51
|
Subach OM, Varfolomeeva L, Vlaskina AV, Agapova YK, Nikolaeva AY, Piatkevich KD, Patrushev MV, Boyko KM, Subach FV. FNCaMP, ratiometric green calcium indicator based on mNeonGreen protein. Biochem Biophys Res Commun 2023; 665:169-177. [PMID: 37163937 DOI: 10.1016/j.bbrc.2023.04.108] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 04/28/2023] [Accepted: 04/28/2023] [Indexed: 05/12/2023]
Abstract
Neurobiologists widely use green genetically encoded calcium indicators (GECIs) for visualization of neuronal activity. Among them, ratiometric GECIs allow imaging of both active and non-active neuronal populations. However, they are not popular, since their properties are inferior to intensiometric GCaMP series of GECIs. The most characterized and developed ratiometric green GECI is FGCaMP7. However, the dynamic range and sensitivity of its large Stock's shift green (LSS-Green) form is significantly lower than its Green form and its molecular design is not optimal. To address these drawbacks, we engineered a ratiometric green calcium indicator, called FNCaMP, which is based on bright mNeonGreen protein and calmodulin from A. niger and has optimal NTnC-like design. We compared the properties of the FNCaMP and FGCaMP7 indicators in vitro, in mammalian cells, and in neuronal cultures. Finally, we obtained and analyzed X-ray structure of the FNCaMP indicator.
Collapse
Affiliation(s)
- Oksana M Subach
- Complex of NBICS Technologies, National Research Center "Kurchatov Institute", Moscow, 123182, Russia.
| | - Larisa Varfolomeeva
- Bach Institute of Biochemistry, Research Centre of Biotechnology of the Russian Academy of Sciences, Moscow, 119071, Russia.
| | - Anna V Vlaskina
- Complex of NBICS Technologies, National Research Center "Kurchatov Institute", Moscow, 123182, Russia.
| | - Yulia K Agapova
- Complex of NBICS Technologies, National Research Center "Kurchatov Institute", Moscow, 123182, Russia.
| | - Alena Y Nikolaeva
- Complex of NBICS Technologies, National Research Center "Kurchatov Institute", Moscow, 123182, Russia; Bach Institute of Biochemistry, Research Centre of Biotechnology of the Russian Academy of Sciences, Moscow, 119071, Russia.
| | - Kiryl D Piatkevich
- School of Life Sciences, Westlake University, Hangzhou, 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, 310024, China.
| | - Maxim V Patrushev
- Complex of NBICS Technologies, National Research Center "Kurchatov Institute", Moscow, 123182, Russia.
| | - Konstantin M Boyko
- Bach Institute of Biochemistry, Research Centre of Biotechnology of the Russian Academy of Sciences, Moscow, 119071, Russia.
| | - Fedor V Subach
- Complex of NBICS Technologies, National Research Center "Kurchatov Institute", Moscow, 123182, Russia.
| |
Collapse
|
52
|
Shi Y, Zhang W, Xue Y, Zhang J. Fluorescent Sensors for Detecting and Imaging Metal Ions in Biological Systems: Recent Advances and Future Perspectives. CHEMOSENSORS 2023; 11:226. [DOI: 10.3390/chemosensors11040226] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Metal ions play a crucial role in many biochemical processes, and when in a state of scarcity or surplus, they can lead to various diseases. Therefore, the development of a selective, sensitive, cost-effective, and fast-responding sensor to detect metal ions is critical for in vitro medical diagnostics. In recent years, fluorescent sensors have been extensively investigated as potent kits for the effective assessment of metal ions in living systems due to their high sensitivity, selectivity, ability to perform real-time, non-invasive monitoring, and versatility. This review is an overview of recent advances in fluorescent sensors for the detection and imaging of metal ions in biosystems from 2018 to date. Specifically, we discuss their application in detecting essential metal ions and non-essential metal ions for in vitro diagnostics, living cell imaging, and in vivo imaging. Finally, we summarize remaining challenges and offer a future outlook on the above topics.
Collapse
Affiliation(s)
- Yang Shi
- Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Wenxian Zhang
- Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yi Xue
- Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jingjing Zhang
- Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| |
Collapse
|