratislava, Slovakia;
| | - Mária Bučková
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 51 Bratislava, Slovakia;
| | - Katarína Kozics
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05 Bratislava, Slovakia;
| | - Petra Peer
- Institute of Hydrodynamics of the Czech Academy of Sciences, v. v. i., Pod Patankou 5, 166 12 Prague 6, Czech Republic;
| | - Anita Eckstein Andicsová
- Polymer Institute of Slovak Academy of Sciences, Dúbravská cesta 9, 845 41 Bratislava, Slovakia;
| |
Collapse
|
61
|
Kandhasamy S, Liang B, Yang DP, Zeng Y. Antibacterial Vitamin K3 Carnosine Peptide-Laden Silk Fibroin Electrospun Fibers for Improvement of Skin Wound Healing in Diabetic Rats. ACS APPLIED BIO MATERIALS 2021; 4:4769-4788. [PMID: 35007027 DOI: 10.1021/acsabm.0c01650] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The utilization of a multifunctional bioactive molecule functionalized electrospun dressing in tissue repair and regenerative function is a prominent therapeutic strategy for preparing efficient biomaterials to promote chronic wound healing. Designing robust and highly efficient antibacterial agents in resistance against microbes and bacterial infections is a key challenge for accelerating diabetic wound healing until today. In this study, we developed a vitamin K3 carnosine peptide (VKC)-laden silk fibroin electrospun scaffold (SF-VKC) for diabetic wound healing. The structural confirmation of synthesized VKC was characterized by 1H NMR, 13C NMR, electrospray ionization mass spectrometry (ESI-MS), and attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy analysis, and the cell viability of VKC was evaluated by the CCK-8 assay in HFF1 and NIH 3T3 cells. VKC shows excellent cell viability on both cell lines, and the VKC and SF-VKC electrospun mats exhibited excellent antibacterial activity against both Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli and Pseudomonas aeruginosa) bacteria. Prepared SF and SF-VKC fibrous mats were well characterized, and the SF-VKC nanofiber mat presented good biodegradability, adhesiveness, unique mechanical property, expedient water uptake property, sustained drug release, and excellent biocompatibility for chronic wound healing. The in vitro tissue engineering study depicted excellent cell migration and cell-cell interaction in the NIH 3T3 cells over the VKC-impregnated silk fibroin (SF-VKC) mat. A higher population of cell migration was observed in cells' denuded area (scratched region) compared to the native SF fibrous mat. Interestingly, our results demonstrated that the prepared VKC-impregnated SF mat had potentially promoted the STZ-induced diabetic wound healing in a shorter period than the pure SF mat. Thus, obtained in vitro and in vivo outcomes suggest that the VKC-laden SF electrospun fibrous mat could be a better and inexpensive fibrous antibacterial biomaterial to elicit earlier re-epithelialization and efficient matrix remodeling for accelerating chronic infected wound reconstruction in skin diabetic wound healing applications.
Collapse
Affiliation(s)
- Subramani Kandhasamy
- Department of Respiratory Diseases, Clinical Center for Molecular Diagnosis and Therapy, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, China
| | - Bo Liang
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, China
| | - Da-Peng Yang
- College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou, Fujian 362000, China
| | - Yiming Zeng
- Department of Respiratory Diseases, Clinical Center for Molecular Diagnosis and Therapy, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, China
| |
Collapse
|