Ghani QP, Hollenberg M. Poly(adenosine dephosphate ribose) metabolism and regulation of myocardial cell growth by oxygen.
Biochem J 1978;
170:387-94. [PMID:
25065 PMCID:
PMC1183906 DOI:
10.1042/bj1700387]
[Citation(s) in RCA: 18] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Control of the rate of cardiac cell division by oxygen occurs most probably by altering the redox state of a control substance, e.g. NAD(+)right harpoon over left harpoonNADH. NAD(+) (and not NADH) forms poly(ADP-ribose), an inhibitor of DNA synthesis, in a reaction catalysed by poly(ADP-ribose) polymerase. Lower partial pressure of oxygen, which increases the rate of division, would shift NAD(+)-->NADH, decrease poly(ADP-ribose) synthesis, and increase DNA synthesis. Chick-embryo heart cells grown in culture in 20% O(2) (in which they divide more slowly than in 5% O(2)) did exhibit greater poly(ADP-ribose) polymerase activity (+83%, P<0.001) than when grown in 5% O(2). Reaction product was identified as poly(ADP-ribose) by its insensitivity to deoxyribonuclease, ribonuclease, NAD glycohydrolase, Pronase, trypsin and micrococcal nuclease, and by its complete digestion with snake-venom phosphodiesterase to phosphoribosyl-AMP and AMP. Isolation of these digestion products by Dowex 1 (formate form) column chromatography and paper chromatography allowed calculation of average poly(ADP-ribose) chain length, which was 15-26% greater in 20% than in 5% O(2). Thus in 20% O(2) the increase in poly(ADP-ribose) formation results from chain elongation. Formation of new chains also occurs, probably to an even greater degree than chain elongation. Additionally, poly(ADP-ribose) polymerase has very different K(m) and V(max.) values and pH optima in 20% and 5% O(2). These data suggest that poly(ADP-ribose) metabolism participates in the regulation of heart-cell division by O(2), probably by several different mechanisms.
Collapse